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GENERALIZED 3-MANIFOLDS WITH BOUNDARY

D. REPOVS*

Generalized manifolds have held an important position in topology
ever since they were introduced in the 1930’s [25]. For low dimensions
(< 2) their local algebraic properties are strong enough to imply that they

are genuine manifolds [7], [25]. In higher dimensions they are interesting
for at least two reasons: "

(i) they arise in many different classes of spaces (e.g., as quotient
spaces of cell-like upper semicontinuous decompositions of manifolds,
as manifold factors, as quotients of Lie group actions on manifolds, as
suspensions of homology spheres, etc.), and

(i1) they have the same global algebraic properties possessed by
topological manifolds (e.g., local orientability, duality, etc.) [14].

Recent success in higher dimensions — a remarkably simple charac-
terization of n-manifolds (n>5) by R.D. Edwards [8] and F.
Quinn [17] — has stimulated an upsurge in interest in the geometric
topology of generalized manifolds.

* Supported in part by a Research Council of Slovenia Grant.
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Particulary under investigation are generalized manifolds of dimen-
sions three and four:

(i) a partial analogue of Edwards—-Quinn’s result is now known in
dimension three, modulo the Poincaré conjecture [20], and

(ii) Quinn has recently extended his resolution theorem [17] to
dimension four [18].

However, an analogue of Edwards’ shrinking theorem [8] for this
dimension is still missing. (For a review of the present situation in dimen-
sion three see [15]).

On the other hand, little is known about the topology of generalized
manifolds with boundary although they occur quite naturally in many
different situations, as we shall show in this paper. We propose to derive
some basic properties of these spaces, most of which are analogous to those
already known for generalized manifolds without boundary. We are mainly
interested in dimension three — the main part of the paper is on generalized
3-manifolds with boundary. We also give a list of some interesting open
problems in this area.

1. PRELIMINARIES

A space X is an euclidean neighborhood retract (ENR) if it is
homeomorphic to a retract of an open subset of some R". Equivalently,
X is a separable, locally compact, finite-dimensional metrizable ANR, [3].
Let R be a principal ideal domain (PID). A Hausdorff space X is an
R-homology n-manifold (n € N) if for each x € X,

H*(X,X — {x};R)= H"~ *({x}; R),

where ﬁ*(_;R) is the Cech cohomology with coefficients in R.
A Hausdorff space X is an R-homology n-manifold with boundary
(n € N) if for each x € X, either

H*X,X — {x};R)= H" *({x};R) or H*(X,X — {x};R)= 0.

The subset
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X={xeX|H*X,X —{x};R) =0}
of X s called the boundary of X and /{’ = X — X the interior of X.

Lemma 1.1. Let X be an ANR and R a PID. If X isan R-
homology n-manifold (n€ N) then for each x€ X and each q € Z:

R, g=n
Hq(X,X—{x};R)E{
0, g#n

while if X isan R-homology n-manifold with boundary then for each
x € X and each g€ Z:

R, g=n and xE)?
H (X,X—[x};R}::-{
q .
0, otherwise.

Proof. On the class of ANR’s the Cech cohomology agrees with the
singular cohomology [23]. The conclusion now follows by the Universal
Coefficients theorem [23].

Let R be a PID and consider an R-homology n-manifold X with
nonempty boundary (n € N). We observe that X need not be an R-
homology (n — 1)-manifold (as it would be the case if X was a topological
manifold with boundary). A simple example is X = the interior of any
n-manifold with boundary (n> 1) together with one point from its
boundary. It may also happen that X isan R-homology (n — 1)-manifold
with nonempty boundary, e.g., let X = the interior of the standard n-ball
B" plus an (n — 1)-ball on dB". The next proposition gives a criterion
for determining the boundary points of X:

Proposition 1.2. Let X be an ANR and an R-homology n-manifold
with boundary, R a PID, n€ N. Suppose that p € X and that

H (X - {p};R) = H (X;R).
Then pe (X) .

