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On Functions of Nonconvexity for Graphs
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For any subset P of a normed space we introduce the concept of a function hp
of non-convexity of the set P. We investigate the case when P lies in the Euclidean
plane and P is the graph of some continuous function of one variable. One of the
applications for example is that in the well-known E. Michael Selection Theorem
the condition of convexity in this case can be replaced by the condition that the
values of the many-valued map are graphs of polynomials g(x) = x" + a,,_x""' +
-+ + ayx + ay, Ja| = C. Here, the coordinate system is not fixed: it may be different
for different values of the many-valued map. © 1995 Academic Press. Inc.

0. INTRODUCTION

Let P be a subset of a normed space (E, ||-||). We define a function Ap:
(0, =) — [0, 2] which is (approximately) the ‘‘characteristic function of
nonconvexity” of this set P. For a closed P the equality 4p = 0 is equivalent
to the convexity of P. The definition of the function hp is reminiscent of
the definition of the moduli convexity of the unit sphere of the Banach
space [1].

So, let B(r) be the set of all open balls with radius r in the normed space
E. For every D € B(r), let

8(D, P) = sup{p(y, P)|y € conv(D N P)}/r
where, as usual,
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1022 REPOVS AND SEMENOV
p(y, P) = inf{||ly — x[|| x € P}

and conv denotes the closure of the convex hull. It is easy to check that
for inner product space E the following inequality holds: 0 =< §(D, P) =
1. Indeed, if y, y2, ..., ¥, € D N P and if y € conv{y,, ..., y,} then the
distance from y to one of the vertexes y;, ya, ..., ¥, is less than the radius
of the ball D. For any normed space £, the example of the space €. shows
that (in general) 0 < (D, P) =< 2.

DeriniTioN 0.1, Let P be a subset of the normed space E. Then for
any r > 0 put

hp(r) = sup{8(D, P) | D € B(r)}.

The function h,: (0, ) — [0, 2] is called the function of non-convexity of
the set P.

For a closed set P the equality hp = 0 is equivalent to the convexity of
the set P. Examples (in the Euclidean plane except e) and f)) are:

(a) For the set P = {a, b}, |la — b|| = 2R, we have that

0, r<R

hp(r) =
A1) {R/r, r>R.

(b) For the circle P of radius R,

(R-VR*—P»)Ir, r<R

hp(r) = {

O ko, r=R.
We get the same answer for the half-circle.

(c) If Pis an arc of the circle with the central angle 0 < 2¢ < 7 then

(R— VR>—r)/r, r<Rsine¢

hp(r) = {
(") R(1 — cos ¢)/r, r= Rsin ¢.

i.e., hp is strongly increasing on (0, R sin ¢) from 0 to a = tan (¢/2) <1
and hp is strongly decreasing on [R sin ¢, ) from o to 0.

(d) For the boundary P of the square with the inscribed circle of
radius R we have that
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1/2, r=R

he(r) {R/r, r>R.

(e) For a closed set P the concept of a-paraconvexity introduced in
[3] by Michael is equivalent to the function of non-convexity hp being
bounded from above by the constant a on the whole interval (0, =), 0 =
a < 1. The result of Klee [2] shows that if for an arbitrary subset P C E
we have

hp=1,

then E is two-dimensional or an inner product space.

(f) Clearly, for every point y € conv(D N P), where D € B(r), we
have the inequality

p(y, Py hp(r)-r

1. PRELIMINARIES

In this section we shall explain why the graphs of continuous functions
on the Euclidean plane are preferable to arbitrary sets on the plane. We
shall also give sufficient conditions on the set of functions to have a common
non-decreasing majorant h: (0, ) — [0, 1] for the set of functions of
nonconvexity of graphs of these functions.

In Section 2 we demonstrate that from the existence of such a common
non-decreasing majorant one can obtain a selection theorem for lower
semicontinuous, many-valued maps from a paracompact to the plane, with
values which are graphs of such functions. We also give a concrete example
for graphs of polynomials.

