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Abstract: We study the following problem: to find conditions, “checkable from within”
an open 3-manifold M, which guarantee that the endpoint compactification M of M is
a generalized 3-manifold. Our main result is: The endpoint compactification M of a 3-
manifold M with one end is a generalized 3-manifold if and only if M satisfies the property
that (1) given a neighbourhood U of oo there exists a neighbourhood V C U of oo such
that for every k = 2,3 and for every mapping f : dB* — V and every neighbourhood
W C V of oo, there exist pairwise disjoint k-cells Dy,...,D; C int B* and a mapping
F:D — U such that D = B* — (D, U...uD,), F|3B* = f, and F(dD;) C W for every
J €{1,...,t}; (2) H2(5 Z) is stable at the end ¢; and (3) Ha(e; Z) = Z.

Assume throughout this paper that M is a topological 3-manifold with
the following properties: (i) M is noncompact; (ii) 8 M is either compact or
empty; (iii) M has one end; and (iv) M contains no fake 3-cells.

Recall the definition of an end of a locally compact space X: this is a
collection E of open subsets of X satisfying the following properties: (1)
Each element of E is open, connected, and nonempty; (2) Each element of
E has compact frontier; (3) If e;,e; € E then there is e3 € E such that
e3 CeyNey; (4) N{é | e € E} = ®; and (5) E is maximal with respect to
properties (1)-(4).

A prime example is W = N — C, where N is a compact topological
manifold with boundary and C C 8N is a boundary component. Then W
has exactly one end [8] [9] [14].

_ Denote by M the endpoint (Freudenthal) compactification of M and let
M -~ M = {o0}. The following theorem was first proved by C. H. Edwards,
Jr. [7] and, independently, by C. T. C. Wall [16]:

Theorem 1. (C. H. Edwards and C. T. C. Wall) M is a 3-manifold if
and only if M is simply connected at co.
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A neighbourhood of infinity in a locally compact space X is an open
set U C X such that X — U is compact. A locally compact space X is
simply connected at oo if for every neighbourhood U C X of co there exists
a neighbourhood V' C U of oo such that every loop in V is null-hemotopic

in U. Thus M is simply connected at oo if and only if {oo} is 1-LCC in M.

Note the distinction between these properties and assertxon that M is
1-LC at oo: {oo} is 1-LCC in M if for every open set U in M there exists
an open set V C U such that the inclusion-induced homomorphism I, (V -
— {o0}) — My(U — {o0}) is zero. On the other hand, M is 1-LC at oo if
and only if for every open set U C M there is an open set V C U such that
I, (V) — O, (0) is zero.

The question which we wish to address here is: Are there conditions

“checkable from within M" that are collectively equivalent to M being a
generalized 3-manifold, i.e. a locally compact, finite-dimensional, separable
metrizable ANR which is also a Z-homology 3-manifold (i.e. for every z €

M, H.(M,M-{z};Z)= H,(R3,R®-{0};Z))?

- One approach to this problem is to break the statement “M is a gen-
era.hzed 3-manifold” into simpler properties and search for solutions to the
problem using these more basic properties. For example, M is clearly finite-
dimensional, so M is an ANR if and only if M is locally contractible at oo

[2]. Now, M is clearly 0-locally connected (0-LC) at co. Since M deforms to
the one-point compactification of a locally finite 2-dimensional polyhedron
(a.n unpublished result of G. Kozlowsh), LC? implies LC*® [11]. Therefore,

M is an ANR if and only if M is 1-LC and 2-LC at oo. (RecallthatXls
k-LC at z € X if for every neighbourhood U C X of z there is a neighbour-

hood V C U of z such that (V') — II;(U) is zero, and LC* means n-LC
for all n < k.)

Furthermore, using the local version of the Hurewicz theorem [11], the
property 2-LC may be substituted by its homological equivalent, 2-1c, if it
is desirable. Similarly, it can be shown that M is a Z-homology 3-manifold
if and only if H,(M,M;Z) = H,(R3 R3 - {0};Z) for 1 < ¢ < 3. Can each
of these more basic conditions be recognized from within M?

First, we consider such a criterion for the local k-connectedness of M,
due to J. Dydak [5] (see also [6]). It will be called the PS*CI property (for
“Pushing k-Spheres Close to Infinity”): M has the PS*CI property if, given
a neighbourhood U C M of co there exists a neighbourhood V' C U of oo
such that for every mapping f : #8B*+! — V and every neighbourhood W C
V of oo there exist pairwise disjoint (k + 1)-cells Dy, ..., D; C int B**! and
a mapping F : D — U such that D = B¥+1 - (D, u...u D,), F | 8B**! =
= f,and F(8D;) C W for every j = 1,...,¢t. For example, M has the PS*CI

property if and only if for every neighbourhood U of infinity there exists a
neighbourhood of infinity V' C U such that for every neighbourhood W C V'
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of infinity, loops in V are freely homotopic within U to a product of loops
in W.