Proof. We suppress the coefficients from the notation. Consider the
homology sequence of the triple (X, 3 D {p}) over R:

= KR



L e S S R N0 o R
— B X~ X - D s
— H X,X— ...
Since
H (X)=H,(X —{p}
it follows by [23, Lemma 6 on p. 202] that
H,(X,X —{p}) = H X, X).
Hence im A = 0= keri_ so
H (X,X —{p})=kerj =0
thus by Lemma 1.1, p€ oy

A generalized n-manifold (n€ N) 1is an ENR that is also a Z-
homology n-manifold. A generalized n-manifold with boundary (n€ N)
is an ENR X such that X isa Z-homology n-manifold with boundary
and X isa generalized (n — 1)-manifold. Let X be a generalized n-mani-
fold (possibly with boundary), n€ N. The set S(X)={x€ X |x hasno
neighborhood in X homeomorphic to an open subset of B"} is the
singular set of X, its complement M(X)= X — S(X) is the manifold set
of X. The points of S(X) (resp. M(X)) are called the singularities (resp.
manifold points) of X. If X=¢ orif SX)c ):" then M(X) is a topo-
logical n-manifold (possibly with boundary, in the second case).

The next two propositions give an interesting relationship between
generalized manifolds and generalized manifolds with boundary.

Proposition 1.3. Let X be a generalized n-manifold (n= 3) with
S(X)C Z, where ZC X isa compact O-dimensional set. Then there exists
an n-cell BC X and a generalized n-manifold with boundary Y C X,
such that S(Y)C Z, Y=X —intB, and Z C 0B.

Proof. Let B, C X —Z be any tamely embedded n-cell. We get B
from B, by pushing out from B, wildly embedded (in X) “feelers”
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towards the points of Z.

Remark 1.4. The restriction n = 3 comes from the fact that gener-
alized n-manifolds (possibly with boundary) are genuine n-manifolds
(with boundary) as soon as n < 2 [25].

Example 1.5. Let X =53 and B = a thickened one half of the
Fox—Artin wild arc [9, Example (3.1)]. Then S(Y) = {p} = the only wild
point of the arc (see Figure 1).

Figure 1

Like manifolds, generalized »n-manifolds with homeomorphic bound-
aries can also be glued together to produce new generalized n-manifolds:

Proposition 1.6. Let X and Y be generalized n-manifolds with
boundary (n€ N) and suppose that there exists a homeomorphism
h: X > Y. Then XU, Y isageneralized n-manifold.

Proof. Since X isan ENRsois X U, Y, by [3, Theorem (IV.6.1)].
It therefore suffices to show that XU, Y isa Z-homology n-manifold.
We shall suppress the coefficients from the notation. The argument
presented below is clearly valid over any PID. Consider the Mayer—Vietoris
sequence for the pairs (X, X — {p}) and (Y,Y — {h(p)}). (By the Ex-
cision theorem [23] it suffices to consider only the case when p € b )

> H (X, X — {pH e H,(Y,Y — {(h(p)}) >
> H (XU, Y,Xu, ) -{ph~>H,_,X,X - {ph~

~H, (X, X-{pheH, (Y.Y—-{h@)D~....
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Since p € X and h(p) € Y it follows by Lemma 1.1 that
H,(X,X - (pH=0=H(Y,Y - {hp)}).
Also, X isa generalized (n — 1)-manifold hence
HXv,Y,Xv, N-{ph=H _ X X-{ph=
if g = n and is trivial otherwise. The assertion now follows by Lemma 1.1.

Remark 1.7. Let M be a closed PL n-manifold (n> 3) and Nc M
a separating (n — 1)-submanifold. Then we can split M along N, ie., we
remove one of the components of M — N from M and we obtain a closed
subspace X of M. In general, X need not be (even a topological) n-
manifold with boundary — this entirely depends on how “wildly” N is
embedded in M. For example, if M= R3?® and N = the Alexander’s
horned sphere [6], then X can be a 3-cell or it can have a Cantor set of
singularities in the boundary, depending upon our choice for X between
the two components of M — N. (The singularities in the second case are
precisely the wild points of N.) However, an argument analogous to the

one in the proof of Proposition 1.6, shows that X is always a generalized
n-manifold with boundary (X = N).

