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Let K be a continuum in a 3-manifold M. How nice neighborhoods can K
have? For example, if K is cellular in M, then K is the intersection of properly
nested 3-cells, while if it is cell-like then K is the intersection of properly nested
homotopy 3-cells with 1-handles [3; Theorem 3]. We describe below
neighborhoods of almost 1-acyclic (over Z,) continua K.

Theorem 1. Let K be a continuum in the interior of a 3-manifold
M with (possibly empty) boundary. Suppose that K does not separate its
connected neighborhoods and that for every neighborhood U <M of K there exists
a neighborhood VcU of K such that the inclusion-induced homomorphism
H,(V—K; Z,)»H,(U; Z,)istrivial. Then K=n{Z; N, where each N,< int M
is a compact 3-manifold with boundary satisfying the following properties:
(i) for each i, Niy,cint N, ;
(i) N, is obtained from a compact 3-manifold Q; with a 2-sphere boundary by
adding to 0Q; a finite number of orientable (solid) 1-handles;
(iii) for each i, the inclusion-induced homomorphism

H,(ON ;+1; Z3) —H,(N;; Z,) is trivial.

Remark. Theorem 1 was proved for orientable 3-manifolds by
D. R. McMillan, Jr. [5; Theorem 2]. A. H. Wright observed [9; Theorem 2]
that McMillan’s theorem generalizes to nonorientable 3-manifolds, but did not
obtain orientable 1-handles. Neither of the papers [5] and. [9] gave details.

We have decided to present the details in order to explain the specific
situation for non-orientable 3-manifolds. Our proof is modelled after the proof of
[5; Theorem 2] as outliffed in the lecture notes of D. McMillan [4] from which
we also quote the following folklore: lemmas we shall need at several points.
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Lemma 2. Let K be a compact set inthe interior of a 3-manifold M, K #M,
and let N M be a neighborhood of K. Then there exists a compact polyhedron
Uc int N with the following properties:

(i) each component of U is a 3-manifold with boundary;

(i) each closed surface in U—K separates U—K:

(i) K< int U.

Let M be a compact 3-manifold with boundary and let F,,..., F, =M be its
boundary components. Then we define thetotal genus of éM to be the sum of
the genera of F (1<i<m) :9(OM)=X";-, g,, g;= genus of F,

Lemma 3. Let M be a compact orientable 3-manifold with boundary and let
R=2Z, or the rationals (p a prime). Let i» : H (éM; R)—H (M; R) be the
inclusion-induced homomorphism. Then, rankg(im is)=g (eM).

Proof of Theorem 1. First, we shall prove that K=n%, N,, where N,
satisfy (i) and (ii). It will follow by hypotheses that we can find a subsequence of
{N,} satisfying (iii). We shall supress the Z, coefficients from the notation.

To prove (i)—(iii) it therefore suffices to show that given a neighborhood
Uc M of K there is a compact 3-manifold neighborhood N = U of K such that N
is obtained from a compact 3-manifold Q with 8Q a 2-sphere, by attaching a finite
number of orientable (solid) 1-handles to 6Q. So let Uc M be a neighberhood
of K. We may assume the following about U:

(1) U is a nonorientable connected compact 3-manifold with boundary;

(2) Kcint U;

(3) U—K s orientable and connected;

(4) each closed surface in U— K separates U—K.

The condition (3) follows by [2; Lemma 4.1] since, for sufficiently small U’s, the
inclusion induces trivial homomorphisms H,(U—K)—H [(M). The condition
(4) 1s provided by Lemma 2.

Let n,eN be Haken’s number of U [l; p. 48]. Using the hypothesis,
we can construct an ordered (ny+2)-tuple Y={V,, V,,.... V, ,,} of compact
3-manifolds with boundary such that: ’

(5) Vo=U;

(6) Viy,cint V,;

(7) @V, is an orientable (possibly disconnected) two-sided closed 2-manifold ;

(8) H,(6V;4,)—H (V) is trivial;

(9 Kcint V, . ,.

(Note that (7) follows by (3) and (4).)

Define the complexity of Y to be the integer c¢(Y)=ZXZ ',-"’::,l iy
(n+1)* g,(n), where g;(n) is the number of components of éV; with genus n.
We shall show that in a finite number of steps we can improve Y, so that it will
still satisfy (5)—(8) (but not necessarily also (9)) and that for some i= 1, 0V, will be

a collection of 2-spheres. We shall achieve this by compressing ¢Y = U AV, in
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a careful manner to reduce the complexity ¢fY ), and then we shail apply Haken's
Finiteness theorem [!]

