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We show that the map separation property (MSP), a concept due to H.W. Lambert and R.B.
Sher, is an appropriate analogue of J.W. Cannon’s disjoint disks property (DDP) for the class
% of compact generalized 3-manifolds with zero-dimensional singular set, modulo the Poincaré
conjecture. Our main result is that the Poincaré conjecture (in dimension three) is equivalent to
the conjecture that every X €€ with the MSP is a topological 3-manifold.
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1. Introduction

Cannon'’s disjoint disks property (DDP) characterizes topological n-manifolds,
n =5, among generalized n-manifolds [8, 17]. We seek an analogue of DDP for
3-manifolds. We briefly review known results on these topics. Starbird [19] intro-
duced two notions of the disjoint disks property (DDP I and DDP II) for decomposi-
tions G of E* (rather than for the quotient space E*/G) and proved that if a
cell-like O-dimensional upper semicontinuous decomposition G satisfies either
DDPI or DDPII, then E*/G =E”. Starbird’s result is useful for generalized
3-manifolds X which are already known to be a quotient X = E*/G. A different
approach was taken by Bryant and Lacher [5] who showed that if in a compact
generalized 3-manifold X the singular set S(X) lies in a compact, tamely embedded
0-dimensionalset Z = X (i.e., Z is 1-LCCin X), then X is a topological 3-manifold,
provided X contains at most finitely many pairwise disjoint fake cubes. (This
generalizes previous results of Edwards, Jr. [7] and Wall [23].) However, the
condition “S(X)<= Z where Z is a closed 1-LCC subset of X" is not suitable since
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many potential singular sets may be wildly embedded in X. It is suggested in [13]
that one should look for a disjoint disks property for generalized 3-manifolds X
with 0-dimensional singular set such that it would imply first, the existence of a
resolution f: M - X and second, the shrinkability of G ={f'x)|x e X}.

There are few positive results on existence of resolutions of generalized 3-
manifolds. Brin and McMillan, Jr. [4] proved that, modulo the Poincaré conjecture,
every compact generalized 3-manifold with 0-dimensional singular set has a reso-
lution, provided it satisfies a certain ‘torsion-free’ hypothesis. This extra condition
was inherited from Brin’s Loop theorem [2] they used in their proof. Thickstun
(20] removed the ‘torsion-free’ hypothesis from [2] and thus from [4]. He later
proved a positive result [21] (obtained independently by R.J. Daverman) to the
effect that such generalized 3-manifolds are images of ‘tame’ generalized 3-
manifolds (whose singular set has genus 0 at each point). Another positive result
is due to Bryant and Lacher [5] who proved that every locally contractible Z,-acyclic
image of a 3-manifold has a resolution. (For generalizations see [S; Theorem 3]
and [18; Theorem 1.1].)

In this paper we show that a concept due to Lambert and Sher [14], called the
map separation property (MSP), characterizes the 3-manifold property in certain
cases (modulo the Poincaré conjecture). Our main result is: the conjecture that
every compact generalized 3-manifold X with dim §(X') <0 satisfying the MSP is
a topological 3-manifold is equivalent to the 3-dimensional Poincaré conjecture.
We also study a similar concept from [14] called the Dehn's lemma property (DLP)
and show that it plays the same role as the MSP.

2. Dehn disks in 3-manifolds

Throughout this paper a mapping will mean only a continuous, hence not
necessarily PL, map and an n-manifold will mean an n-manifold without boundary.
A mapping f of a disk (resp. disk with holes) D into a space X is called a Dehn
disk (resp. Dehn disk with holes) if 3D NSy =0, where Sy =cl{x e D If 'f(x) #x} is
the singular set of f. Also, define Xy = f(S;). A space X is said to have the Dehn’s
lemma property (DLP) [14]if for every Dehn disk f : D - X and every neighborhood
U < X of X; there exists an embedding F:D - f(D)u U such that F(aD)=f(aD).
A space X is said to have the map separation property (MSP) [14] if given any
collection fi, . .., fx : D -» X of Dehn disks such that if { # j, then f;(3D) " f;(D) =0,
and given a neighborhood U <X of U:-Li fi(D) there exist mappings
Fy,...,F.:D - U such that for each i, F;|aD =f,]aD and if i #}, then F,(D)n
F;(D)=4.

Theorem 2.1. Let f:D - M be a Dehn disk in a 3-manifold M (possibly with
boundary) and U < M a neighborhood of X. Then there exists an embedding F: D -
f(D)w U such that
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(i) F(D)-U=f(D)-U,
(it) FlaD =flaD.