A generalized n-manifold (resp. generalized n-manifold with bound-
ary) (n € N) is said to have a resolution if there exists a pair (M, f), where
M is an n-manifold (resp. n-manifold with boundary) and f: M- X isa
proper cell-like onto map (resp. a proper cell-like onto map such that
fdM)C X). A resolution (M,[) is called conservative if f~!(x) = point,
for every x € M(X). It is known that all generalized n-manifolds (n = 4)
have (conservative) resolutions [17], [18], and certain generalized 3-mani-
folds are also known to be resolvable, modulo the Poincaré conjecture (4],
[24]. These results imply the following observation:

Proposition 1.8. Let X be a generalized n-manifold with boundary.
If X has a resolution then X has a conservative resolution.

Proof Let (M, f) be a resolution of X. Then the restriction
(I e (X) et (X) - X is a resolution of X The assertion now follows
by [5, Theorem 1] if n = 3, by [18, Corollary 2.6.2] if n= 4, and[22,
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Approximation Theorem] if n=> 5. (The case n < 2 is trivial, as we have
already observed above.)

2. DIMENSION THREE

Dimension three is in many respects peculiar, mostly due to the unre-
solved status of the Poincaré conjecture in that dimension. We first prove
the analogues of the two finiteness theorems of J.L. Bryant and
R.C. Lacher [5]. A Z,-homology 3-cell is a compact 3-manifold
with boundary X such that X has the Z,-homology of the 3-cell.

Theorem 2.1. For every compact generalized 3-manifold with bound-
ary X there is an integer k, such that among any k, + 1 pairwise dis-
joint Z,-homology 3-cellsin X at least one is contractible.

Proof. By Proposition 1.6 the double DX of X isa generalized 3-
manifold so there exists the Bryant—Lacher number n, for DX [5,

p- 312]. Let k, = [% (ny + 1)], where [f] = max{n€ Z|n<t}.

Theorem 2.2. Let X be a compact generalized 3-manifold with
boundary and assume that X has a resolution. Then there exists an integer
k, such that among any k,+ 1 pairwise disjoint Z,-homology 3-cells
there is at least one genuine 3-cell.

Proof. Let (M,f) be a resolution of X, let k, be the Kneser’s
number of M [11, Lemma 3.14], and let k, be the number given for X
by Theorem 2.1. Put k, =k, + k, and consider an arbitrary (k, + 1)-
tuple F,,... ’Fko” C X of pairwise disjoint Z,-homology 3-cells. By

pushing each F; into inEFl. along a collar on 0F;, we may assume that
each Ff lies in M(X) N X. By Proposition 1.8 we may assume that f isa
homeomorphism over M(X). Therefore the F,’s lift to M. By our choice
of k, atleast k, + 1 among them are contractible. Thus at least one of
them isa 3-cell.

There is an appropriate name for the property of X described in the
conclusion of the preceding theorem: we say that a space X has Kneser
Finiteness (KF) if for each compact subset X, C X there isan integer k
such that X, contains at most k, pairwise disjoint fake cubes, i.e.
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homotopy 3-cells which are not 3-cells (the Poincaré conjecture asserts
there are no fake cubes).

Next, we shall prove an analogue of T.L. Thickstun’s resolution
theorem [24] (also obtained, independently, by R.J. Daverman (un-
published)) for generalized 3-manifolds with boundary (“heorem 2.4).
As a consequence we prove an extension of the main result of [20, Theo-
rem 3.3] to generalized 3-manifolds with boundary (Theorem 2.5).

Let X be a generalized 3-manifold with O-dimensional singular set.
Then by [4, Lemma 1] every p € X has arbitrary small compact gener-
alized 3-manifold with boundary neighborhoods N C X such that N is
a closed orientable surface in M(X). We say that X hasgenus<nat p
if p has arbitrarily small such neighborhoods N with N = surface of
genus< n. We say that X hasgenus n at p if X hasgenus<n at p
and doesn’t have genus<n —1 at p. If X doesn’t have genus< n at
p forany n we say X hasgenus « at p. We shall denote the genus of
X at p by g(X,p) [15]. A sequence of pairwise disjoint compacta {C;}
in a metric space X is a null-sequence if for every € > 0 all but finitely
many among the Cl.’s have diameter < €.

