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RESOLVING ACYCLIC IMAGES OF HIGHER DIMENSIONAL
MANIFOLDS

D. Repov§, Ljubljana*

Abstract. We prove that every generalized n-manifold (n>4) which is an acyclic
image of a topological n-manifold, has a cell-like resolution. This extends an analogous
result for n=3, due to J. L. Bryant and R. C. Lacher, to higher dimensions.

1. Introduction

One of the fundamental problems of modern geometric topology 1s
the characterization of topological manifolds. One seeks relatively
simple properties which detect manifolds inside a given class of spaces
— usually these are already known to be at least ENR homology
manifolds (=generalized manifolds). It was the idea of J. W. Cannon
[2] that one could solve this problem for higher dimensions (n>5) in
essentially two steps:

(1) First, show that every generalized n-manifold X has a resolution,
f ‘M-X.

(2) Second, show that if X has the disjoint disks property then the
induced cell-like decomposition G (f)={f""(x)|xeX} of the n-mani-
fold M is shrinkable — hence X is homeomorphic to M and thus
nonsingular.

After the announcement by F. S. Quinn [11] in 1978 of a proof of
(1) it seemed for a while that Cannon’s conjecture was confirmed, since
a year before that R. D. Edwards [7] had verified (2). However, in 1985
S. Cappel found a serious error in Quinn’s argument [14]. Therefore it
again became an interesting problem to find out which (if -not all)
higher dimensional generalized manifolds admit resolutions. (See [17]
for a survey of the situation in dimension 3.)

In this paper we give a partial contribution towards the solution of
(1) — we prove that every generalized n-manifold (n>4) has a resolu-
tion, provided it is an acyclic image of some topological n-manifold.
This result generalizes an analogous statement for n=3 by J. L. Bryant
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and R. C. Lacher [1] (refined by D. Repovs and R. C. Lacher [18]), to
higher dimensions.

We remark that, in general, an acyclic map from an n-manifold onto
a generalized n-manifold need not have any cell-like point-inverses — e.
g. R. J. Daverman and J. J. Walsh [4] have constructed examples of
proper maps f: S"—X" for every n>3, of the n-sphere onto a generali-
zed n-manifold, such that f~* (x) is an acyclic but not even 1-UV (hence
not cell-like) compactum in S”, for every xeX.

This paper was inspired by conversations with J. L. Bryant and F. S.
Quinn at the 1985 Georgia Topology Conference in Athens. It was
written during my subsequent visit to the Mathematical Sciences Re-
search Institute in Berkeley. I wish to acknowledge the financial support
for this trip from the National Academy of Sciences U. S. A.. I also
want to thank the referee for pointing out that my argument actually
yields a stronger result — an invariance theorem for Quinn’s local index
(Theorem (3.3)).

2. Preliminaries

We shall use (co)homologies with Z coefficients throughout the
paper. A compactum K in an ANR X is acyclic if for each neighbor-
hood UcX of K there is a neighborhood V<U of K such that
H,(V)=H,_(U) is trivial for all k>0 (unless specified otherwise all
homomorphisms as above are assumed to be induced by inclusion
i:V-U). A compactum K is cell-like if there exist a manifold N and an
embedding f:K— N such that f(K) is cellular in N. A map defined on a
space (resp. an ANR) X is monotone (resp. acyclic, cell-like) if its point-
inverses are continua (resp. acyclic compacta, cell-like compacta) in X.
A closed map is proper if its point-inverses are compact. A map f: XY
is one-to-one over Z< Y if for every ze Z, f ' (z) is a point. A space X is
locally contractible if for each xeX and each neighborhood UcX of x
there is a neighborhood V' =U of x such that V is contractible in U.

