New Series Vol. 2, 1988, Fasc. 1

Acyclicity in 3-Manifolds

Dušan Repovš*

Presented by P. Kenderov

Let K be a continuum in a 3-manifold M. How nice neighborhoods can K have? For example, if K is cellular in M, then K is the intersection of properly nested 3-cells, while if it is cell-like then K is the intersection of properly nested homotopy 3-cells with 1-handles [3; Theorem 3]. We describe below neighborhoods of almost 1-acyclic (over Z_2) continua K.

Theorem 1. Let K be a continuum in the interior of a 3-manifold M with (possibly empty) boundary. Suppose that K does not separate its connected neighborhoods and that for every neighborhood $U \subset M$ of K there exists a neighborhood $V \subset U$ of K such that the inclusion-induced homomorphism $H_1(V-K; \mathbb{Z}_2) \to H_1(U; \mathbb{Z}_2)$ is trivial. Then $K = \bigcap_{i=1}^{\infty} N_i$, where each $N_i \subset \text{int } M$ is a compact 3-manifold with boundary satisfying the following properties:

- (i) for each i, $N_{i+1} \subset \text{int } N_i$;
- (ii) N_i is obtained from a compact 3-manifold Q_i with a 2-sphere boundary by adding to ∂Q_i a finite number of orientable (solid) 1-handles;
- (iii) for each i, the inclusion-induced homomorphism

$$H_1(\partial N_{i+1}; \mathbb{Z}_2) \rightarrow H_1(N_i; \mathbb{Z}_2)$$
 is trivial.

Remark. Theorem 1 was proved for orientable 3-manifolds by D. R. McMillan, Jr. [5; Theorem 2]. A. H. Wright observed [9; Theorem 2] that McMillan's theorem generalizes to nonorientable 3-manifolds, but did not obtain orientable 1-handles. Neither of the papers [5] and [9] gave details.

We have decided to present the details in order to explain the specific situation for non-orientable 3-manifolds. Our proof is modelled after the proof of [5; Theorem 2] as outlined in the lecture notes of D. McMillan [4] from which we also quote the following folklore lemmas we shall need at several points.

^{*}Supported in part by the Research Council of Slovenia

Lemma 2. Let K be a compact set in the interior of a 3-manifold M, $K \neq M$, and let $N \subset M$ be a neighborhood of K. Then there exists a compact polyhedron $U \subset \text{int } N$ with the following properties:

- (i) each component of U is a 3-manifold with boundary;
- (ii) each closed surface in U-K separates U-K:
- (iii) $K \subset \text{ int } U$.

Let M be a compact 3-manifold with boundary and let $F_1, \ldots, F_m \subset \partial M$ be its boundary components. Then we define the total genus of ∂M to be the sum of the genera of F_i ($1 \le i \le m$): $g(\partial M) = \sum_{i=1}^m g_i$, $g_i = \text{genus of } F_i$.

Lemma 3. Let M be a compact orientable 3-manifold with boundary and let $R = \mathbb{Z}_p$ or the rationals (p a prime). Let $i_*: H_1(\partial M; R) \to H_1(M; R)$ be the inclusion-induced homomorphism. Then, $\operatorname{rank}_R(\operatorname{im} i_*) = g(\partial M)$.

Proof of Theorem 1. First, we shall prove that $K = \bigcap_{i=1}^{\infty} N_i$, where N_i satisfy (i) and (ii). It will follow by hypotheses that we can find a subsequence of $\{N_i\}$ satisfying (iii). We shall supress the Z_2 coefficients from the notation.

To prove (i)—(iii) it therefore suffices to show that given a neighborhood $U \subset M$ of K there is a compact 3-manifold neighborhood $N \subset U$ of K such that N is obtained from a compact 3-manifold Q with ∂Q a 2-sphere, by attaching a finite number of orientable (solid) 1-handles to ∂Q . So let $U \subset M$ be a neighborhood of K. We may assume the following about U:

- (1) U is a nonorientable connected compact 3-manifold with boundary;
- (2) $K \subset \text{int } U$;
- (3) U-K is orientable and connected;
- (4) each closed surface in U-K separates U-K.

The condition (3) follows by [2; Lemma 4.1] since, for sufficiently small U's, the inclusion induces trivial homomorphisms $H_1(U-K) \rightarrow H_1(M)$. The condition (4) is provided by Lemma 2.

Let $n_0 \in \mathbb{N}$ be Haken's number of U [1; p. 48]. Using the hypothesis, we can construct an ordered (n_0+2) -tuple $Y = \{V_0, V_1, \dots, V_{n_0+1}\}$ of compact 3-manifolds with boundary such that:

- (5) $V_0 = U$;
- (6) $V_{i+1} \subset \operatorname{int} V_i$;
- (7) ∂V_i is an orientable (possibly disconnected) two-sided closed 2-manifold;
- (8) $H_1(\partial V_{i+1}) \rightarrow H_1(V_i)$ is trivial;
- (9.) $K \subset \text{int } V_{n_0+1}$.

(Note that (7) follows by (3) and (4).)

