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Abstract

In this paper we present a short definition of the Witten invariants of 3-manifolds. We also give simple
proofs of invariance of those obtained foe= 3 andr = 4. Our definition is extracted from the 1993
paper of Lickorish and the Prasolov-Sossinsky book, where it is dispersed over 20 pages. We show by
several examples that it is indeed convenient for calculations.
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1. Definition of the Witten invariant

The construction of Witten invariants of 3-manifolds and the proof of their invariance
use deep ideas from the quantum field theory and the theory of Temperley-Lieb
algebras and are not short. But a mathematician might want to calculate and apply
these invariants without necessarily understanding their origin. The definition of
the Witten invariants in{, page 660] is direct and short, but is not so convenient
for calculations. In this paper we present a short definition of the Witten invariants
(Theoreml.3) which is extracted fromg] (where it is dispersed over 20 pages, mixed
with the proof of invariance) and we show by several examples that it is indeed more
convenient for calculations. In Secti@we give a new simple proof of invariance for

r =4.
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FIGURE 1.

The definition of the Witten invariant is based on the representation of 3-manifolds
by (unoriented) plane diagrams. By a plane diagramwe understand a set of circlesin
R?ingeneral position, with chosen undercrossing and overcrossing at eachintersection
point. For every single component D, of the plane diagram D we can determine its
integer framing as follows. Choose any orientation of D . Definethe framing as the
sum of the signs (£1) of al of its crossings. Note that this number is independent of
the choice of orientationon D .

Suppose that L is an unoriented link in S® and that an integer g(k) is assigned to
each component L of L. Then the pair (L, g) is caled aframed link. We say that a
framedlink (L, g) isrepresented by aplanediagram D, if D isadiagramfor L inthe
usual sense and g(k) egqualsthe framing of D, for every single component D of D.

It is well known that every closed oriented 3-manifold can be obtained from the
3-sphere S by the Dehn surgery on some framed link (L, g). Denote by x p the
3-manifold obtained by the Dehn surgery along the framed unoriented link, corre-
sponding to D.

PrOPOSITION 1.1 ([3, 1]). Supposethat D and D are plane diagrams. Then yp =
xo' if and only if D’ can be obtained from D by a sequence of the Reidemeister
moves Ql Q,, and Q3 shown in Figure 1 and the Fenn-Rourke moves shown in
Figures 4 (a)—(b).
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FIGURE 2.

For aplanediagranD=(D 4, ..., D,), consider any oriented link L=(L 1, ...,L,)
in S%, whose plane projection coincides with D. Let by, = Ik(L,, Lg) for p # g
and let by equal the framing of D. Denote by b, (D) and b_(D) the numbers of
positive and negative eigenvalues of the linking coefficients matrix (bpq) of L. Let
o (D) = b, (D) — b_(D) bethe signature of (byy) andD -D = >, byq (mod 4).
Clearly, the above numbers depend only on D, not on L and its orientation. We set
o = o(D) and b, = b, (D) when D is fixed and no confusion can arise. Let |D|
be the number of componentsin D. Then rkH 1(xp, Z) = |D| — b, (D) — b_(D).
Denote by #D the number of crossingsinD. Let D] . and |D| _ bethe numbers of the
connected components after resolution of all the crossings as shown in Figures 2 (b)
and (c), respectively.

In what follows capital Latin letters denote (unoriented) plane diagrams (in [ 8]
they are sometimes called framed diagrams). Let U,, U and U_ be the diagrams
representing the unknot with framings +1,0 and —1, respectively (see Figure 2 (a)).

Everywhere below we suppose that diagrams in the equalities coincide except
where shown in corresponding figures.

The Kauffman bracket is a function (-) : {planediagrams} — Z[a*'], defined by
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the following three properties (see for example [ 8, Section 26, (1)—(3)]):
(@ (D) = a(D;) + a"}(D,), where the diagrams D, D, and D, are shown in

Figures 2 (b)—(c);
(b) D|_|U )y = (—a?—-a?)(D); ad
©

The normaJization of (c) is not entirely standard, but in this paper it is more
convenient to use (D) instead of the original Kauffman bracket (D)/(—a? — a=2).

ProPOSITION 1.2 ([2, 5, 8, Section 26]). TheKauffman bracket isunchanged by the
Reidemeister moves 7, €2,, and €2;.

THEOREM 1.3 ([8, 7, 27.3, 28.2] cf. [6]). Fixintegersr > 3andk =1,...,4r —1
relatively primeto 2r. Define the polynomial

r—1

w(a) = l_[ (oz—ZCOSnTI).

=1
k=l #£r,3r

For a plane diagram D with n = |D| components, let D &k be the diagram
obtained fromD by takingk; curves, closeand parallel to thei-thcomponent. Definea
polylinear mapf p : (C[a])" — C onthebasicelementsbysettingf p (o, ..., a*) =
(D (k) gt @ = exp(rrik/2r). Then the following number (the Witten invariant for
r at a) dependsonly on the oriented xp:

WD) =f ;@) - ;> P () -folw,...,w).