A locally compact Hausdorff space X is a generalized n-manifold
with boundary (neN) if:

(i) X is an euclidean neighborhood retract (ENR), i. e. for some
integer m, X embeds in R™ as a retract of an open subset of R™;

(i) X is a homology n-manifold with boundary, i. e. for every xeX
either A* (X, X — {x})= A" *({x}) or A* (X, X — {x})=0. The subset
X={xeX|H*(X,X - {x})=0} of X is called the boundary of X and
X =X —X is the interior of X. If X =0 we call X a homology n-manifold.
The set S(X)={xeX |x has no neighborhood in X homeomorphic to an
open set in B"} is called the singular set of X and its complement
M (X)=X — S (X) is the manifold set of X.




Resolving acyclic images. .. 499

A generalized n-manifold with boundary X is said to have a
resolution if there exists a pair (M,f), where M is a topological n-
manifold with boundary and f: M—X is a proper cell-like onto map
such that f~! (X)=0M. A resolution (M, f) of X is called conservative if
[ is one-to-one over M (X).

F. S. Quinn has isolated an obstruction for generalized manifolds of
dimension >4 to admit a resolution:

THEOREM 2.1. (F. S. Quinn [15]) Let X be a generalized n-
manifold with boundary. Then there exists a “‘local index” i (X)e (1 +8Z)
which has the following properties:

(i) i(U)=i(X) for every open subset UcX;
(ii) i(X x Y)=i(X)-i(Y) for every generalized manifold with bounda-
ry Y; and

(iii) If n=5, or n=4 and S (X))=9, then X admits a resolution if and
only ifi(X)=1.

3. The results

Our main result is the following resolution theorem for the class of
those generalized manifolds which are acyclic images of genuine mani-
folds of the same dimension:

THEOREM 3.1. A generalized n-manifold X has a conservative
resolution if and only if there is a topological n-manifold M and a proper
acyclic onto map f:M—-X.

A metric space (X, d) has the disjoint disks property if for every €>0
and every pair of maps f, g:B*—X there exist maps f', g’ : B2—X such
that d(f',/)<e>d(g’,g) and 1 (B*)g’ (B*)=9.

As an immediate corollary we get a recognition theorem for higher
dimensional topological manifolds a la Cannon [2]:

COROLLARY 3.2. A4 space X is a manifold of dimension n=5 if and
only if X has the following properties:
(i) X is a generalized n-manifold;
(it) X is a proper acyclic image of an n-manifold; and
(iii) X has the disjoint disks property.
Proof. Follows by Theorem (3.1) and [7].

We shall first prove the following invariance theorem for F. S.
Quinn’s local index (cf. Theorem (2.1)):

THEOREM 3.3. Let f:X,—X, be a proper acyclic onto map between
generalized n-manifolds X, and X,. Then i (X,)=i(X,).
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Proof. Let N=X, x[—1, 1) and define Y to be the space obtained
from the disjoint union of X, x [ -1, 0] and X, x [0, 1), by identifying
(u, 0) with (f(u), 0) for all ueX, and put the standard quotient topology
on Y. Let F:N—Y be the obvious quotient map F ((u,t))=[(u,¢)], for
all (u,t)eX, x[—1,1), where [w] denotes the equivalence class of the
image of the point (u,t). Since f is proper, acyclic and onto it follows
that the map F possesses the same properties, too.

Assertion 1. Y is an ENR.

Proof. Since X, is an ENR so is N. Hence N is a locally compact,
separable metrizable finite-dimensional ANR [5; (IV. 8.13.1.)]. Since F
is proper, Y is thus locally compact [6; (XI. 6.6.)], separable [6; (VIII.
7.2.)], and metrizable [3;(10.C.7.)], therefore by [9; (III.2.B.)], Y is
finite-dimensional since it can be expressed as the union of finite
dimensional subsets F (X, x [—1, 0)) and F (X, x [0, 1)).

Next, we shall verify that the closed subspace F (X, x[—1, 0])=Zr
(the mapping cylinder of F [20; p. 365]) is locally contractible. This is
clearly true for all weF (X, x[—1, 0)) so let weF (X, x {0})=X,.
Choose an open neighborhood U = Zr of w and let U,=U|(X,. Since
X, is an ENR, it is locally contractible [8; (V.7.1.)] so there is an open
neighborhood ¥, < U, of x in X, and a homotopy H:¥, xI-»U, such
that H,=idv_and H,=a point in U,.

