GLASNIK MATEMATICKI
Vol. 29(49) (1994), 169-173

ON CONTINUOUS CHOICE IN THE DEFINITION
OF CONTINUITY

D. Repovs! and P. V. Semenov?, Ljubljana, Slovenia

Abstract. Using a classical theorem of C. H. Dowker on continuous separation
of lower and upper semicontinuous functions, we prove the following result: Let
(X,d) and (Y, p) be metric spaces and suppose that X is locally compact. Then

there exists a continuous function § : €(X,Y) x X x (0,00) — (0,00) such that
for every (f,z,e) € €(X,Y) x X x (0,00) and for every ' € X the following

implication holds: d(z,z') < 8(f,z,e) = p(f(z), f(z')) < €. As a corollary, we
obtain that the Cantor theorem on uniform continuity follows from the Weierstrass
theorem on boundedness of continuous functions on compacta.

1. Introduction

Recall the definition of continuity of a map f between metric
spaces (X, d) and (Y, p):

(Vz € X)(Ve > 0)(36 > 0)(Vz' € X :
d(z,z') <6 = p(f(z), £(=)) <e).

The purpose of this note is to show that, for a locally compact space
X (and for any Y), it is possible to choose § > 0, which continu-
ously depends on the triple (f,z,¢) € ¥(X,Y) x X x (0, 00) and for
which the above implication holds, where ¥(X,Y) is the set of all
continuous maps from X into Y, endowed with the metric of uniform
convergence:

dist(f, g) = sup{min{1, p(f(z), 9(z))} | z € X}.
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THEOREM 1. Let(X,d) and (Y, p) be metric spaces and suppose
that X is locally compact. Then there exists a continuous function
6 : €(X,Y) x X x(0,00) — (0,00) such that for any (f,z,e) €
€ (X,Y) x X x (0,00) and for any z' € X the following implication

holds -~
d(z,z') < 8(f,z,¢) = p(f(2), f(z")) <e.

Here is the outline of the proof:
(a) For any 2z = (f,z,¢) € Z = €(X,Y) x X x (0,00) define D =
D(z) to be the set of all § > 0 such that
(*) the closure of the 6-neighbourhood of the point z is compact
and
(**) for every 2’ € X, d(z,2') < 6§ = p(f(x), f(z')) <e.
(b) Put A(z) = the supremum of the set D(z).
(c) Prove that A is a lower semicontinuous function from Z to
(0, 00).
(d) Apply C. H. Dowker’s theorem about the existence of continuous
separating functions on paracompacta.

Remarks. (1) Without condition (*) from (a), the assertion in
(c) is false. (2) If the metric d in X is unbounded then it is possible
to have A(z) = oo (cf. (b) above). In this case one can use a slight
strenghtening of Dowker’s theorem for functions which admit infinite
values. Another possibility is to replace Dowker’s theorem by one of
E. Michael’s selection theorems for maps with convex but non-closed
values ([2], Theorem 3.1""]) for multivalued maps D : Z — R.

2. Proof of Theorem 1

Neighbourhoods of points x € X of radius 6§ we shall denote
by V(z;6) and the closure of a subset A C X we shall denote by
A. Define a function A : €(X,Y) x X x (0,00) — (0,00) U {00} as
follows: for z € Z = ¥(X,Y) x X x (0,00) let A(2) = A(f,z,e) =
sup{6 € (0,00) | V(z; 6) is compact and for every =’ € X, (d(z,z’) <
6 = p(f(z), f(z')) < &)}

By hypotesis, we have that A(z) > 0, for all z € Z.. So in
order to prove Theorem 1 we only need to check that the function
A : Z — (0,00) is lower semicontinuous since then we shall apply
the following result of Dowker (cf. [1, Ch. VIII, Theorem (4.3)]).

THEOREM 2. (C. H. Dowker)-Letu: X — R andv: X — R be
real-valued functions, defined on a paracompact space X and suppose
that for everyz € X, u(z) > v(z), that u is lower semicontinuous
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and that v is upper semicontinuous. Then there exists a continuous
functionw : X — R such that for allz € X, v(z) < w(z) < u(z).

We shall apply this theorem in our case for u = A, v = 0,
X = Z and hence we shall find a continuous function 6:Z — R such
that 0 < 6(2) < A(z), for all z € Z. In addition, we shall also use
the fact that €(X,Y) is a metrizable space and we shall invoke the
Stone theorem (1, Ch.IX, Theorem (5.3)] about paracompactness of
metrizable spaces.