The sequsnce of compressions that accomplish our goal 1s a sequence of
modifications on ¥ {13, McMilizn {3; calis them “simple move:"; of two type:
if a compressicn of ¢V, takes place along a disk contained in V,, we say that we
remove a 1-handle. while if the compressing disk lies outside !, we say that we
added a Z-handle. So suppose first that there is a disk Dcint V,, such i o
DnéY=0D<dV, for seme ie{l... , n,+ 1}, and such that £D bounds no dik i
¢V.. So D either lies outside V, (in int V;_ ) orinside ¥ {in V, - ¥, . ). In the first
case we add a 2-handle to V; while in the second case we remove a | —handie from
V.. Denote the new V, and ¥ by V| and V', respeciively. Mote that in both case-
we did not change any V. i#j. By [3: Lemma 4], 1 Sc(Y j<c (Y} so by a finite
number of compressions we get Y*={V3,.... V2 .} which cannot be compressed
in such a manner anymore. A routine “trading disks” argument now imples that
each component of ¢Y™ which is not a 2-sphere is incompressible.

We want to verify that Y* satisfies the conditions (5)—(8). We iirst note tha'.
if F is a boundary of a 3-manifold Z, 1t still bounds after the compression: if we
add a 2-handle, then the new I will bound the manifold Z plus the “half-open”
3-cell attached via the 2-handle, while if we removed a 1-handle from Z, then the
new F will bound the manifold Z minus the “half-open™ 3-cell remcved via the
I-handle. Therefore, ¥* is weli-defined.

Next, Y™ satisfies (5) and (6) by our construction. To prove (7} we show thai a
ccmpression of an orientable boundary of a 3-manifold Z always yields an
orientable boundary: suppose first that Z’=Z +(2-handl¢) had nonorientable
houndary. Then we ceould find a simple closed curve J<¢Z' such that J wou ¢
reverse the orientation in ¢Z. We could isotope J off the cocore of the 2-hand'c
and hence off the entire handle and into éZ, thus showing ¢Z to be noncricniable
Since removing a 1-handle from Z has the same effect on JZ as adding 4 Z-handic
to the complementary 3-manifoid component bounded by JZ, the preceding
argument aiso proves that for Z'=Z — (1-handle), éZ’ stays orientable. Finaliy
the condition (8) follows by [3; Lemma B] because we made the simplifications
V.-V witheut disturbing V, i#].

We now prove that for some ke{l,..., no+1}.0V;isa collection of 2-sphercs.
Ii not, then by Haken's Finiteness theorem [1] for some [ Sp<q<ng+ i theve
exist components S,<dV; and S,<@V; that are topologically parallei and
different from S% So there is an embedding [:§,x{0.1]-U such that
J(S, % |s))=S8, where s =0,1. Let X =f(S , x[0.1]). We may assuime thzi no s rince
in (int X)n@Y* is parallel to S, in X. By [8; Corollary (3.2)] eaci inc ipressibie
surface in int X is parailel to S, in X. Therefore, (int A} v ¥' consists entirely
of 2-spheres. Also. X must be irreducible, for if there were o 2-sphers in X which
would not bound a 3-cell in X. then it would be incompressibe, hence parallel to
S, #52 Therefore, X minus the interiors of # fintte disjoin: coltection of 3-cells hes
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in V. Hence, every I-cycle in S, is homologous to a I-cycle in §, thus it bounds
in V;, by (8). Since by Lemma 3, the image of the inclusion-induced
homomorphism H,(@V})—H,(V}) has rank (as a vector space over Z,) equal to
g(@V3) it follows by (7) that S, is a 2-sphere, a contradiction.

Let V be a 3-manifold among V7 all of whose boundary components are
2-spheres. Clearly, (9) may no longer be true, so we now take care of that. During
the compressions, when we attached a 2-handle, it may have happened that it
passed through the space in U that was previcusly occupied by a [-handle, which
was removed at an earlier stage. In such cases, we require that the boundary of the
2-handle be in general position with respect to the boundary of the l-handle. In
addition, we shall assume that the annulus removed from ¢V (recall éV; is
orientable so it contains no Mobius bands) in the k-th compression be disjoint
from all 1-handles or 2-handles involved in the preceeding k — 1 compressions. So
if we now add to ¢V all I-handles that were removed from V during the
compressions, we get several [-handles attached to ¢V. Note that adding of an old
I-handle H to ¢V may result in many new smaller I-handles as H may run
through several 2-handles that now occupy portions of its original place. (See
Figure 1.)