Recall that a single-valued map ¢: X — Y is called a selection of a many-
valued map ®@: X — Y if ¢(x) € ®(x) for every x € X. A many-valued
map ¢: X — Y is said to be lower semicontinuous if for every open set
G C Y, theset{x € X| ®(x) N G # T} is open in X (see [3]).

We begin with the following lemma (see [5, Theorem (n = 1)]):

Lemma 1.1, Let A, B, C be points on a graph Iy of a continuous function
f defined on an interval. Let D be a point in the triangle AABC. Then the
point D lies in some segment [E, F|, where E € Iy, F € I';, and the distance
EF is less than or equal to max{AB, BC, AC}.

To find the function of non-convexity for a subset of the Euclidean plane
it suffices to consider only the triangles with vertices from this set and to
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control the distance between the set and the points of these triangles. In
fact, any polygon can be divided into a union of triangles (Carathéodory
theorem). Lemma 1.1 shows that for graphs of continuous functions with
convex domains of definition it suffices to consider only the segments and
to control the distance between graph and points of these segments.

Lemma 1.2, Let A and B be points from the subset P of a linear metric
space F, dist(A, B) = 2r, and let dist(O, P) between the middle point O of
the segment [A, B) and the set P be less than «-r, for some 0 = a < 1.
Then for any point X € [A, B] we have dist(X, P) < ar, where & =
(1 + )2 € [0, 1).

Proof. If dist(X, O) > ((1 — «)/2)r then dist(X, A) < ar or dist(X, B)
< &r. On the other hand, if dist(X, O) = ((1 — @)/2)r and dist(O, Y) <
ar, for some Y € P then by the triangle inequality we have that dist( X,
P)=dist(X, Y)y < ar. |

Lemma 1.2 shows that if we want to find only a majorant for the functions
of nonconvexity of graphs then we can consider only the middle points of
the segments. As an application we have the following lemma:

LemMma 1.3, (a) Let P beagraph of a Lipschitz function with a constant
k = 0 and with a convex domain of definition. Then P is an a-paraconvex
subset of the plane, where & = (1 + sin(arctan k))/2.

(b) Let P be a graph of a monotone continuous function with convex
domain of definition. Then P is a B-paraconvex subset of the plane, where

B = (1 + (V2/2))12.

Proof. (a) See Fig. 1 below. Here 0 = ¢ < y = arctan &k, OC =
OD = rsin ¢ and the set P intersects either the segment [O, C] or the
segment [O, D].

(b) It suffices to remark that if we rotate the coordinate system by
45° counterclockwise (clockwise) then the graph of the monotone non-
decreasing (non-increasing) continuous function passes to the graph of a
Lipschitz function with the constant 1. |

DerFNITION 1.2, Let 0 =< o < 1 and let 8 be any function from (0, %)
into [0, 1). We define the set #(c«, 3) of functions from R to R with closed
convex domains of definitions such that there exist a < b such that for any
f € %(a, B) the following conditions hold:

(1) The graphs of restrictions I'(f |(-x,) and I'(f |j5.-) are either
empty or a-paraconvex.

(2) Forany R > 0, the graphs of restrictions ['(f [|,—2z»-2r)) are either
empty or are 3(R)-paraconvex.
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FIGURE 1

THEOREM 1.1.  Let 0 = a < 1 and let B be any function from (0, «) into
[0, 1). Then there exists a non-decreasing function h: (0, ®) — [0, 1) such
that for any f from the set ¥(a, B), the function hrsy of nonconvexity of the
graph U(f) is less than h on the whole ray (0, «).

Proof. We fix f € ¥(«, B) and R > 0. It suffices to show that
sup {hr(r(r) [0 <r=R}=y(R) <1 (*)

where y(R) is some constant which does not depend on f. After such an
estimate we may put

h(R) = (1 + sup{supi{hr(r) |0 < r < R}| f € F(a, B)})/2.