REMARK 1.4. Itfollowsfrom[Lic93, Lemmad] or [PrSo97, Proposition 29.4] that
fu,(w) #0. Forr =3andr = 4, weeasily verify it below.

REMARK 1.5. Itiseasier to calculatethe polynomial w not by the explicit formula
of Theorem 1.3 but by the following algorithm. Define the (renormalized Chebyshev)
polynomias S, («) by therecurrenceformulaSy; =1, S, = @ and S,,1 = @S, — Si-1.
Then

3 in(k 1
w = (_l)r—k+l Z(_l)nsn(;n((:;;r))/r) Sn

Indeed, it suffices to show that the above sum has exactly r — 2 roots 2cos(z|/r),
wherel < | <r —landk £ 1| # r, 3r (thereare exactly r — 2 numbers| with these
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properties). Notethat sinx - S,,(2cosx) = sin(n + 1)x. Then
2sin(zk/r)sin(zl /r)w(2cos(zl /1))

r—2

= 22(—1)“ sin(rk(n + 1)/r)sin(zl(n + 1)/r)

n=0
r—1 r—1
=> (=" cos(r(k + hn/r) = > (=)™ cos(r(k — n/r)
n=1 n=1

— (_1)r+k+l _ (_1)r+k—l — 0
REMARK 1.6. For odd r in Theorem 1.3, onecan dlso takek = 1,...,2r — 1
relatively primeto 2r,a = e"'%'" and

r—1

w(a) = l_[ (oz — 2C057TT|) .

1=1
2K+l #r,3r
EXAMPLE 1.7. W(S®) =W(U,) = 1.

ExampLE 1.8. It follows from [9, 3.4] that a changing of the orientation of 3-
manifold has the effect of complex conjugation on the Witten invariants.

ExAMPLE 1.9. For a = €"/3, we have (D) = 1. This can be verified by induction
on the number of crossingsin D using the definition of the Kauffman bracket.

EXAMPLE 1.10. Supposer = 3, k = 1landa = €2, Thenw = 1+ o (see
Remark 1.5) and by Example 1.9, (D) = 1. Hence

W(D) =270 . 270 )" 1= 2PI0eb = gkl

PcD

REMARK 1.11. Observe that if w is replaced in Theorem 1.3 throughout by upw,
where u is a constant complex number, then another invariant is obtained. The new
invariant is the old one multiplied by p*Me-® Choose u € C so that u=2 =
fu, () -fy (w). Thismeansthat fy, (uw)™ = fy_ (Lw). Sowe obtain the Witten
invariant R(D) = f p (uw, po, ..., pw)f y (Lw)’.

LEMMA 1.12. For the Kauffman bracket at a = €7'/6, we have

(D) — (_l)ID|+ . i#D — (_1)|D|, . if#D — i2|D|7D.D'
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PrROOF. First we prove that
(*) (D) =i(D1) = —i(Dy),

where the diagrams D, D ; and D, differ as shown in Figures 2 (b)—(c). This can
be verified by induction on #D. It follows from (a) that we must only prove that
(D1) = —(Dy). Thebase#D = 0, liseasy. If#D > 2,thenD , and D, haveacrossing
point. The induction hypothesis then gives (D1) = (D) = —i{Dxn) = —(D,),
where the diagrams D; and D;, are identical except where shown in Figure 2 (b)
(i =1,2) and (%) is proved. From this at once we obtain the first two equalities of
Lemma 1.12.

Now we prove that (D) = i 2PI-P® | The equdlity is evident for trivial diagrams
D (that is, for diagrams without any crossings). By Proposition 1.2 it also holds for
diagrams of the unoriented trivial link. Thereexistsan orientationD = (D 4, ..., Dy)
of D such that b, equals the sum of the signs +1 of al the crossings where D,
overcrosses D . It is well known that D can be obtained from the diagram of the
trivial link by changing some overcrossings by undercrossings and reverse operations.
Clearly, i PP ismultiplied by —1 under such operation. It follows from (x) that (D)
is also multiplied by —1 and we are done. O

ExAmMPLE 1.13. Supposer =3, k=1anda=¢€"/5 Thenw =1—a,f, (0) =
1—i,fy (@ =1+i,u=1/v/2andfy (nw) = €"/*. Hence, by Lemma 1.12 the
Witten invariant of Remark 1.11 equals

R(D) = 2*IDI/2errirr/4 Z(_l)IPI <p> — 2*|D|/2e]'[i()'/4 Z ifP‘P,
PcD PcD

Notethat R(D) is obtained from 7 3(D) of [4, page 521] by complex conjugation.

ExaAMPLE 1.14. Letr = 4, k = 1and a = €"/8. We have v = o? — V20,
(U2) = (U2) =0, fy,(0) = -2 f (w) = 2”8 and u = 1/2. Therefore,
the Witten invariant from Remark 1.11 equals

R(D) = (-1 IDI 9—IDI/2 g5rio/8 Z (_«/E>7IP| (DoP),

PcD

whereD o P isthe diagram obtained from D by drawing circles, parallel and closeto
the components of P, see for example [ 4, Section 6].