Every resulting 1-handle is orientable. For suppose, in reattaching the I-
handles sequentially, we have added a nonorientable 1-handle. Then for every
subsequent reattachement of the remaining 1-handles we have only one isotopy
class of attaching maps [7; Theorem (3.34)] so we end up with & nonorientablc
surface. But this is impossible by (3) and (4). We may also assume that for every
resulting 1-handle H both ends of H are attached to the same boundary
component, for otherwise we add H to V thus reducing the number of boundary
components of ¥V by one.

The 3-manifold N which we get from V by reattaching all I-handles may be
disconnected so we keep only the component which contains K. Thus N is
obtained from a compact 3-manifold Q with dQ a collection of 2-spheres by
attaching a finite number of orientable 1-handles to 6Q, so that every 1-handle has
both ends on the same component of éQ. Let p,Z,(i=1; 2) be arbitrary points on
two distinct 2-sphere components £, and X, of Q. Since K doesn’t separate N,
there is a polygonal arc 4 in N—K joining p, and p,. Suppose that A passes
through a I-handle H. We may assume that 4nH is just one arc meeting ¢Q in
only two points on X,. Then, AnH can be replaced by another polygonal arc
Bc N —int H attached to X,. So we may assume that 4 doesn’t pass through any
of the l-handles. Therefore, by drilling tunnels, we can effectively join the
components of ¢Q thus obtaining the desired neighborhood N. (See Figure 2)

We can describe the structure of the neighborhoods N of K as follows: N=0Q
+(1-handles), where Q captures the “nonorientability” of K, while the handles
capture the “pathology™ of K. (See Figure 3.)
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Figure 1

Figure 2

Let K be a compact set in the interior of a 3-manifold M. We say that K can
be engulfed in M if the interior of some punctured 3-ball in M contains K. A
sequence | K} of compact 3-manifolds with boundary is a W-sequence if for
every i the following conditions hold:

(1) K,cint K, ;

(i1) the inclusion-induced homomorphism is trivial:

nl {Ki)_’nl (Ki+l)-
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Figure- 3

An open 3-manifold M is called a Whitehead manifold if it can be expressed
as M=u>~, K; for some W-sequence of handlebodies [6; p. 313].

An examination of the proofs in a recent paper of D. R. McMillan, Jr. and
T. L. Thickstun [6] shows that the orientability hypothesis can be removed
from all results in (6] if one uses Theorem 1 in the place of [5; Theorem 2J:

Theorem 4. Let M be a compact 3-manifold (possibly with boundary) and
K c<int M a compact subset. Then K can be engulfed in M if and only if there is an
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open, connected neighborhood U =M of K. such that U embeds in S* and H, (U; Z)
vanishes.

Theorem S. Let M be a compact 3-manifold (possibly with boundary). Then M

contains no fake 3-cells if and only if each Whitehead manifold that embeds in int M
also embeds in S3.

References

1. W. Haken. Some results on surfaces in 3-manifolds. Studies in Modern Topol., (Math. Assoc. of
Amer.), Englewood Cliffs, 1968,  39-98.

. R.C. Lacher, D. R. McMaillan, Jr.. Partially acyclic mapping between manifolds. Amer. J.
Math., 94, 1972, 246-266.

2

3. D. R. McMillan, Jr. Compact acyclic subsets of three-manifolds. Michigan Math. J., 16, 1969,
129-136.

D. R. McMillan, Jr. UV properties and related topics. (Lect. notes by B. I. Smith). FSU,

Tallahassee, 1970.

. D.R. McMillan, Jr. Acyclicity in three-manifolds. Bull. Amer. Math. Soc., 76, 1970, 942-964.

.D. R. McMillan, Jr, T. L. Thickstun. Open three-manifolds and Poincare conjecture.
Topology, 19, 1980, 313-320.

.C.P. Rourke, B.J. Sanderson. Introduction to piecewise-linear topology. (Ergebn. der Math.,
69). Berlin 1972

8 F. Waldhausen. On irreducible 3-manifolds which are sufficiently large. Ann. of Math., (2) 87,

- oW A

1968, 56-88.

9. A.H. Wright Mapping from 3-manifolds onto 3 manifolds. Trans. Amer. Math. Soc., 167, 1972,
479-495,

Institute of Mathematics, Received 15. 01. 1987

Physics and Mechanics,
University of Ljubljana
Jadranska cesta, 19
61000 Ljubljana,
Yugoslavia

and

Department of Mathematics
University of Texas
Austin, Texas 78712

L USA