Inside the open set F~* (V) (i. e. open in X, x {0}) there is an open
neighborhood W,cF~'(V,) of the compactum F~!(w) in X, x {0},
such that for some 8<0, then open set W=W,x (5,0] lies entirely
inside F~' (U) and F (W) is open in Zr (recall that the map F is proper).
The homotopy H*:F (W) xI—-U given by

[ (=29)0];  0<s<3

H* ([(4,1)],5)= 1
H(f@),2s5-1);  5<s<1

now shrinks F (W) to a point inside of U. This establishes that Zr is an
ANR [8; (V.7.1.)].

Since X, and X, x [0, 1) are both ANR’s so is therefore their union
with Zr [8; (II. 4.1.), (I1.10.1.), (IT1.3.2.)]. The assertion now follows by
[5; av.8.13.1)].

Assertion 2. Y is a generalized (n+ 1)-manifold with boundary.

Proof. By Assertion 1 and [16; (1.1.)] we only must check that for
every we Y and every ge Z, the following holds:
Z;, g=n+1 and weY
0; otherwise.

(1) H,(Y,Y- {w})"——"{
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By excision [20; (IV.6.5.)], it suffices to check (1) for the open
1
subset A=F(X, x(wi,l)). Let B=F~'(A), choose any we A and

define W=F~1(w), A’=A— {w}, B'=B— W. Consider the following
commutative diagram: '

... —H,(B)H,(B)>H,(B,B)3H, ,(B)5H, , (B)~...
lm !L Fa lcb le*| lF*
i e ryBe oy Te
= H (A)SH, (A)SH, (A, A)SH,_ (A)S5H, (A)— ...

Since F:(B,B’)— (A4, A’) is proper and acyclic map between para-
compact spaces [6; (IX.5.3.)], the Vietoris-Begle mapping theorem [20;
(V19.15.)] implies that Fx and F«| are isomorphisms, hence by the five
lemma [20; (IV.5.11.)], @ is an isomorphism. Therefore by the Borel-
Moore duality theorem [21; (I1.2.2.)] and the excision [20; (IV.6.5.)]:

H, (Y, Y—{w})=H, (4, A)=H, (B,B)=H"' "W).

The formula (1) is now verified by invoking [10;(2.2.)], and the
assertion follows.

We now complete the proof of Theorem (3.3): Let i (X,) be Quinn’s
local index of X,, k=1, 2 (cf. Theorem (2.1)) and define
T={(u,t)|lueX,, 0<t<1}. Then

i) =i (Y)=i(T)=i (X, xR)=i (X,)

since ¥=X,, T is open in Y and homeomorphic to X, x R, and since
Theorem (2.1) applies.

Proof of Theorem (3.1). First, we note that it suffices to show that
there is a resolution, for it can always be made conservative by [1; p.
312] if n=3, [13; (2.6.2.)] if n=4, or [19; p. 271] if n > 5. Also, by [10]
(n<2) and [1] (n=3) we may restrict to n>4. There the conclusion
follows immediately from Theorem (3.3) since M has a vanishing
Quinn’s obstruction, hence i (X)=i(M)=1 thus X resolves, too.

Remark. By same techniques one can prove analogous results for
generalized manifolds with boundary.
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RAZRESEVANJE ACIKLICNIH SLIK MNOGOTEROSTI VISJIH DIMENZIJ

D. Repovs, Ljubljana

Povzetek

V ¢&lanku je pokazano, da ima vsaka posploSena n-mnogoterost
(n=4), ki je aciklitna slika neke topoloike n-mrogoterosti, celi¢asto
razresitev. To je pospolsitev analognega izreka J. L. Bryanta in R. C.
Lacherja za n=3, na vije dimenzije.