Theorem 2. Let M be a noncompact 3-manifold with 3M either empty
or compact with one end and let k € {1,2}. Then the endpoint compactifi-
cation M of M is k-LC at oo if and only if M has the property PS*CIL.

Proof of Theorem 2. Theorem 2 follows immediately by [5; Lemma
(3.2)]. Nevertheless, for the sake of exposition we present here a detailed
proof of the £ = 1 case. Suppose first that M is 1-LC at co. Given a
neighbourhood U of infinity let ¥ = U U {oo0}. Since M is 1-LC at oo,
there exists a neighbourhood V of 0o in M such that any loop in V is null-
homotopic in U. Let V = V — {o0}.

Let f : 8B? — V be a mapping and W a neighbourhood of co. Let F :
B? = U be an extension of f. Choose a polyhedral manifold neighbourhood
N of F~(o0) in B?, small enough so that N C F~!(W). Let D be the
component of B2 — N containing 8B and define G = F | D. D is a disk-
with-holes as in the definition of PS!CI and G(8D — 8B%) C W. Therefore
M has the PS!CI property.

Suppose now that M has the PS!CI property and let U be a neighbour-
hood of 0o in M. Let U = I — {0}, and let V C U be a neighbourhood of
oo as in the definition of PS'CI. Finally, let V = V U {o0}. Clearly, V is a
neighbourhood of oo in M, and it remains to be shown that any mapping
f:08B% = V can be extended to a mapping F : B2 — U.

As a special case, assume f(6B?) C V. Let Uy = U, U; = V, and in
general, let U, +; be a neighbourhood of oo such that the pair (U, 41, U,)
satisfies the requirements for (U, V) in the definition of PS! CI. Furthermore,
construct the U;’s so that {fIJ} ieN is a neighbourhood basis for M at oo.
Extend f to a mapping f; : 151 — U, where D, is a disk-with-holes in
B? and f,(8D, — 8B%) C U,. Inductively, extend f, to a mapping f,;; :
Dy41 — Uy, where D, 4, is a disk-with-holes in B?, (D,, —8B?) C int D,,,,
fn+1(Dn+l - Dn) cU, -1 and fn+1(8Dn+1 - 832) C Un+1. The disk-with-
holes D,,;; should be constructed so that the components of B — D, ,

have diameters < 17, so that D, = |J D, is the complement of a 0-
n>1

dimensional compactum in int B?. Define f., : Doo — U by foo | Dp = fa,
n € N. Then f,, is a proper mapping of D, into U, with the ends of D, all
going to the end of U at co. Therefore F | D, = f and F(B? - D) = oo,

defines a mapping of B? into U that extends f.

Now let f: 8B? — V be an arbitrary mapping K = f~1(0). Let V; O
V2 D ... be connected neighbourhoods of oo, chosen so that {V;};cN is a
basis for M at oo and so that any loop in V}4; is null-homotopic in f’j, as

in the Special case. Recall that any loop in V is null-homotopic in U, so we
mayset Vi=Vand V; =U.
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The complement of K in B? may be written as the union of 2-cells B; C
B? C ..., where (B; n dB?) U f~1(V;) = 8B%. Using connectivity of V;, f
may be extended over 8B; — 8B? so that f(8B; — 8B?) C V;. Let C; =
= Bj;1 — B; and Cy = By. Then C; is a union of 2-cells and f(3C;) C V;
for each j. Applying the Special case to f | 9C;, we extend f to a mapping
of C; into Vj-l for each j, resulting in an extension of f to a mapping F :
B? > Vo. ]

Figure 1

Before we continue we need to introduce a new concept — stability
of homology groups at an end, and following that, homology groups of
an end. So let X be a locally compact space with one end ¢. Following
[14], we shall define H,(e;Z) to be the inverse limit of the inverse system
{H.(U;; Z); a; i+1}ieN, associated to a system of open neighbourhoods

x),2 2,3 Q3.4
Ul ¢ U2 € U3 ¢ ooe

of the end ¢, which is stable, i.e. for some subsequence
{H.(Ui;; Z); &, i, +1}jeN, the induced maps are isomorphisms:

. ima,-h,-, a%.-zlima,'z,,’s a(.—zia' oo
It can be shown, using the same ideas as in [14] that H,(¢; Z) is well-defined.
We define two more properties. Let X be any space. Then X is said
to satisfy the Kneser finiteness if no compact subset of X intersects more
than a finite number of pairwise disjoint fake 3-cells. Next, X is said to
have the map separation property if for every collection fi, ..., f, : B? = X

of Dehn disks such that if i # j then f;(B?)n f;(int B?) = @ and for every
neighbourhood U C X of the set U, f;(B?) there exist maps g;,..., gy :
B? — U such that (i) for every ¢, f; | 8B = g¢; | B?; and (ii) for every
i # 7, 9i(B?) N g;(B?) = 0. Recall that a disk f : B — X is said to be Dehn
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if the closure of the set {z € B% | f~!(f(z)) # z} misses 3B2. For more on
these properties see [13].