Example 2.3. It is not surprising that the Poincaré conjecture enters
into the picture as soon as we try to resolve generalized 3-manifolds with
boundary, since the same is true with generalized 3-manifolds [4]. We
consider an example which will be used later on. Suppose fake cubes exist
and consider in int B3 a null-sequence {B;} of pairwise disjoint 3-cells
converging to a point p € 9B3. Replace each B:‘ by a fake cube F{, and
choose a metric in

w=(8>- U intB)u (U F,)
so that the Ff’s also converge (in W) to p (see Figure 2). Then W isa
compact generalized 3-manifold with boundary W = S?. Since there
are no fake cubes in R3, the point p cannot possess an euclidean neigh-
borhood in W hence S(W)= {p}. We shall call such singularities soft, or
Wilder type singularities [15].
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Figure 2

Consider the map f: W— B3 which is obtained by shrinking out all
Ft.’s. Then f is clearly cell-like hence by [13, Theorem 4.2] a homotopy
equivalence. In particular, W is contractible.

Theorem 2.4. Let X be a compact generalized 3-manifold with
boundary and suppose that dim S(X) < 0. Then there exist:

(i) a compact generalized 3-manifold with boundary Y such that
dim S(Y) < 0, all singularities are soft and lie in Y, and g(Y,y) =0 for
every yeY;

(ii) a proper cell-like onto map f. Y - X, with f(f’) By,
Hence if Y has KF then (Y,[f) isaresolution of X.

Proof. Let Z= X+ C, where C= X X I is a collar on X. By the
arguments employed in the proof of Proposition 1.6, Z is a compact
generalized 3-manifold with boundary and S(Z)C S(X). By [24] there
exist a compact generalized 3-manifold with boundary Y satisfying the
requirements (i) above, and a proper cell-like onto map h: X - Z. Let
g: Z- X be the map induced by the contraction of C onto X along
the fibers of C. Clearly, g is cell-like so it follows by [ 13, Corollary 4.2.2]
that f=go h: Y= X is cell-like, as desired.

Theorem 2.5. Let % be the class of all compact generalized 3-mani-
folds with boundary X such that dim S(X)<O0 andlet €,C € be the
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subclass of all contractible X € € with at most one singularity. Then the
following statements are equivalent:

(i) The Poincaré conjecture is true;
(i) If X€ € then X hasa resolution,
(iii) If X€ ¢, then X has a resolution.

Proof. The implication (i) = (ii) follows by Theorem 2.4 while (ii) =
(iii) is clear, and to prove (iii) = (i) consider Example 2.3.

The next result describes the relationship between the softness of a
singularity and the existence of a genus zero neighborhood. A subset
ZcC X is Il -negligible if for each open set U C X the inclusion-induced
homomorphism I, (U —Z)~ II, (U) is one-to-one. A subset ZC X is
1-LCC if for every x € X and every neighborhood UC X of x thereis
a neighborhood V' C U of x such that the inclusion-induced homomor-
phism IL, (V - Z)~> II, (U — Z) is zero.

Theorem 2.6. Let X be a generalized 3-manifold with S(X)C Z,
where Z C X is a compact 0-dimensional set. Then the following state-
ments are equivalent:

G) Z is 1-ICCin X;

(i) Z is Il -negligible in X;

(iii) Forevery x€ X, g(X,x)=0.

Furthermore, anyone of the statements (1)—(iii) implies:
(iv) All singularities of X are soft.

Proof.

(i) = (iii). Follows as Theorem 4 of [5].

(iii) = (ii). Choose an open UC X and any loop JC U — Z. Since
dimZ =0 and since g(X,z)=0 for all z€ Z there is a covering
Vis..., ¥V, of Zn U with pairwise disjoint compact generalized 3-mani-
folds with boundary VI. =82c M(X) for all i. Suppose now that J
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bounds a (singular) disk in U. With techniques described in detail in[19,

Ch. III] we can make this disk locally PL near the surface § = U V put

it in general position with respect to S and cut it off at S, thus pushing
itinto U~ Z, orjust getitoff V. N Z foreach i.

(ii)= (i). Let x € X be any point and choose a neighborhood U C X
of x. Since X isan ANR it is 1-LC. Thus there is a neighborhood V C U
of x such that the inclusion-induced homomorphism Hl(V) - IL,(U) is
zero. Since Z is 1'[1 -negligible, the homomorphisms Hl V-2z2)- II1 (V)
and l'l1 uv-2z)-» [Il (L)) are both one-to-one. Consider the commutative
diagram:

nl(V_Z)—ii—e»nl(U-Z)

| |

I, () 11, (U)

Clearly, i_ = 0.

