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RESOLVING ACYCLIC IMAGES
OF NONORIENTABLE THREE-MANIFOLDS

DUSAN REPOVS!' AND R. C. LACHER?

ABSTRACT. We show that every 1-LC Z,-homology 3-manifold (without boundary)
which is an almost 1-acyclic (over Z, ) proper image of a nonortentable 3-manifold M
(without boundary) is a resolvable generalized 3-manifold. The analogous result for
the case when M is orientable was recently proved by J. L. Bryant and R. C. Lacher.

1. Introduction. A space X is said to be locally simply connected (1-LC) if for every
x € X and every neighborhood U C X of x there is a neighborhood ¥ C U of x such
that any loop in V is null-homotopic in U. A compact subset Y of an ANR X is
cell-like if for every neighborhood U C X of Y there is a neighborhood V' C U of Y
such that V' is contractible in U. A. mapping f of an ANR M onto a space N is
cell-like (resp. monotone) if for every x € N, f~!(x) is a cell-like set (resp. compact
and connected). A mapping f: X — Y is proper if it is closed and if f ~!( y) is compact
forally € Y.

Let R be a principal ideal domain. A metrizable space X is an R-homology
n-manifold (with respect to singular homology and without boundary) provided
H. (X, X— {x}; R)=H,R",R"— {0}; R) for each x € X, where H,( ;R) is the
singular homology with coefficients in R. A generalized n-manifold is a euclidean
neighborhood retract (ENR) that is also a Z-homology n-manifold. An n-dimensional
resolution of a space X is a pair (M, f) where M is an n-manifold without boundary
and f: M — X is a proper, cell-like onto mapping.

J. L. Bryant and R. C. Lacher [2, Theorem 2] have proved that every locally
contractible 1-acyclic over Z, image X of a 3-manifold M without boundary admits
a resolution. In particular, X is a generalized 3-manifold. A refinement of their proof
enabled them to omit the acyclicity hypothesis over a 0-dimensional set, provided
that M was orientable [2, Theorem 3]. We prove that orientability is not necessary.

THEOREM 1.1. Let f be a closed, monotone mapping from a 3-manifold M without
boundary onto a locally simply connected Z,-homology 3-manifold X. Suppose there is a
O-dimensional set Z C X such that ﬁl(f“(x); Z,)=0 for all x € X — Z. Then the
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set C={x € X|f\(x) is not cell-like} is locally finite in X. Moreover, X is a
resolvable generalized 3-manifold.

As a corollary we obtain a partial converse in dimension 3 to the well-known fact
that a cell-like upper semicontinuous decomposition G of an n-manifold M without
boundary always yields a generalized n-manifold (if #» = 4 one must assume, in
addition, that M /G is finite dimensional) [5, 7].

COROLLARY 1.2. Let G be a 0-dimensional upper semicontinuous decomposition of a
closed 3-manifold M such that M /G is a 1-LC Z,-homology 3-manifold. Then the set
C = {g € G|g is not cell-like} is finite.

REMARK 1.3. Let 7: M — M /G denote the quotient map, H the collection of all
nondegenerate elements of G, and N their union.

(1) The Hopf maps or the Bing map [1] show that if 7(N;) is a 1-manifold then all
nondegenerate elements of G may fail to be cell-like.

(2) Spine maps [1] show that C = {g € G|g is not cell-like} may have any finite
number of elements even when C = H.

(3) An easy modification of the construction of the Whitehead continuum [12]
shows that all nondegenerate elements of G may fail to be cellular even when 7(N,;)
is a Cantor set and G is cell-like. (For details see [11].)

2. Neighborhoods of compacta in nonorientable 3-manifolds. Under some addi-
tional hypotheses, Knoblauch’s finiteness theorem [4, Theorem 1] extends to non-
orientable 3-manifolds.

PROPOSITION 2.1. For every closed nonorientable 3-manifold M there exists an
integer K such that if X,,...,Xg,, C M are pairwise disjoint compact sets and each X,
has a neighborhood U, C M such that the inclusion-induced homomorphism
H(U — X;Z,) - H(M;L,) is trivial, then at least one X; has a neighborhood in M
which embeds in R®.

ProoF. We shall suppress the Z, coefficients from the notation. Let X|,..., X, C M
be pairwise disjoint compact sets and suppose each X; has a neighborhood U C M
such that the inclusion-induced homomorphism H,(U, — X,) - H\(M) is trivial, and
ifi#jthen U NU=&.Let X= U X, and U= U'_, U. Consider the follow-
ing commutative diagram:

DHU-x) - OHWU)

i=1 =1
| = l=
- H(U~ X) - H() - HUU-X) ---
! ! V| =
T H(M - X) - H(M) - H(M,M-X) -

where the horizontal sequences are exact and ¥ is the excision isomorphism. It is
easy to see that the image of the inclusion-induced homomorphism H,(U) - H /(M)
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is the direct sum of the images of the inclusion-induced homomorphisms H,(U)) —
H(M), 1 <i<n. So if we let 8, = rank H,(M) then n — B, of the homomor-
phisms H,(U,) - H (M) are trivial. It follows by [8, Lemma (4.1)] that n — B, of the
neighborhoods U, are orientable. Let k(M) be the Knoblauch number of the
orientable 3-manifold double cover of M [4, Theorem 1]. Since every orientable
neighborhood lifts in M to two (homeomorphic) copies, it follows that if 2(n — B,)
> k(M) then some X, has a neighborhood in M which embeds in R®. We can now
determine the number K from the equation 2(K — 8,) = k(M).