Define the complexity of Y to be the integer $c(Y) = \sum_{i=0}^{n_0+1} \sum_{n=0}^{\infty} (n+1)^2 g_i(n)$, where $g_i(n)$ is the number of components of ∂V_i with genus n. We shall show that in a finite number of steps we can improve Y, so that it will still satisfy (5)-(8) (but not necessarily also (9)) and that for some $i \ge 1$, ∂V_i will be a collection of 2-spheres. We shall achieve this by compressing $\partial Y = U_i^{n_0+1} \partial V_i$ in

D. Repové

a careful manner to reduce the complexity c(Y), and then we shall apply Haken's Finiteness theorem [1].

The sequence of compressions that accomplish our goal is a sequence of modifications on Y (D. Mc Millan [3] calls them "simple moves" i of two types if a compression of ∂V_i takes place along a disk contained in V_i , we say that we remove a 1-handle, while if the compressing disk lies outside V_i , we say that we added a 2-handle. So suppose first that there is a disk $D \subset \text{int } V_0$, such that $D \cap \partial Y = \partial D \subset \partial V_i$ for some $i \in \{1, \ldots, n_0 + 1\}$, and such that ∂D bounds no disk in ∂V_i . So D either lies outside V_i (in int V_{i-1}) or inside V_i (in $V_i - V_{i+1}$). In the first case we add a 2-handle to V_i while in the second case we remove a 1-handle from V_i . Denote the new V_i and Y by V'_i and Y'_i , respectively. Note that in both cases we did not change any V_j , $i \neq j$. By [3; Lemma 4], $1 \leq c(Y') < c(Y)$ so by a finite number of compressions we get $Y^* = \{V_0^*, \ldots, V_{n_0+1}^*\}$ which cannot be compressed in such a manner anymore. A routine "trading disks" argument now implies that each component of ∂Y^* which is not a 2-sphere is incompressible.

We want to verify that Y^* satisfies the conditions (5)—(8). We first note that, if F is a boundary of a 3-manifold Z, it still bounds after the compression: if we add a 2-handle, then the new F will bound the manifold Z plus the "half-open" 3-cell attached via the 2-handle, while if we removed a 1-handle from Z, then the new F will bound the manifold Z minus the "half-open" 3-cell removed via the 1-handle. Therefore, Y^* is well-defined.

Next, Y^* satisfies (5) and (6) by our construction. To prove (7) we show that a compression of an orientable boundary of a 3-manifold Z always yields an orientable boundary: suppose first that Z' = Z + (2-handle) had nonorientable boundary. Then we could find a simple closed curve $J \subset \partial Z'$ such that J would reverse the orientation in $\partial Z'$. We could isotope J off the cocore of the 2-handle and hence off the entire handle and into ∂Z , thus showing ∂Z to be nonorientable. Since removing a 1-handle from Z has the same effect on ∂Z as adding a 2-handle to the complementary 3-manifold component bounded by ∂Z , the preceding argument also proves that for Z' = Z - (1-handle), $\partial Z'$ stays orientable. Finally, the condition (8) follows by [3; Lemma B] because we made the simplifications $V_i \rightarrow V'_i$ without disturbing V_p $i \neq j$.

We now prove that for some $k \in \{1, ..., n_0+1\}$, ∂V_k^* is a collection of 2-spheres. If not, then by Haken's Finiteness theorem [1] for some $1 \le p < q \le n_0+1$ there exist components $S_1 \subset \partial V_p^*$ and $S_2 \subset \partial V_q^*$ that are topologically parallel and different from S^2 . So there is an embedding $f: S_1 \times [0,1] \to U$ such that $f(S_s \times \{s\}) = S_s$ where s = 0,1. Let $X = f(S_1 \times [0,1])$. We may assume that no surface in (int $X) \cap \partial Y^*$ is parallel to S_1 in X. By [8; Corollary (3.2)] each incompressible surface in int X is parallel to S_1 in X. Therefore, (int $X) \cap \partial Y^*$ consists entirely of 2-spheres. Also, X must be irreducible, for if there were a 2-sphere in X which would not bound a 3-cell in X, then it would be incompressible, hence parallel to $S_1 \neq S^2$. Therefore, X minus the interiors of a finite disjoint collection of 3-cells hes

in V_p^* . Hence, every 1-cycle in S_1 is homologous to a 1-cycle in S_2 thus it bounds in V_p^* by (8). Since by Lemma 3, the image of the inclusion-induced homomorphism $H_1(\partial V_p^*) \to H_1(V_p^*)$ has rank (as a vector space over Z_2) equal to $g(\partial V_p^*)$ it follows by (7) that S_1 is a 2-sphere, a contradiction.

Let V be a 3-manifold among V_i^* all of whose boundary components are 2-spheres. Clearly, (9) may no longer be true, so we now take care of that. During the compressions, when we attached a 2-handle, it may have happened that it passed through the space in U that was previously occupied by a 1-handle, which was removed at an earlier stage. In such cases, we require that the boundary of the 2-handle be in general position with respect to the boundary of the 1-handle. In addition, we shall assume that the annulus removed from $\partial V_i'$ (recall $\partial V_i'$ is orientable so it contains no Möbius bands) in the k-th compression be disjoint from all 1-handles or 2-handles involved in the preceeding k-1 compressions. So if we now add to ∂V all 1-handles that were removed from V during the compressions, we get several 1-handles attached to ∂V . Note that adding of an old 1-handle H to ∂V may result in many new smaller 1-handles as H may run through several 2-handles that now occupy portions of its original place. (See Figure 1.)