*

(i) = (iv). By [5, Theorem 4] no open subset V' C X has KF unless
V C M(X). This implies X can only have soft singularities, if any.

Let X be a compact generalized 3-manifold with boundary and
suppose that the double DX of X isa 3-manifold. Then X need not
be itself a 3-manifold: e.g., R.H. Bing proved that the double of the
solid Alexander horned sphere yields S [1]. But we can prove something:

Theorem 2.7. Let X be a compact generalized 3-manifold with
boundary such that DX is a 3-manifold. Then X has no isolated singu-
larities. (Note that S(X) must lie in X.)

Proof. Let p€ X be a point with a neighborhood U C X such that
Un SX)C {p}. Consider p as a (potentially wild) point on the surface
X inthe 3-manifold DX. By O.G. Harrold and E.E. Moise [10,
Theorem I] the surface X can be wild at p from at most one side in DX.
But in DX the two sides of X are symmetric hence {p}C DX is 1-LCC.
Also, since X is contained in the 3-manifold DX it has KF. By [5, The-
orem 4], p € M(X).
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3. EPILOGUE

When one considers a resolution f: M- X of a generalized 3-
manifold with boundary there naturally arises the question whether
Df: DM —» DX isalso a resolution (of DX), where D means ’the double”
in the obvious sense. This gives rise to the following question:

Problem 3.1. Let M be a compact 3-manifold with boundary and
f: M- X a proper cell-like map of M onto an ANR X. Let DX =
=XUX/R, where R is the equivalence relation on X X X given by
" Ry ifandonlyif f~l(x)noaM=f"10)NnaM+# ¢, x,y € X”. Isthe
associated double Df: DM - DX also cell-like if dim X = 3?

If the answer to 3.1 is affirmative then one can prove an analogue
of Brin—McMillan’s embedding criterion [4, Theorem 1] which says that
for every resolvable compact generalized 3-manifold X with O-dimen-
sional singular set, the manifold set M(X) embeds in a closed 3-manifold.
For, given a resolution f: M+ X of a compact generalized 3-manifold
with boundary X such that dim S(X)< 0, by 3.1, Df: DM - DX would
be a resolution for DX so by [4], M(DX) would embed in some closed
3-manifold, hence so would M(X) C M(DX).

Brin—McMillan’s result [4] says that the condition 'M(X) em-
beds in a closed 3-manifold” is not only necessary but also sufficient for
X to be resolvable (assuming X = ¢). (Bryant and Lacher proved
the sufficiency doesn’t depend on the dim S(X)< 0 condition [5, Theo-
rem 1].) Therefore one may ask the same question if X + ¢

Problem 3.2. Let X be a compact generalized 3-manifold with
boundary and suppose that dim S(X)< 0. Assume that M(X) embeds
in some closed 3-manifold. Does X have a resolution?

Let X be a compact generalized 3-manifold and let ¥ be X plus
a collar C attached to X. If Y isa 3-manifold with boundary then

(i) SX)C X; and

(ii) X has a resolution.

.
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(To see that (ii) holds map Y onto X by shrinking out the fibers
>f the collar C.) The converse need not be true as the next example
demonstrates. Take a noncellular arc A4 C B® with one wild point p*
‘e.g., [9, Example 3.1] so that AN 9B3 = {p}, where 04 ={p,p*}).
Then X =B3/A isa compact generalized 3-manifold with boundary
and satisfies both properties (i) and (ii). If ¥ = X + C werea 3-manifold
with boundary then A would have to be cellular, a contradiction (see
Figure 3). .

o o, i

T .

G e m(A)
” A=t m—— s
v s
B3 P
Fd
X
Figure 3

Hence, in general, one can only conclude that Y =X+ C is a com-
pact generalized 3-manifold with boundary and that S(Y)C S(X), and
moreover that if Y has a resolution then X has it, too. Note that an
affirmative solution of 3.1 would show that given a resolution f: M > X
one can resolve Y, too. For, one could just add a collar D to M, thus
getting a 3-manifold with boundary N=M+ D and amap g: N> ¥,
obtained fropl f by extending the latter over D fiberwise. By 3.1, g
would be cell-like, thus a resolution for Y (see Figure 4).
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Figure 4

Problem 3.3. Let X be a compact generalized 3-manifold with
boundary and suppose that dim S(X)< 0. If DX isa 3-manifold,is X
plus a collar on X necessarily a 3-manifold with boundary?