PROPOSITION 2.2. Let K be a compact connected subset of the interior of a
3-manifold M. Suppose K does not separate its connected neighborhoods and, for every
neighborhood U C M of K there exists a neighborhood V C U of K such that the
inclusion-induced homomorphism H(V — K;Z,) - H\(U;Z,) is trivial. Then K =
(M2, N, where each N, C int M is a compact 3-manifold with boundary satisfying the
following properties:

@) N, Cint N;

(ii) N, is obtained from a compact 3-manifold Q, with a 2-sphere boundary by adding
to 0Q, a finite number of orientable (solid) 1-handles;

(iii) the inclusion-induced homomorphism H (0N, ; Z,) - H\(N;; Z,) is trivial;

(iv) there is a homeomorphism h,: N, — N, such that h,|dN, = identity and h,(Q}) =
Q, 41, where Q¥ C int Q, is formed by pushing Q, into int Q, along a collar of 9Q,.

REMARK 2.3. An examination of the proofs in [10] shows that the orientability
hypothesis can be removed from all results in [10] if one uses Proposition 2.2 in
place of [9, Theorem 2].

PROOF OF PrROPOSITION 2.2. By [13, Theorem 2], K = M, N, where each N, C
int M is a compact 3-manifold with boundary satisfying (i) and (ii) above (the
orientability of the 1-handles follows by [8, Lemma (4.1)]). By choosing an ap-
propriate subsequence of {N,} we can satisfy (iii). We prove (iv). Let K, C int Q, be
a spine of Q,. Let Qi be the closed 3-manifold we obtain by attaching a 3-cell to 3Q,.
For each i =1, N, = (N, /Ki)#Q, (the interior connected sum [3]). Since N, is
nonorientable, it admits a unique normal, prime decomposition N, = M, # --- #M
M, # S§* X S' [3, Theorem (3.15) and Lemma (3.17)]. Consider normal, prime
decompositions of N,/K, and Q, (i = 1). Since N,/K,; is clearly orientable, its
normal, prime decomposition N,/K, = A\# - #A4 #B\# --- #B, may contain
p > 0 summands 4; = S? X S'. On the other hand, Q, is nonorientable (since N, is)
so its normal prime decomposition 0, = C\# --- #C, contains no S? X §'! sum-
mands. By [3, Lemma (3.17)] we may replace each 4, by P = the nonorientable
S2-bundle over S' to get a normal, prime decomposition N, = P# - -- #P#B #
©- #BH#HC\# --- #C, (p summands P) of N,. It follows by the uniqueness of
normal, prime decompositions that p + ¢ + r = n and that after a suitable permuta-
tion of the summands each C, is homeomorphic to some M,. We may conclude that
among any n + 1 Q,’s at least two have the same prime summands (up to a
homeomorphism). By choosing an appropriate subsequence of {Q,} we may hence-
forth assume that for each i <j there is a homeomorphism s, £ 0~ 0,
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We first construct k. The identity on 9N, induces a homeomorphism ¢
d(N,/K;) = d(N,/K;) for each i <j. Using Dehn’s lemma we can extend 7/, to a
homeomorphism¢;;: N,/K; - N, /K. Finally, define h;;: Ny = N, by h;;(x) = s,;(x)
if x€ @, and h;(x) =1,(x) if x € N, — Q,. Clearly, h;;|9N, = identity and
h;(QF) = QF. We define h, as the composition of 4, and a homeomorphism of N,
that is the identity outside a neighborhood of dQ, in N, and pushes Q% onto Q,. We
can get h;, i = 2, in a similar way. For details see [11].

3. The proof of Theorem (1.1). We shall suppress the Z, coefficients from the
notation. Let 4 = {x € X|H'(f~'(x)) # 0}. By [6, Theorem (4.1)], 4 is locally
finite in X. Let B = {x € X|f!(x) has no neighborhood embeddable in R%}. In
order to show that B is locally finite in X it suffices, by Proposition 2.1, to prove that
for each x € X, f ~!(x) possess a neighborhood U C M such that

Hl(U —f_l(x)) - H(M)
is trivial. So let x € X. Since A4 is locally finite there is a neighborhood W C X of x
such that W N A C {x}. By hypothesis X is LC' so there is a connected neighbor-
hood W’ C W of x such that any loop in W’ is null-homotopic in W. Consider the
following commutative diagram:

i%

H(f'W) —f(x) = H(f'(W)-f7(x)

=|fl, =11,
Hl(W,— {X}) - Hl(W_ {x})
Vi, Vi,
H (W) R H(W)

where the horizontal homomorphisms are induced by inclusions, f| , is the Vietoris-
mapping theorem isomorphism [7, 3.4], while j, and j, are the isomorphisms from
the homology sequence of the pairs (W, W — {x}) and (W', W’ — {x}), respectively.
By hypothesis, i, =0, hence i, = 0. Thus we may apply Proposition 2.1. By
Proposition 2.2, f~'(x) is definable by (orientable) cubes with handles for all
X € X — B, so by [9, Theorem 3], f'(x) has the 1-UV property. Since cubes with
handles have no higher homotopy, each f~!(x) has the UV*® property and hence
C C B (cf. [7]). Therefore, C is locally finite in X. In particular, X — C is finite
dimensional by [5]. A resolution of X is now obtained by improving f over the points
of C. This is done similarly as in [2]. For details see [11].
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