Every resulting 1-handle is orientable. For suppose, in reattaching the 1-handles sequentially, we have added a nonorientable 1-handle. Then for every subsequent reattachement of the remaining 1-handles we have only one isotopy class of attaching maps [7; Theorem (3.34)] so we end up with a nonorientable surface. But this is impossible by (3) and (4). We may also assume that for every resulting 1-handle H both ends of H are attached to the same boundary component, for otherwise we add H to V thus reducing the number of boundary components of V by one.

The 3-manifold N which we get from V by reattaching all 1-handles may be disconnected so we keep only the component which contains K. Thus N is obtained from a compact 3-manifold Q with ∂Q a collection of 2-spheres by attaching a finite number of orientable 1-handles to ∂Q , so that every 1-handle has both ends on the same component of ∂Q . Let $p_i \in \Sigma_i$ (i = 1; 2) be arbitrary points on two distinct 2-sphere components Σ_1 and Σ_2 of ∂Q . Since K doesn't separate N, there is a polygonal arc A in N-K joining p_1 and p_2 . Suppose that A passes through a 1-handle H. We may assume that $A \cap H$ is just one arc meeting ∂Q in only two points on Σ_2 . Then, $A \cap H$ can be replaced by another polygonal arc $B \subset N$ —int H attached to Σ_2 . So we may assume that A doesn't pass through any of the 1-handles. Therefore, by drilling tunnels, we can effectively join the components of ∂Q thus obtaining the desired neighborhood N. (See Figure 2.)

We can describe the structure of the neighborhoods N of K as follows: N = Q + (1-handles), where Q captures the "nonorientability" of K, while the handles capture the "pathology" of K. (See Figure 3.)

Figure 1

Figure 2

Let K be a compact set in the interior of a 3-manifold M. We say that K can be engulfed in M if the interior of some punctured 3-ball in M contains K. A sequence $\{K_i\}$ of compact 3-manifolds with boundary is a W-sequence if for every i the following conditions hold:

- (i) $K_i \subset \text{int } K_{i+1}$;
- (ii) the inclusion-induced homomorphism is trivial:

$$\Pi_1\left(K_i\right)\!\to\!\Pi_1\left(K_{i+1}\right).$$

Figure- 3

An open 3-manifold M is called a Whitehead manifold if it can be expressed as $M = \bigcup_{i=0}^{\infty} K_i$ for some W-sequence of handlebodies [6; p. 313].

An examination of the proofs in a recent paper of D. R. McMillan, Jr. and T. L. Thickstun [6] shows that the orientability hypothesis can be removed from all results in [6] if one uses Theorem 1 in the place of [5; Theorem 2]:

Theorem 4. Let M be a compact 3-manifold (possibly with boundary) and $K \subset \text{int } M$ a compact subset. Then K can be engulfed in M if and only if there is an

open, connected neighborhood $U \subset M$ of K, such that U embeds in S^3 and $H_1(U; \mathbb{Z})$ vanishes.

Theorem 5. Let M be a compact 3-manifold (possibly with boundary). Then M contains no fake 3-cells if and only if each Whitehead manifold that embeds in int M also embeds in S^3 .

References

- 1. W. Haken. Some results on surfaces in 3-manifolds. Studies in Modern Topol., (Math. Assoc. of Amer.), Englewood Cliffs, 1968, 39-98.
- R. C. Lacher, D. R. McMillan, Jr.. Partially acyclic mapping between manifolds. Amer. J. Math., 94, 1972, 246-266.
 D. R. McMillan, Jr.. Compact acyclic subsets of three-manifolds. Michigan Math. J., 16, 1969,
- 129-136.
- D. R. McMillan, Jr., UV properties and related topics. (Lect. notes by B. J. Smith). FSU, Tallahassee, 1970.
- D. R. McMillan, Jr., Acyclicity in three-manifolds. Bull. Amer. Math. Soc., 76, 1970, 942-964.
 D. R. McMillan, Jr., T. L. Thickstun. Open three-manifolds and Poincare conjecture. Topology, 19, 1980, 313-320.
 C. P. Rourke, B. J. Sanderson. Introduction to piecewise-linear topology. (Ergebn. der Math.,
- 69). Berlin 1972.
- 8. F. Waldhausen. On irreducible 3-manifolds which are sufficiently large. Ann. of Math., (2) 87, 1968, 56-88.
- A. H. Wright. Mapping from 3-manifolds onto 3 manifolds. Trans. Amer. Math. Soc., 167, 1972, 479-495.

Institute of Mathematics, Physics and Mechanics, University of Ljubljana Jadranska cesta, 19 61000 Ljubljana, Yugoslavia

and

Department of Mathematics University of Texas Austin, Texas 78712 U.S.A.

Received 15. 01. 1987