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ON COMPACTA OF COHOMOLOGICAL DIMENSION ONE
OVER NONABELIAN GROUPS

MATIJA CENCELJ AND DUSAN REPOVS
Communicated by Jun-iti Nagata

ABSTRACT. We construct a 2-dimensional homogeneous Cannon-Stan’ko com-
pactum which fails to be nonabelian. We also introduce a new class of com-
pact metric spaces, called Daverman compacta and we investigate their ap-
plications in the theory of cohomological dimension over nonabelian groups.

1. INTRODUCTION

Cohomological dimension ¢—dimgX of a compact metric space X is defined
only for abelian groups, since for n > 1 the Eilenberg-MacLane complex K (G, n)
is well-defined only in such cases. However, for n = 1 a study of compacta of
cohomological dimension one with respect to nonabelian groups seems to be a
worthwhile project.

First such study was done by Dranishnikov and Repovs [5] in their search of
new directions for an attack at the celebrated 4-dimensional cell-like mapping
problem which asks whether the (Lebesgue) dimension dimX of the image of a
cell-like map f: M* — X, defined on an arbitrary topological 4-manifold M?, is
always finite.

In [5] several classes of compacta of cohomological dimension one were intro-
duced — Cannon-Stan’ko, Cainian and nonabelian compacta — depending on which
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classes of nonabelian groups one allows as the cohomology coefficients. We should
also mention the work of Dydak and Yokoi [6].

The main purpose of our paper is to construct an example of a 2-dimensional
homogeneous Cannon-Stan’ko compactum which fails to be nonabelian. Recall
that it was proved in [5] that every nonabelian compactum is also a Cannon-
Stan’ko compactum. Whether the converse statement is false, was an open prob-
lem.

We also introduce a new class of compact metric spaces, called Daverman
compacta and we investigate their applications in the theory of cohomological
dimension over nonabelian groups.

2. PRELIMINARIES

Recall the Kuratowski [8] notation X 7Y": it means that for every closed subset
X of X and any map f: Xo — Y there exists an extension f : X — Y of f over
all of X.

Recall the construction of a grope M (see [1] for more about gropes). One
defines M as the direct limit M = lim_, {L;, j! 1 }i>0 of a direct system of compact
2-dimensional polyhedra L; and injective bonding maps j;,; : L;i — Li41. The
polyhedron L, is called the n-th stage of the grope construction. Here, Lq is an
oriented compact connected surface S, of genus g > 0 with an open disk deleted.
Let A9 C Sy be a set of 2g circles which generate the 1-dimensional (integral)
homology of the surface S,. The complex Ly is then obtained from L, for
every n > 0, by attaching for every circle a € A, an oriented compact connected
surface S, of genus g,, with an open disk deleted, by identifying the boundary
08,, of the surface Sy, with the circle a € A,,. The generators of H:(Sy,,Z) then
determine the set of 2g, circles A, 11 C Sy, which also generate the 1-dimensional
homology of the surface S, .

In particular, we shall use the so-called minimal grope M* = lim_, {L}, jf+1 Yiso
which is distinguished by the fact that the genus of Ly is one and that for every
i > 1, we attach only two orientable 1-handles to each 1-handle pair of generators
of the 1-dimensional homology of the complex L.

Definition 1. [5] A compactum X is said to be a Cannon-Stan’ko compactum
provided that for the minimal grope M*, X7M?*. Equivalently, for the minimal
grope M*, XTK(m(M*),1), i.e. ¢ —dimg, pX < 1.

Every compactum of dimension < 1 is clearly also a Cannon-Stan’ko com-
pactum. The Pontryagin disk D* (cf. [9]) is an example of a 2-dimensional
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Cannon-Stan’ko compactum, the so-called Riemann surface of infinite local genus
S? (cf. [2]) is an example of a homogeneous 2-dimensional Cannon-Stan’ko com-
pactum. It was proved in [5] that for every integer n > 1 there exists an n-
dimensional Cannon-Stan’ko compactum.

Definition 2. [5] Let 7' = (S! x S') \ IntB be a torus with a hole (obtained by
removing an open disk B) and denote its boundary by 97 (hence T = S*). A
compactum X is said to be nonabelian if for every closed subset A C X of X and
every continuous map f : A — 0T there exists a continuous map f : X — T such
that f|A = f. We shall denote this extension property by X7(T,0T).

Every compactum of dimension < 1 is clearly nonabelian. An example of a
2-dimensional nonabelian compactum is the classical Pontryagin mod 2 ‘surface’
[10] i.e. the inverse limit of an inverse system of modifications of the 2-sphere
where disks are replaced by M&bius bands [10]. Every n-dimensional nonabelian
compactum is also a Cannon-Stan’ko compactum. In fact, every n-dimensional
nonabelian compactum X has the property XM, for every grope M. Also, there
exists an n-dimensional nonabelian compactum for every integer n > 0 (cf. [5]).

Definition 3. [5] A compactum X is said to be Cainian provided that for every
perfect group II, X7K(II,1). Equivalently, ¢ — dimp X < 1.