Proof. By adding a collar on dM we may always assume that f(D)<int M. Let
U'=f"(U). By [6; Theorem (4.8.3)] there exist families {A{"|1<i<1}, 1<j<4,
of pairwise disjoint PL disks with holes in ' such that

(al) foreachiandj, A cint A",
(a2) Sycint By,

where B;=;_, A{". Let Vi, = U —f(D —int By;.1), k = 1, 2. Then each Vj is open
in M and if we let V, =f_l(Vk), then we have

(a3) S;< Vi Cint B,
(ad) B,< V4 <int B,

Let L<D be a PL annulus such that LA U'=@ and 3L naD = dD. Finally, let
K =L be a PL annulus such that L naK =4aD.

Apply Bing's surface approximation theorem [1] to replace f by a Dehn disk
fi1:D = M with the following properties

(b1) f1|D “D1=fJD —Dy,
(b2) f1|D, is locally PL,
(b3) S{] =Sf,

where Dy =int(B4— B,). Applying [1] again we get a Dehn disk f, : D - M such that

(c1) folD —int L =f4|D —int L,
(c2) f,lint L is locally PL,
(C3) sz = Sﬁ‘

Another application of [1] yields a Dehn disk f5:D - M such that

(d1) fasz =f2|Dz,
(d2) fs|D — D, is locally PL,
(d3) S, =S5y,

where D, =K u B;. By Zeeman’s relative simplicial approximation theorem [24]
there is a Dehn disk f4: D -» M such that

(el) f4]D —int B, =f3iD —int B,
(e2) falint D is locally PL,
(€3) S = V.

By Henderson’s extension of Dehn lemma [10; Theorem (IV.3)] there is an
embedding fs: D - M such that

(f1) fs|int D is locally PL,
(f2) fsIK =f4|K;
(f3) fs(D)— Va=f4(D)— V.
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Note that by (f3), fs(D) < fo(D)u V5 and by (a4), (bl), (cl), (d1), (el), and (f3) we
have f4(D —int B;)< fs(D). Clearly, f4 and fs need not agree pointwisely even
outside V,. Let C =f§1f4(D —int B3). By (a3), (b3), (c3), (d3), and (e3) there is a
PL homeomorphism h : D - D which makes the diagram

fsc

C———>M

hiC
fID—int B,

D —int Bg
commute. We now get the desired embedding F: D - f(D)u U by letting

L _[hik(x), xeC,
F(”_{,fs(x}, xeD~C.

Corollary 2.2. Every 3-manifold (possibly with boundary) has the DLP.

Theorem 2.3. Let f,...,fc:D =M be Dehn disks in a 3-manifold M (possibly
with boundary) such that if i # j, then f;(aD ) f;(D) = 0. Then for every neighborhood
U CMofU:;if.-(D) there exist embeddings F,, . .., F,:D - U such that
(i) foreach i, Flint D :int D - U is locally PL,
(ii) foreach i, F;|aD = f;|aD, and
(iii) if i #J, then Fi{(D)nF;(D)=90.

Proof. We use induction on k. For k =1 the assertion follows by Theorem 2.1 and
Bing’s surface approximation theorem [1]. Assume now the assertion is true for
all k =n and consider the case k =n + 1. By the inductive hypothesis there are
embeddings Fy, . .., Fu: D > U —f.+1(3D) satisfying (i)-(iii) and f,, +, can be replaced
by an embedding

fros:D»U=(Ui- FiD))

such that f,,|int D is locally PL, f.., is in general position with respect to the
surface § =\, Fi(D), and fr+1]aD = f..1|3D. Hence f1+, (D) N S is a finite collec-
tion of pairwise disjoint PL simple closed curves. Starting off with an innermost
(on the surface S) of these curves, we can cut f,, . (D) off S, inside the neighborhood
U, thus obtaining F, 1.

Corollary 2.4. Every 3-manifold (possibly with boundary) has the MSP.

3. Recognizing 3-manifolds

A generalized n-manifold is an euclidean neighborhood retract (ENR) X that
is also a Z-homology n-manifold, i.e., for each x € X,

H*(X’ X _{I}; Z) - H*(R": R" "‘{0}’, z}-
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A generalized n-manifold with boundary is an euclidean neighborhood retract X
that is also a Z-homology n-manifold with boundary, i.e., for each x € X either

H*X, X -{x:; )=H"*({x};Z) or H*X.X-{x};2Z)=0,
and such that 4.X is a generalized (1 — 1)-manifold, where
aX ={x e X|H*(X, X —{x}; Z)=0}.