We now come to the main result of the paper — an interior characteri-
zation of generalized 3-manifolds:

‘ Theorem 3. Let M be an open 3-manifold with one end . Then M is
a generalized 3-manifold if and only if the following conditions hold:

(i) for every neighbourhood U C M of oo there is a neighbourhood V C
U of oo such that for every map f : 8B* — V, k = 2,3, and every
neighbourhood W C M of oo there ezist k-cells Bf, ..., BX, ¢ B* and an
eztension

f:(B*-|JintBf) - U
=1
of f, such that (int B¥) N (int B¥) = 0 for all i # j and f(8Bf) C W

for alli <m; and
(ii) Hy(< Z) is stable at € and Hy(e; Z) =2 Z.

Proof. We only need to prove the sufficiency. Clearly, M is always finite-
dimensional since such is already M, so M is an ENR if and only if M is

LC*® at oo [2]. Now, M is always LC° at oo and since M deforms onto a
one-point compactification of some locally finite 2-dimensional polyhedron

(as observed by G. Kozlowski) it suffices to prove that M is LC? at co. The
latter is by Theorem 2 precisely the condition (i) above.

Next, by the Hurewicz theorem, M is 1-lc (Z) at ¢. Let {U;} be a
neighbourhood base at co. Consider the long exact sequence for the Borel-
Moore homology [1] with compact supports for the pair (U;, U; — {00}):

-+ = HY(0) — HY(O:, 0 = {00}) = By (Ui = {o0}) = By (0) — -
Then by the Skljarenko theorem [15)], lim{— H¢(U;) = 0 = lim{— *H{(T;).

Now, by excision, H ,ﬁ(f],-, U, - {o0}) doesn’t depend on the choice of U;. It
therefore follows by the condition (ii) of the theorem that

H§(M, M — {o0}) = H(T;, U; - {0}) H:;lec(ﬁi —{oo}) 2 Hi(e) = Z.
Similarly, for k < 2, H{(M, M — {co}) belongs to the short exact sequence
0 — lim" fg_, (U - {oo}) — HE(M, M - {o}) —

—s lim H§(0; ~ {00}) — 0

and the condition (i) implies that {H¢(U; — {c0})} vanishes.
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It follows that: H(M, M — {w};Z) = H;(R3,R®-{0};Z), i=1,2,3.
Thus M is also a Z-homology 3-manifold hence a generalized 3-manifold. =

Remark. If the Poincaré conjecture is true then the one-point compact-
ification of an open 3-manifold M with one end need not be a generalized
3-manifold even if M is contractible. Let M be Kister-McMillan’s open 3-
manifold [10]. Then M is contractible and has one end. Suppose M were a

generalized 3-manifold. Then by M. G. Brin [3] M would have a resolution
so by Brin-McMillan [4] M would embed in a compact 3-manifold. However,
the latter is known to be false.

If we add a general position hypothesis to Theorem 3, we get the

following recognition theorem for 3-manifolds, by invoking the main theorem
of [12]:

Theorem 4. Let M be an open 3-manifold with one end e. Then M is
a topologzcal 3-manifold if and only if the following conditions are 3atzsﬁed

(i) M satisfies the Kneser finiteness;

(IT) M possesses the map separation property;
(iii) M satisfies the PS* CI property for k = 1 and 2; and
(iv) Ho(5Z) is stable at € and Hy(6;Z) = Z. =

We shall conclude with the following open problem. Let X be a con-
nected ENR with one end. Let U;W C X be open neighbourhoods of in-
finity such that W is connected and W C U. Let zog € U and z;,z; €
W. Then there are paths 4; from z; to zg, 7 from z; to zg, and 44 from
z; to z3, and 7 lies in W. The inclusions induce isomorphisms (#)4 :
I, (W,z,) - Ij(U,z;) for k = 1,2. The maps 7, induce isomorphisms
() : (U, 2z;) —» (U, z0), § = 1,2 and (70)4 : (W, z1) — II;(W, 2,).
Let ¢ = (72)#(70)#(71);1 : I1(U,20) — M;(U,z0). Then ¢ is an inner
automorphism. Let Hy = ((7k);l(ik)#)H1(W,a:n), k = 1,2 and let N; be
the normal closure of Hy in II;(U, z;). Then N; = N,. Therefore, if we let
Gw be the normal closure of im[Il;(W,z;) — II;(U,z0)], then Gy is well-
defined and we may set II3°(U,z0) = N{Gw | W open, connected U}. We
define thad X has the property PS!I (for “Pushing 1-Spheres to Infinity” ) if
for every open neighbourhood U C X of oo there is an open neighbourhood
V C U of oo such that im[II,(V) — II;(U)] C I{°(U) where we restrict
to those W in the definition of II$°(U) which lie in V. Clearly, the PS'CI
property implies the PS'I property. Does the converse also hold?
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