Note that in 3.3 the singular set of X may be nonvoid (recall that
solid Alexander horned sphere example from Chapter II) in this case S(X)
is a Cantor set. If S(X)+# ¢ then S(X) hasat least a Cantor set worth of
points, for Theorem 2.7 asserts no genuine singularity can be isolated.

Another interesting question is about the existence of conservative
resolutions. It is known that every resolvable generalized n-manifold
admits a conservative resolution: for n < 2 this is obvious, n = 3 is due to
Bryant and Lacher [5], n=4 to Quinn [18],and n> 5 to L.C.
Siebenmann [22]. We are asking what happens if X # ¢:

Problem 3.4. Suppose that X is a resolvable generalized 3-manifold
with boundary. Does X have a conservative resolution?

Suppose we are given f: M- X asin 3.4 above. If 3.1 had an affir-
mative answer then Df: DM - DX would be a resolution (as has already
been observed earlier in this chapter) so it could be replaced by a conserva-
tive one, g: N - DX. The problem is how to split N along a surface in N,
sufficiently close to the (possibly wild) surface g~ !(Y), inordertogeta
resolution for X.
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Problem 3.5. Suppose that X is a compact generalized 3-manifold
with boundary and that there is a proper cell-like onto map f: M- X,
where M is a compact 3-manifold with boundary. Assume that f| oM
is proper and celllike, that f~!(X) = dM, and that S(X)C X. Is then
X a 3-manifold with boundary?

The remaining problems are related to the search for an appropriate
disjoint disks property (DDP) for 3-manifolds with boundary. An accept-
able DDP should meet the following criteria:

(i) Every 3-manifold with boundary should have the DDP;

(i) Given a generalized 3-manifold with boundary, having the DDP,
it should be possible to first, resolve it, and second, shrink the associated
cell-like decomposition (everything modulo the Poincaré conjecture);

(iii) This DDP should be reasonably easy to check.

(Compare [15].) Edwards and Quinn proved Cannon’s DDP [7]
works for higher dimensions [8], [17]. In [20] it was shown that the so-
called map separation property (MSP), which was introduced by H.W.
Lambert and R.B. Sher [16], in the late 1960’s, meets the criteria
(i)—(iii) if one restricts to the case dim S(X)< 0 and X = ¢. (It is in-
teresting to observe that the resolution results of Quinn [17], [18]
(n=4) and of Thickstun [24] (n= 3) do not require any kind of
DDP.)

Recall that a map means only a continuous, hence not necessarily
PL, map. A map f: B2-> X is a Dehn disk if 3B?n S;=¢, where

Se=1{xe B? | f~1f(x)# x} is the singular set of f. A space X is said to

have the map separation property (MSP) if given any collection f,,...,f;:

B? > X of Dehn disks such that if i#j, then f‘.(aBz) nf;.(Bz)z ¢, and
- k

given a neighborhood U C X of _U1 fl.(Bz) there exist maps F,,...,F}:
P

D-U such that for each i, F,|3B%=f,|8B% and if i#j, then
FI.(Bz) N P}.(Bz) = ¢. Using classical results from the 3-manifolds topol-
ogy, such as [2], [12] and [26], it was shown in [20] that every 3-manifold
(possibly with boundary) has the MSP and that, modulo the Poincaré con-
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jecture, generalized 3-manifolds with dim S(X)< 0 and having the MSP
cannot have genuine singularities.

Problem 3.6. Let X be a compact generalized 3-manifold with
boundary and assume dim S(X)< 0. Suppose that X has the MSP.
Is X a 3-manifold with boundary (modulo the Poincaré conjecture)?

Note that by Theorem 2.5, X has a resolutién, f: M= X. The
problem is how to apply the MSP to shrink the associated cell-like de-
composition G ={f"1(x)|x€ X}. An affirmative answer to 3.6 would
produce a positive solution to the next, related question: in the case
dim S(X) < 0.

Problem 3.7. Let X be a generalized 3-manifold with boundary
and assume X has the MSP. Does DX have the MSP? Does X + C, C a
collar on X, have the MSP?
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