The singular set S(X) of a generalized n-manifold (resp. generalized n-manifold
with boundary) X consists of the singularities, i.e., those points of X that have no
neighborhood in X homeomorphic to R" (resp. B"). We use M (X)) to denote the
manifold set X —S(X). An n-resolution of a space X is a pair (M, f) where M is
a topological n-manifold and f:M - X is a proper, cell-like onto mapping. It is
well known that every finite-dimensional cell-like upper semicontinuous decomposi-
tion of an n-manifold yields a generalized n-manifold. (For a partial converse in
dimension 3 see [18].) It is also known that a generalized n-manifold X (n #4)
with a resolution has a conservative resolution f:M - X, i.e., f '(x)=pt for all
xeM(X)[5]. A generalized 3-manifold X (possibly with boundary) satisfies Kneser
Finiteness [13] if every compact set K <X contains but finitely many pairwise
disjoint fake cubes.

Consider a generalized 3-manifold X with dim S(X)=0 and let pe X. Then p
has arbitrarily small orientable generalized 3-manifold with boundary neighbor-
hoods with aN a compact orientable 2-manifold and N n §(X') =@ (see [4; Lemma
1]). If p has arbitrary small such neighborhoods N with the genus of N less than
or equal to n, we say that X has genus <n at p. If X has genus =n at p but does
not have genus =n — 1 at p, we say X has genus n at p. If X does not have genus
=n at p for any integer n we say X has genus < ar p [13].

Let &G be an upper semicontinuous decomposition of a space X. We shall use
H¢ to denote the collection of all nondegenerate elements of G and Ng to denote
their union. A set U c X is G-saturated if 7 'm(U)= U, where m:X > X/G is
the quotient mapping. We say G is closed 0-dimensional if dim(cl 7w (Ng)) = 0.

Theorem 3.1. Let G be a cell-like closed 0-dimensional upper semicontinuous
decomposition of a 3-manifold M (possibly with boundary) with cl Ng < int M. Then
the following statements are equivalent:
(i) M/G has the DLP.
(ii) M/G has the MSP.
(iii) M/G is a 3-manifold.

Proof. The implications (iii)=>(i) and (iii)=>(ii) follow by Corollaries 2.2 and 2.4,
respectively. We prove (i)=>(iii) and (ii)=>(iii) simultaneously. So assume M/G has
either the DLP or the MSP.

Assertion 1. If every g e G hds a neighborhood embeddable jn R’ then M/G is
homeomorphic to M.
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By [15; Theorem 3] G is definable by cubes with handles. Since G is (-
dimensional it suffices to show that G is weakly shrinkable [22; Lemma (2.5)], i.e.,
we only must prove that for every £ >0 and every neighborhood U of Ng there
exists a homeomorphism i : M — M such that i|M — U =identity and diam h(g)<e
for all g € G. The proof of [14; Theorem 4] will work except for one change - instead
of [16; Theorem (2.1}] we use [12; Lemma A, p. 506].

Assertion 2. If G, ={g € Glg has no neighborhood embeddable in R’}, then 7 (G.)
is locally finite in M/G.

If M is orientable apply [11; Theorem 1] and if it is not, apply [18; Proposition
2.1].

Assertion 3. For every g € G and every neighborhood U = M of g there is a homotopy
3-cell H = U such that g <int H.

We may assume that {J is saturated. By [15; Theorem 3] G is definable by
homotopy cubes with handles hence there is a homotopy cube with handles H = U/
such that g <int H. By going further enough in the defining sequence for G we
may assume that on some neighborhood N < U of dH, w|N:N->M/G is an
embedding. The idea of the proof is to use the DLP or the MSP to cut the handles
of H along pairwise disjoint compressing disks which miss g. We find such disks
as follows.

