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2 
Let M be an oriented smooth closed surface. A Jordan curve 

on M is a continuous map K:[0,1] +W (or K: R *■ M ) such 
that for each t 6(0,1) (or t€R) there is an fc>0 such that K is one-to-one on the open t-neighborhood of t. The orientation on 

<\/a> 
1 

2 
a Jordan curve K on M will always be the induced orientation by 
the chosen one on the surface M 

0 on 9 A Jordan curve K on M is said to be C -homogeneous in M 
if for every two points x,y€K there exists a diffeomorphism h : 
M2 *M 2 such that (i) h (x)=y; (ii) h (K ) C K ; (iii) h 

X,y * 1* \ * x,y x,y 
is orientation preserving for all x and y (or it is orientation 
reversing for all x and y); and (iv) h preserves the orienta-

x»y 
tion of K for all x and y (or it reverses the orientation of K 
for al1 x and y). 

PROPOSITION 1. Let K be_ a_ Cco-homogeneous Jordan curve in 2 the plane R . Then for every point x € K there exist a closed 2 neighborhood U C R of x and smooth curves C- ,C« C U such that 
(i) KAU separates U; (i i) C- and C« 1 ie on the opposi te sides 
of KAU; and (iii) C^A K= { x } =C« A K (i .e. x \s_ wedged betwe­
en C- and Cj). 

Proof. Let x£K. Since K is C00-homogeneous Jordan curve 2 in R the Jordan Curve Theorem implies that there is a closed 
2 2 neighborhood U C R of x in R such that KAU separates U. Let 
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p.6U-K, i = 1,2, be any two points on the opposite sides of K O U. 
Let p*€K be a point on K nearest to p., i=l ,2 (there can be more 

' ' 2 
than one, in general). Let C* be a circle in R centered at p* with 
radius d(p.,p*), i=1,2. Modify the circles C* so that eventually 
C*OK= {pv} , i = 1,2, while keeping them smooth at all points. Use 
the C°°-homogeneity of the curve K to produce two diffeomorphisms 2 2 h.:R >R such that h.(p*)=x. Define C. to be the component of 
h.(Cv) which contains the point x, i=l,2. It's is now easy to ve­
rify that the curves C. and C? satisfy the required properties. 

G(t,x)=g (x) where g is a diffeomorphism of M ; (ii) g =g 

A 1-parameter group of diffeomorphisms of an oriented closed 
2 2 2 

smooth surface M is a continuous map G:RxM — > H such that (i) 
t s 

■ g ; 
and (iii) g =idM2. In other words, a 1-parameter group of diffeo-

2 
morphisms is a homomorphism G:(R,+)—*(Diff(M ),o) such that G: 

2 2 
RxM — » • M is continuous. 2 2 PR0P0SITI ON 2. J_et G: RxM *-M be a 1 -parameter group of dif-

2 2 2 
feomorphisms of M and let x €M be an arbitrary point of M . Then the orbit 0 = { g (x) ( t € R } JJL±C°° "homogeneous curve in M J UL £ L ~nomogeneous curve in n 
unless x j_s £ fixed point. 

Proof. Any two diffeomorphisms g and g are homotopic via 
2 2 the map G : Lt,s] x M *- M , t < s , which implies that either 

2 both of them preserve the orientation of M or they both reverse 
2 

it. The same holds for the orientation of the orbits. Pick x € M 
and let y 6 0 . Then H = { t | g (y)=y) is a subgroup of (R,+) so 
there are 3 possibilities: H is either discrete or dense in R or 
trivial (i.e. 0). If H is dense in R it follows that H =R hence 

y y 0 =0 = {x} = {y} . If 0 T* {x\ and H = {0} then 0 is the image x y x r\ x x 
of an embedding of R in M . If H is a discrete group, i.e. H =rZ 
for some r > 0 , then 0 is the image of an embedding of C0,r) in M , 
i.e. of a map f:[0,r]—* R, f(0)=f(r), and f one-to-one on the in­
terval [0,r). 

For every two points y,z€0 there exist t,s£R such that y= 
g (x) and z=g (x). Consequently, g (y)=g (g (x))=g (x)=z hence 
g is a required diffeomorphism of M since we also have that 
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g (0 )=0 . This proves that the orbit 0 is indeed C -homogene­
ous 'in M as asserted. 