Indeed, A(R) = (1 + y(R))/2 < 1, h(R) is a nondecreasing function, and
hrr(R) < h(R) for any f € F(e, B) and for any R > (.

To check the condition (*) we consider any segment [A, B] with A,
B € I'(f) and AB = 2r. Let a < b be the numbers from the definition of
the set of functions &(«, 8). There are only three possibilities: (a) the left
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a—2R a b b+ 2R

C b a

FIGURE 2

endpoint A of the segment [A, B] lies on the right-hand side of the number
b; (b) A lies on the left-hand side of the number b and lies on the right-
hand side of the number a — 2R; (c) A lies on the left-hand side of the
number a — 2R. (See Fig. 2.)

In the case (a) points A and B lie on the graph I'(f |j5) and from
condition (1) of the definition of the set F(«a, 8) we have that for any point
X € [A, B], dist(X, T'(f)) = ar. From the inequality r = R we have that
in the case (b) points A and B lie on the graph I'(f |j.-2rp.2x)) and from
condition (2) of the definition of the set %(«, 8) we have that for any point
X € [A, B], dist(X, T'(f)) = B(R) - r. Finally, case (c) is analogous to case (a).

Hence we may, in fact, put y(R) = max(a, B8(R)) and hence Theorem
1.1 is proved. |

2. THE MAIN THEOREMS

DEerINITION 2.3 Let @ and 8 be as in Definition 1.2. We denote by I'(«,
B) the set of all subsets P of the Euclidean plane such that for any P €
I'(a, B), there exists an orthonormal coordinate system and there exists a
function f € F(a, B) such that P is graph of fin this coordinate system.

THEOREM 2.2. Let a and B be as in Definition 1.2. Then every lower
semicontinuous map from a paracompact space X into the Euclidean plane
with values from I'(a, B) has a continuous single-valued selection.

Proof. We modify the proof of the theorem about the existence of
selections of maps with paraconvex values from [4].

Let A: (0, ) — [0, 1) be a non-decreasing strong majorant for the set
of all functions of nonconvexity of elements from I'(«, 3) (for existence of
h, see Theorem 1.1).

LemMma 2.4, For any lower semicontinuous map F from a paracompact
space X into the Euclidean plane with F(x) € I'(a, 8), for any r > 0, and
for any continuous single-valued map g: X — R? with dist(g(x), F(x)) < r,
for every x € X, there exists a continuous single-valued selection f: X — R?
of the many-valued map F such that dist(g(x), f(x)) < H(r)r, where
H(r)y=1+ PN h(r), and hy = 1, hy, = h, and for every n = 1, h,.((r) =
h(hn(r) ' r) : hn(r)'
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Proof. We construct the required map f as the uniform limit of a se-
quence of continuous maps. First, set fo = g.

Step 1. Let Fi(x) = conv{D(fy(x), r) N F(x)}, where D(y, R) denotes
the open ball with center y and radius R. By the hypothesis, Fi(x) # ;
by the construction, Fi(x) is closed and convex; and by standard methods
(see [3]), F; is lower semicontinuous. Hence, by Michael’s classical selection
theorem [3], F; admits a continuous single-valued selection f;: X — R?,
filx) € Fy(x). But the set F(x) lies in the family I'(«, 8) and hence
hpo(r) < h(r). Therefore we have that (see the property (f) from the
Introduction):

(i) dist(fi(x), F(x)) = hppo(r)-r < h(r)-r = hy(r)-r.
By construction, we also have that
(iiy) dist (fi(x), fo(x)) = r = ho(r)-r.