Assume first that M/G has the DLP. Let C, and C, be disjoint simple closed
curves on dH such that they are null-homotopic in H but not on dH. By Dehn’s
lemma [9; p. 39] there exist embeddings f1, f>: (D, 6D )= (F, aH ) such that £, (4D ) =
C,i=1,2. By running a ribbon in U —int H between slightly expanded disks f,(D)
and f>(D) we get an embedding f: D - U such that for disjoint subdisks D,, D, <
intD, flID;=f,i=1,2and f(D—(D,uD,)cU—H. Since w|N:N>M/G is an
embedding nf:D - w(U) is a Dehn disk and £ ,=2%_; uZX . Therefore X ;<
w(int H') so using the DLP we can get an embedding F: D - #f(D)u a(int H) such
that F(aD) = wf(dD). Letq; : D - 7w (H ) be the subdisks of F (D) bounded by =f; (6D ),
i=1,2. Note that q;(D)ng,(D)=0 so there exist disjoint neighborhoods W, <
w(U) of q;(D). Let Vi=a "(W,). By [12; Lemma A] g; lifts to a Dehn disk
Qi:D->V,nH,i=1,2. By Theorem 2.1 and [1] we can assume Q; is a locally PL
embedding. Since V,n V;=0, one of the disks Q;(D) will miss g hence cutting
along it we get a homotopy cube with one handle less, /¥, which contains g in its
interior. In continuing this process one must be careful to choose the new pair of
simple closed curves C¥, C¥ away from the intersections of Ng with aH *. That
is because in doing the compression we may have hit some elements of Hg —{g}
so now dH*~ Ng may no longer be empty. Since any possible intersections lie
inside the two copies of the compressing disk on dH * we can always push C¥'s
off Hg naH ™ if necessary. This way 7 will remain an embedding on a neighborhood
o] & e Wt [ ]
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If instead of DLP we have the MSP for M/G the procedure is similar. Instead
of introducing f we use the MSP to separate #f,(D) and =wf>(D) in w(H), while
the rest of the argument stays the same.

We now finish off the proof of the theorem, first for the case when dM =(}. By
Assertion 2, G = Gyu G, where G, =G -G,y and 7(Gy) is locally finite in M/G.
Consider My = M/G, and let w,: M - M, be the corresponding quotient map. Since
the elements of & are cell-like My, is a generalized 3-manifold. Clearly, S(M,) <
wo(Go) where S(My) is the singular set of M. Also, M| satisfies Kneser Finiteness
by [5; p. 313].

Assertion 4. For every pe M, g(My, p)=0.

If p2 mo(Go), then p & §(My), so the assertionis clear. Let p € wo(Gy). By Assertion
2 there is a neighborhood U < M, of p such that U n wo(Go) ={p}. Let V = 7o (U).
By Assertion 3 there is a homotopy cube H < V such that 7o' (p)cint H and
oH n (U{geGo}) =0. Therefore, wo(dH) is a 2-sphere so mo(H) is the desired
neighborhood of p.

It now follows by Assertion 4 and by [13; Corollary (3.1)] that $(M,) =@, since
dim S (M) <dim mo(Go) = 0. Thus My is a 3-manifold. Consider G = G, U mo(Go)
as a decomposition of M. By Assertions 2 and 3 the decomposition G is cellular,
closed 0-dimensional, and upper semicontinuous. Also, My/GT = (M/G,)/GT =
M/G so My/G7¥ has the DLP (resp. MSP). By Assertion 1, My/G7¥ is homeomor-
phic to My, so M/G is homeomorphic to M, thus a 3-manifold. This completes
the proof if M =0.

In the case when dM # {) we consider the double DM of M, i.e. we identify two
copies of M along dM using the identity map and apply the preceeding arguments
to the decomposition DG, the double of G. (Note however, that we are not claiming
that if M/G has the DLP (or MSP), then DM/DG has this property, too.)

Theorem 3.2. Ler X be a generalized 3-manifold with 0-dimensional singular set,
such that for every p e X, g(X, p)=0. Then X has the DLP and the MSP.

Proof. We first prove the DLP. Let f: D - X be a Dehn disk. We first show that
one may assume f(dD )N S(X)=0. By hypothesis there is a neighborhood N =D
of aD such that Sy "N =0. Thus N ~f(8§(X)) is 0-dimensional so there is a simple
closed curve J& N —f_I(S(X)) such that J is isotopic in N to dD. Let A<D be
the subdisk of D bounded by J and consider the Dehn disk f'=flA:A->X. If we
show how to find an embedding F': A - f(A)u U, where U < X is a neighborhood
of Xy =2, such that F'(J)=f'(J), then by defining F: D - X to be f on D — A and
F'on A we get the desired disk.

So assume that f(aD)nS(X)=@. Using the hypothesis and [4; Lemma 1]
we can find a pairwise disjoint collection Ny, ..., N, of generalized 3-manifolds
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boundary such that

(i) SX)A(fD)-U)< N,

i=1

(i) S(X)Nf(D)nU = CJ Ni< U,

i=p+1

(iii) for each i, aN; is a locally PL 2-sphere, and

(iv) for each i, aIN;nS(X)=0.
Let H =U:(=1 N, Then f(D)n H = M(X). We want f(D) to meet H ‘transversely’.
But f may not be PL so we must improve it to be PL near H. We do this as follows:
close to Uf_pH dN; we use the simplicial approximation theorem while close to

”_, N; we use Bing's surface approximation theorem [1] in order to keep f an
embedding in that region. By applying general position in M (X) we can make f
meet H transversely and by standard methods we can then cut f off at A (in
M (X)). Denote the new (Dehn) disk by f': D - X. Since (D)= M (X) it follows
by Theorem 2.1 that there is an embedding F': D - f'(D)u U such that

F'laD =f'leD and F'(D)-U=f'(D)-U.