2 
PR0P0SITI ON 3. Let K be a Jordan curve in the plane R and 

suppose that at a point x€K, K is wedged between two smooth curves, 
2 

i .e. that there are two smooth curves C- ,C^ C R such that C.nK= 
C«n K= { x) . Then K has a_ tangent at x. 

2 Proof. Consider the secants L C R of K based at x. For every 
n€N, pick q €L OK. We may choose the sequence (q ) so that it 
converges to x. There are two possible cases to consider. 

Case 1. For all but finitely many n, q ^ C-UC^. Then for 
some subsequence (q / x), L / x have the same slope as the tangent 
to C- (and hence to C?) at x and therefore so does the limit. 

Case 2. For some subsequence (q / x), q / \€C. (resp. O . 
Then L / x is also a secant for C- (resp. C«) at x hence the slopes 
of L / x must converge - to the derivative of C. (resp. C-) at x. 
This implies that K is differentiable at x. 

EXAMPLE. The following example shows that in Proposition 3 one 
cannot, in general, also prove that the curve K has a continuous de­
rivative at x (hence much less that K is smooth at x). Let P1 = 
{(x,x2) I x€R*i C R2 and P2= {(x,-x2)l x€R^ CR 2. For every n€N, 
let A ,A*€P1 and B ,B*€P~ be given by: 

A n={((2nf\(4n 2f 1)}, A*= {(-(2n)"1, (l^n2)"1)}, 

Bn={((2n-D"1,-(2n-l)"2)^B*= {(-(2n-1 ) " ] ,-(2n-l)"2)\ 

and let K * = U n c M ( ] U U O n + 1 v J ^ U ^ + 1 ) U {(0,0)}. Let K be n £ N n n n n+i n n n n+l 
the curve in the plane, obtained from K* by smoothing its corners 
A ,A*,B ,B* (without changing K* near the x-axis). Then the point n' n n n ^ 3 r 

T=(0,0)€K is wedged between the smooth curves P- and P~ but the 
first derivative of K at T isn't continuous (hence, in particular, 
K isn't smooth at T). To see this, let f: £-1,11 * R be the map 
whose graph is K and define the map F=(f.,f_): [-1,0—►R by 
f^(t)=t and f2(t)=f(t). Then df^dt |(0)-1 and df2/dtj (0)=0. Let 
(t )CR be the sequence of points on the x-axis, defined by F(t ) = 
O H ( x - a x i s ) . Then 1im t =0 whereas 1im df0/dt |(f )=-2^0»dfo/dt|(0). n n n z l n z I 
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REMARK. The curve K constructed above isn't C*°-homogeneous in 
2 
R . For suppose this were the case and pick any point T«^T on K. We 

2 2 would then have a diffeomorphism h:R ►R such that h(T)=T*. Now, 
K is clearly smooth at T* hence it should also be smooth at the ima­
ge of T*, h (T»)=T. Contradiction. 

QUESTION. Under the additional assumption in Proposition 3, 
2 that the curve K is Cw-homogeneous in R , can one prove that K is 

then necessarily smooth at x, i..e. does "C°°-homogeneous" imply 
"smooth"? (Note that the converse is true, i.e. every smooth curve 

2 in R is locally flat at every point hence one can build diffeomor-
2 

phisms of R which interchange arbitrary pairs of points on K.) 

After this paper was written, W.J.R.Mitchel1 brought to our 
2) attention the work of L.D.Loveland where he used a similar idea 

of wedging the curve or a sphere between balls: using entirely dif­
ferent methods from ours he proved e.g. that a curve KcS is tame 

3 3 
in S (i.e. there is an ambient homeomorphism of S which takes K 
onto a polygonal arc) if for some t>0 at each x€K there are 3-di-
mensional balls B^B-CS , each with radius t, such that B.HB = (B1UB2)AK={x). 

Our work, on the other hand, was inspired by a remark in V.I. 
Arnol'd's textbook (cf.Problem 1 on p.2k). Note that our argument 
yields a very simple geometric proof of a special case of Theorem 
(5.2.3) in D.Montgomery-L.Zippin's monograph 
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