Step 2. Let Fy(x) = conv{D(fi(x), hi(r)-r) N F(x)}. By Step 1, we
have that Fy(x) # J, x € X. Hence, as in Step 1, we can find a
continuous selection f>: X — R?, f5(x) € Fy(x) such that

dist(f2(x), F(x)) < hpo(u(r) - 1) - hi(r) - r ,
< h(h\(Nr)h(r)r = hy(r)r (i2)

and
dist(fx(x), fu(x)) = hu(r)r. (ii)

Step n. At the nth step we find a continuous single-valued map
f»: X — R? such that
(i,) dist(f.(x), F(x)) < h,(r)-r and
(i) dist(fu(x), fu-1(x)) = hua(r)-r.
So, in order to prove Lemma 2.4 it suffices to check that the series
.o ha(r) is convergent for every r > 0.
For a fixed r > 0 and for @« = (1 + A(r))/2 € [0, 1) we have that
(iti)) h(r) = h(r) < a and h(h(r)r) < h(ar) < h(r) < «;
(i)  ha(r) = h(h(r)Nh(r) < & and h(hy(r)r) < h(a?r) < h(r)
< a; and
(iii3) h3(r) = h(hz(r)rzhz(r) < o and h(hs(r)r) < h(a®r) < h(r)
< a. Hence 2,y h(r) < Z,.o a" < o, for every r > 0.

Lemma 2.4 is proved. 1
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The rest of the proof of Theorem 2.2 now practically coincides with
the corresponding part from [4] with only one modification. We must
replace the constant 8 > 1 and the sequence 8" — » when n —
(see [4]) by the functional sequence H, = 1, H; = H (see Lemma 2.4),
H,.(r) = HH,(r)r)H,(r), n = 1, and use the fact that H, (r) — o«
when n — o for every r > 0. |

As an application, we consider the case of the graphs of a polynomial.
For n € N and for C = 0 we denote by

Pol(n,C) = {g R->R|gx) =x"+a,_x" ' + -+ ax + ay,|a] = C}

and T Pol(n, C) = {P C R?| P is the graph of some element of Pol(n,
C) in some orthogonal coordinate system}.

THEOREM 2.3. For every n € N and for every C = ( there exist « €
[0, 1) and B: (0, ®) — [0, 1) such that Pol(n, C) C F(«, B).

As a corollary, every lower semicontinuous map from a paracompact
space X into the Euclidean plane with values from the family I' Pol(n, C)
admits a continuous single-valued selection.

Proof. From the equality

g'(x) = nx"! (1 + Sj (i/n)a,-x“")

i=0

we have that g'(x) # 0 for |x| = max{l, n-max{a|}}. Hence, if we put
b = max{l, nC} and a = —b then, for every g € Pol(n, C), g is monotone
and continuous on both rays [b, ©) and (—, a]. So, by Lemma 1.3, graphs
of restrictions of g onto these rays are, in fact, a-paraconvex sets, where
a=(1+ (V2202 € [0, 1). Hence, the condition (1) from Definition
1.2 holds.

From the inequality

n-1
E (i + Dagx*

i=0

lg’(x)| =

n-1
=C Y (i + x|’ = Cel)x]),
i=0

where ¢ is a continuous monotone, increasing function on the ray (G, «),
we have that on the segment [@ — 2R, b + 2R}, R > 0, any function g €
Pol(n, C) is, in fact, a Lipschitz function with constant Ce(b + 2R).

So, by Lemma 1.3, the graph of the restriction of any element g €
Pol(n, C) onto the segment [a — 2R, b + 2R] is a B(R-paraconvex set
where B(R) = (1 + arctan(Ce(max{l, nC} + 2R))/2.
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Hence, the condition (2) from Definition 1.2 holds, too. Theorem 2.3
is proved. |

Using a similar argument, an analoguous result can be proved for graphs
of polynomials g(x) = a,x" + a,_;x"' + -+ + a;x + ay, such that |g;| =
C and |a/a,| = C, for every i € {1, 2, ..., n}.

Problem 2.1. Find the analogue of families #(«, B) for a function of n
variables and prove the analogue of Theorem 2.2 for such a function.

Problem 2.2. s it possible to omit the condition |a;| = C from Theorem
2.3? What about the case of polynomials of n variables?

Problem 2.3. Find the criteria for the function Ap of non-convexity of
the set P which gives a way to prove a generalization of Theorem 2.2 about
selections of paraconvex-valued maps.
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