Finally, replace the portions which dN; (1 =i <p) cut off F'(D) by f(D)~ N, This
yields the desired embedding F:D - f(D)wu U. Details are omitted since they are
similar to those in the proof of Theorem 2.1.

We now prove X has the MSP. Let fy,...,fc:D = X be Dehn disks, U= X a
neighborhood of U?zl,ﬁ(D), and suppose that if i #j, then f;(dD)nf;,(D)=0. As
before we may assume that for each i, f;(aD)nS(X)=0. Since X was already
shown to have the DLP, we may assume all f; are embeddings. Cover S(X)n
UL“F,-(D) by a collection N, ..., N, = U of pairwise disjoint generalized 3-mani-
folds with boundary such that foreach 7, dN; isalocally PL 2-sphere and aN; n 5 (X ) =
0. Let H =_J;_, aN.. As before, we can apply Bing’s surface approximation theorem
[1] close to H in order to make H meet each f;(D) transversely. Cut each f;(D)
off H (in M(X)) and get a new Dehn disk f;:D — X with f;[aD =f;|aD. Since
fi(D)=M(X) we can apply Corollary 2.4 to get f;'s disjoint in U keeping their
boundaries fixed. Since f}[0D = f;|oD this completes the proof.

Theorem 3.3. Let € be the class of all compact generalized 3-manifolds X with
dim S(X)<0 and let o< € be the subclass of all X € € with S(X)<{p}, and X
homotopy equivalent to S°. Then the following statements are equivalent:
(1) The Poincaré conjecture in dimension three is true.
(i1) If X € € has the DLP or the MSP, then S(X)=0.
(i1i) If X € € has the DLP or the MSP, then S(X)=0.

Proof. (i)=>(ii). If the Poincaré conjecture is true, then X has a resolution [20;
Corollary] (see also the concluding remarks in [3]), so by [5; Theorem 1] a
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conservative resolution f:M »X. Let G ={f"'(x)|x e X}. Then G is a cell-like
closed O-dimensional upper semicontinuous decomposition, so by Theorem 3.1,
S(X)=0.

(i1)=>(i11). Obvious.

(i11)=>(i). Suppose the Poincaré conjecture is false. Let BB, ...cS* be a
sequence of pairwise disjoint 3-cells converging to p € S°. Deleting interior of each
B; and sewing a fake cube F; in its place yields a compact generalized 3-manifold
X with §(X)={p} (see [5; p. 312]). The map from X onto §* which shrinks out
each F; is a homotopy equivalence by [12; p. 510]. Therefore X =S, so X € €,.
On the other hand X has the DLP and the MSP by Theorem 3.2. This contradicts
the assertion (iii).

Theorem 3.4, Let X be a generalized 3-manifold satisfying Kneser Finiteness.
Suppose that X has the DLP or that X has the MSP (in fact, it suffices to assume
the MSP only for pairs of Dehn disks). Then X has no isolated singularities.

Proof. By [13; Corollary (3.1)] it suffices to show that every point p € X which has
a neighborhood U =X such that UnS(X)<{p}, satisfies the condition that
g(X, p)=0. This is done using standard disk-trading techniques from 3-manifolds
except that instead of the classical Loop theorem [9] we must invoke a version of
the Loop theorem proved by Thickstun [20], and the classical Dehn lemma [9] is
replaced here by the DLP (or the MSP) and Bing’s surface approximation theorem
[1]. The latter is done as follows: whenever we want to perform a cut along a
compressing disk D which hits p we use DLP (or MSP) on two close copies of D
to make one of them miss p so that the cut can be performed in M (X').

Remark. Suppose X is a compact generalized 3-manifold with dim §(X)=0,
satisfying Kneser Finiteness and having the DLP or MSP. If S(X) # ), then X has
the following properties:
(i) X admits no resolution ([5; Theorem 1] and Theorem 3.1).
(if) §(X) is wildly embedded in X ([5; Theorem 4]).
(iii) S(X) has no isolated points (Theorem 3.4).
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