Suppose that, on the contrary, the function A : Z — (0,00) U
{oo} isn’t lower semicontinuous, i.e. that there exists

(i) a point 2o = (fo,Zo,c0) € Z;
(ii) a number 0 < a < A(zg); and
(iii) a sequence 2z, = (fn,Zn,€n) € Z, z2n — 2o such that

Azg) € a. (1)
We fix numbers 8 and v such that
Azn) S a < B <y < Alz). (2)

Since r, — o we may assume that for any point z,, there exists
a 8,-neighbourhood V(z,,6,) such that

A(Zn) La<g 57: (3)

and
V(mnaén) C V(.’l)o, .B) (4)

We remark that, by (4), V(z,,0,) are compact sets. Hence, by
(3), it follows that there exists z;, such that

z, € V(zn,6n). (5)
However,
p(fa(Tn), fn(23)) 2 €0. (6)
Due to the compactness of V(zg, 8), we may assume that
z,, — ' € V(zo,8) C V(20,7)
From the inequality v < A(zp), we have that

p(fo(zo), fo(z")) < €o. (M
On the other hand, if we pass in (6) to the limit when n — oo, we
have that

p(fo(zo), fo(z')) > €0 (8)

which contradicts (7).
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To verify (8), it suffices to check that fn(x.) — fo(zo) and that
falz,) — fo{z’). But we have that

P(fm(zn), fO’(zO)) < p(fn(xn); fO(mn)) + p(fO(mn)’ fO("DO)) (9)

The first term on the right hand side of (9) converges to zero because
fr is uniformly converging to fo. The second term on the right hand
side of (9) converges to zero because fy is continuous. The conver-
gence f,(z),) — fo(z') may be checked in an analoguous manner.

3. Epilogue

COROLLARY 1. The Cantor theorem on uniform continuity is a
comollary of the Weierstrass theorem on boundedness of continuous
functions en compacta.

Proof. For a fixed f € ¥(X,R) and for a fixed € > 0 it suffices
to choase 6 > 0 such that

§ < min{6(f,z,€) | z € X},

where X is a compact metric space and § is a continwous function
from Theorem 1.

CORQLLARY 2. Let (X, d) be a compact metric space, (Y, p) be
a metric space and the set €(X,Y) be endowed with the metric

dist( f, g) = max{p(f(z), g{x)) | z € X}.

Then. any, precompact set F C €(X,Y) is an equicontiruous set of
maps. from X into Y .

Progf. For a fixed ¢ > 0.it suffices te: chaose § > 0 such: that
§ < min{8(f,z,e) | f€ F, z € X}.

Question,. Is Theorem: 1 true for arbitrary (nondocally compact)
metric- spagces. X7

We:can.only give an example which shows-that without condition
(%), that ¥ (z; &) is- compact, from the definition: of the function A,
Dowker's: theorem. doesn’t apply:

Ezample. Let X = ¥ = (—1,1), fo(2)) = = and let the set:
Ar(f; x;€) equal sup{6 € (0,00). | V&' € X, (d(z,2') < § =
pf(z), f(z")) < e)}. Then Aq(f6,0,1) = oo, but for any non-zero
z € (<1,1), we have that 6;(fo,z,1) = 1. Hence;.the map A; is not
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lower semicontinuous. In the example, V(0,1) = V(0,1) is not com-
pact. So condition (*) from the definition of the map A is necessary
for applicability of Dowker’s theorem.

If in this example we do not omit condition (1), we get a lower
semicontinuous function A such that A(2) € A1(z), for any 2 € Z.
Therefore, in this example Theorem 1 is of course true.
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O NEPREKIDNOM IZBORU U DEFINICLJI NEPREKIDNOSTI

D. Repovs i P. V. Semenov, Ljubljana, Slovenija

SadrZaj

Koristedi klasicni Dowkerov teorem o neprekidnom razdvajanju donje
i gornje poluneprekidne funkcije dokazano je sljedete: Neka su (X,d) i
(Y,p) metricki prostdri i neka je X lokalno kompaktan. Tada postoji
neprekidna funkcija § : €(X,Y) x X x {0, 0o) — (0, oo) takva da za proizvoljan
(f,z,€) € (_%’(X, Y) x X x (0,00) i proizvoljan z’ € X vrijedi implikacija
d(z,z') < §(f,z,6) == p(f(z), f(z")) < €. Kao posljedica, pokazano je
da Cantorov teorem o uniformnoj neprekidnosti slijedi iz Wejerstrassovog
teorema o ogranicenosti neprekidne funkcije na kompaktu.