Every compactum of dimension < 1 is Cainian. The Pontryagin disk D? and
the Riemannian surface of infinite local genus S? are examples of 2-dimensional
Cainian compacta. Every Cainian compactum is at most 2-dimensional and every
2-dimensional nonabelian compactum is Cainian (cf. [5]). The following remains
an interesting open question:

Problem 1. [5] Let X be a Cannon-Stan’ko compactum. Does X have the prop-
erty XTtM for every grope M ?

If X is also nonabelian then, as we have already observed above, the answer
to this problem is affirmative. In Section 4 we shall present an example of a
2-dimensional (homogeneous) Cannon-Stan’ko compactum which fails to be non-
abelian. It is unknown if such examples exist in higher dimensions.

3. GROPE MODIFICATIONS OF POLYHEDRA

Let T be any group and define its n-th derived I'™ | as follows: I'V) = [, T
and for every n > 2, T(® = [[(»=1) T(n=1)],



530 M. CENCELJ AND D. REPOVS

Lemma 3.1. Let T =71 (T) = Z + Z be the fundamental group of a torus T with
one hole. Then

St=orer™  but AT TP,

PRrROOF. The first claim is obvious. For the second claim define the groups I';,, as
follows: I'y =T and for every n > 2, T',, = [I',,—1,T']. The series

[ >y >I3>---,

is called the lower central series of T'. For groups T';, the following relation holds
(cf. [11], Ex. (5.50), p.118) for every i, j:

[T, 0] < Tiyj -
Therefore, in particular:
I =M, 10 = [y, Iy] <T4.

The element 0T € I is a basic commutator of weight 2 (cf. [7]). Therefore by the
Basis theorem ([7], p.175) for the lower central series of the free group I' = Z * Z,
the uniqueness of the representation implies that

OT ¢T3 >Ty >T? .
O

In the sequel we shall need the following property of the derived groups. If
¢ :II = T is a group homomorphism, then

e(M®) cT® .

Definition 4. Let o be a 2-dimensional simplex. Remove into and replace it by
the n-th stage L,, of the grope construction (n > 1),

6 = (o \into) Ugy Ly, ,

where 0L, is identified with do. Call this new compact 2-dimensional polyhedron
o the n-stage grope modification of the 2-simplex o.

Lemma 3.2. Let 6 be the 2-stage grope modification of the 2-simplex o. Then
96 € TI?) | where Tl = 711 ().

PROOF. Left as an exercise. O
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Definition 5. Let P be a compact 2-dimensional polyhedron with triangulation
T, hence P = |T|. The polyhedron P, obtained from P by replacing every 2-
simplex o € T(® by the n-stage grope modification & of o, n > 1,

P = J{slo e T®}]

is called the n-stage grope modification of the polyhedron P (with respect to the
triangulation T').

Proposition 3.3. Let L be the 2-stage grope modification of a 2-dimensional
compact polyhedron L. Let v € w(L), let g : S — L' be a representative of v,
where L' is the 1-skeleton of L and let 4 = [g] € m(L). If v € [m1(L)]®, then
also 4 € [my (L)]@.

PROOF. Let us start with the polyhedron L and first perform the 2-stage modifi-
cation of only one simplex o of L to obtain L. In finitely many steps of this kind
we obtain L. Therefore it suffices to prove the claim of the proposition for the
case of L = L. Let i:L\Intoc—> L,j: L\Intoc < L, p: L = L be the obvious
maps. Then j induces a morphism of exact sequences

1 = Keri —» m(L\Inte) > m(@L) — 1
¢ I I
1 — Kerp — 7 (L) L a1 - 1

If [g] & [m1(L \ Int 0)]®), then it differs from an element in [x; (L \ Int o)]® by a
power of da. Since do € [ (L)]*) the result follows.
O

4. THE EXAMPLE

As it was pointed out in the introduction, it is already known [5] that every
nonabelian compactum must necessarily also be a Cannon-Stan’ko compactum.
Whether the converse is true was an important open problem. In this chap-
ter we give a negative answer, by constructing an example of a Cannon-Stan’ko
compactum which fails to be nonabelian.

Let X = lime{Xi,qu}iZO, where X; are compact 2-dimensional polyhedra
with triangulations A; such that meshA; — 0, and for every i > 0, the bonding
map qf“ : X;41 — X, is a 2-stage grope modification of the 2-skeleton. The
initial polyhedron Xj is taken to be the boundary of the standard 3-simplex.

Theorem 4.1. The compactum X fails to be nonabelian.
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Proovr. Indeed, suppose not, i.e. suppose that X7(T,0T). Consider any 2-
simplex o € Xé2) and observe that S' = 0o is embedded into X by the restriction
(@8°) oo : 0o — X, s0 we may identify o and its image in X. Let f : 9o — 0T
be the identity map on S'.

(g°)(90) —ncl X
/ \g\
iy
qs° Xy weeeeemeineeefons 0., T
id

By our hypothesis there exists an extension g : X — T of f over all X. Since T
is an ANR, the map g extends over some open neighbourhood U C @ of X in the
Hilbert cube @ (we may assume X = lim, {Xj, qf""l}izg lies in @). Thus, there
is a large enough integer iy > 1 such that X;, C U and hence g extends to a map
i, * X4y = T up to homotopy, i. e.

gi0|(qé)—1 =~ idsl and Gip ©Pig = 9 -

Let K;, = (Qéo)_l(d). We have the following commutative diagram.

K; o - T
incl 1 1 incl
id
Sl N Sl

Assertion. Let TI =TI, (K;). Then S' € I,

Proof of Assertion. This is verified by induction on i. For ¢ = 2 the assertion
is obvious. Assume now that it is true for ¢ < k and consider the case i = k.
Our element is a product of commutators s = [a1,b1]...[a;,b;] and each of the
elements a;, b, (1 <1 < j) isitself a product of commutators. This relation defines
a 2-cell so we have a map of i/k.l,_l into L and when we make a grope modification
we get a map of Ly, into Ly. Hence in Lj, we have s([a1,b1]...[a;,b;])~" =1,
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but in Lj;; we have s([ay,b1]...[a;,b;])"" € TI® hence s € TI® proving the
Assertion.

Therefore by Assertion, 8T € TI(?) = I'® s0 T € T'® which is a contradiction
to Lemma (3.1), proving Theorem 4.1. O

Theorem 4.2. X is a Cannon-Stan’ko compactum.

ProOF. Let A C X be an arbitrary closed subset of X and take any map f :
A — M* of A into the minimal grope M* = limH{Li,jf_‘_l}izg.

By Lemma (4.5) of [5] it suffices to verify the property (X, A)r(M*,0M*),
hence we may assume that f(4) C dM* = S*. Consider X and M* embedded
in the Hilbert cube and represent (X, 4) = lim {(X;, 4;), (¢}, ¢/ 4,11 ) Jiso-

Since S' is an ANR, there is a large enough ig > 1 such that f homotopically
factors through A;,, i.e. the diagram

A f oM™

p?: fio

10

commutes up to a homotopy. It is straightforward to extend f;, over the 1-
skeleton XZ-(Ol) of X;, so we get a map f;, : A; U Xi(Ul) — OM*, hence a map
g: (qf(f)’l(AiU U XZ.(OI)) — OM™, by taking g = ﬁ-o 0 g,

It now remains to extend g over to & = (qg’(f)_l(a), for every 2-simplex o €
Xi(:) \AZ(.?). Consider all such 2-simplices 0. The map g is already defined on
4 = (¢8°)~'(v), where v = 9o is the boundary of 0. Now (¢{>™")~!(v) bounds
in X;,4+1 a 2-stage modification ¢ of o, hence there is a natural map of 6 to M*.
Combining this map with the projection ¢;7,; we get the desired extension of
H over 6. We do this for all ¢ and since there are finitely many, we get a well
defined extension of g over X, g : X — M*, such that g|4 ~ f. This proves
that (X, A)r(M*,0M*), so by Lemma (4.5) of [5], XT7M*, i.e. X is indeed a
Cannon-Stan’ko compactum.

O

5. A NEW CLASS OF COMPACTA

Definition 6. Let N = N; U N, be the (boundary connected) sum of two copies
N; = M* = N, of the minimal grope M* along its boundary circle 9M = S!.
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A compactum X is said to be weakly Cainian provided that for the fundamental
group II =11, (N), X7K(II,1). Equivalently, ¢ — dimpX < 1.

We define a new class of compacta X,, = {X|X7(L,_1,0L,_1)}, for every
integer n > 1, where L,, denotes the n-th stage of the minimal grope construction.
The following properties are easily verified using techniques from [5] and our
Section 4.

Theorem 5.1. 1. For everyn > 1, KX, C Kpt1;
2. For everyn #m, X, # Kpn;
3. UpenXn C X, where X = {X | Xis weakly Cainian};
4. Every compactum X € XKy is nonabelian; and
5. For every n > 2, no compactum X € X,, \ X, is nonabelian.

We shall call the nested sequence X; C Ky C --- C K the Daverman series of
compacta and the union
D= %n

n>1
the class of Daverman compacta.

Theorem 5.2. The Daverman series is incomplete, i.e. D # XK.

PrOOF. Define K € X\ D by K = lime{Si,pﬁﬂ}izo, where Sg is 2-sphere and
Si+1 is obtained from S; by using the i-th stage grope modifications only. Then
clearly K ¢ X,,, for any n > 1 since we exceed the n-th stage grope modifications
already in S,,4+1. On the other hand, K is clearly a Cannon-Stan’ko compactum,
so K € X. O

It follows by Theorem 5.1 above that D C X, i.e. every Daverman compactum
is also weakly Cainian. We conclude with the following open problem.

Problem 2. Does there exist a Cannon-Stan’ko compactum X such that:
1. dimX > 3; and
2. X fails to be a nonabelian compactum?
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