2. Simple proofsof Theorem 1.3for r = 3and r =4

We only consider the case k = 1. The case of arbitrary k (for given r) is proved
analogously.
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LEMMA 2.1. The numbers b, (D) and b_(D) remain unchanged under the moves
in Figures 3 (a)—(b).

ProOOF. Let D and D’ bethe diagrams shown in Figures 3 (a)—(b). It is easy to see
that (Bpg) = (Xpq)' (0hq) (Xpg) fOr X = 1, X3, = 1 and X, = 0 otherwise, where
the first two components of D and D’ are specified. Hence the lemmafollows. O

It follows from Proposition 1.1 and Proposition 1.2 that for proving the invari-
ance of W(D) one need only verify the invariance under the Fenn-Rourke moves in
Figure 4 (a)—(b).

PROOF OF THEOREM 1.3 FORT = 3AND k = 1. Leta = €"'/6, The proof is essen-
tially the same asin [4, page 521], where invariance under the Kirby transformations
was verified. It follows from Lemma 1.12 and Example 1.13 that

R(D) = 2-IDI/2grio/4 Z(_1)|P|+|P|+i#D — 2-IDI/2grio/4 Z(_1)|P|+|P|,i—#D'

PcD PcD
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We prove the invariance under the move in Figure 4 (@) using the formulafor R(D)
involving | - |.. Theinvariance under the move in Figure 4 (b) is verified analogously
using the formula for R(D) involving | - | . Denoteby D, D', and | the diagrams
shown in Figure 4 (). Clearly, the Fenn-Rourke move in Figure 4 (@) is decomposed
into | second Kirby moves in Figure 3 (a) (for m = |, ..., 1) and one first Kirby
move in Figure 5. Since o(D’ U U,) = o(D’) + 1, it follows from Lemma 2.1
that 0(D) = o(D’) + 1. Let P dencte an arbitrary subdiagram of D \ |. Clearly,
[PUl|=|P|+1land|P UI|, =|P]|+ 2. Hence, we have
2-ID'|/2grio(D)/4
R D — _1 |P|+|P|+i#P _1 |PUI\+\PUI\+i#(PUI)
D)= —F—— PCZW(( ) + (=1 )

j#P  j#PUD

— 2-ID'I/2grio(D)/4 _1)PHPL
> oo

PcD\I

There exists a natural correspondence between the subdiagrams of D ' and D\I. If
P’ and P are the corresponding subdiagrams, then (by Figures 4 (c)(d)), |P| = [P |,
IPly = |P/|,,#P =#P' —n?, #P Ul) = #(P') — n> 4+ 2n+ 1, wheren > O is
the number of components in the part of P corresponding to the part of D shownin
Figure4 (a). Sincei ™ — i "+ =1 _j it followsthat R(D ) = R(D). O

LEMMA 2.2. W(D) remains unchanged under the first Kirby movein Figure 5.
Proor. Clearly, bo(DUU,) =b,(D) +1, b, (DUU.) =b.(D), and

fou, (@, ..., o) =fp(w,...,0) fy ().

HenceW(D UU_) =W({D) =WDUU,). O

LEMMA 2.3. W(E) remains unchanged under the Fenn-Rourke moves of the di-
agram E in Figures 4 (a)—(b) if for arbitrary diagrams D and D’ that differ asin
Figures 3 (a)—b) the following equality holds

folw,a,a,...,a) =fp(w, 0,0, ...,a).

ProoOF. Clearly, the Fenn-Rourke movesin Figures 4 (a)—(b) are decomposedinto |
second Kirby movesin Figures 3 (8)—(b) (form =1, ..., 1) respectively, and onefirst
Kirby move in Figure 5. Thus it follows from Lemma 2.1 and Lemma 2.2 that we
only need to check the equality fp(w, ..., w) = fp(w,...,w), where D and D’
are shown in Figure 3 (a) or 3 (b) and their first two components are specified. Let
n=|D|=|D’'| andky, ks, ..., k, > 0 bearhitrary integers. It sufficesto verify that

fo(w, o ... o) =fp (o, a", ok, ..., o).
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This equality isclear for k, = 0. If ki = 0, for somei > 3, we may consider D \ D ;
and D'\ D’; instead of D and D '. Thereforewe may assumethat ks, ..., k, # 0. Let
C and C’ bethe diagrams obtained from D and D ’ by taking k; curves, for eachi > 3,
close and paralléel to the i-th component. Considering C and C’ instead of D and D’
we may assume that ks, ..., k, = 1. By induction on k; it follows that the above
equality for k, = 1 implies the analogous equation for arbitrary k,. Indeed, suppose
that k, > 2. Let K = D "*#Y with |K| = n+ 1 and J ' be the second component
of D’. Obviously, we have D'**1--1 — K (kuke-111..1) " The jnduction hypothesis
for diagramsK and D U J ' then gives that

K ko—1
fo(w,a?a,....,0)=Ff(w,a® " a,a,...,a)

ko—1
=fpu (@ o,a,..., )

=fp(w, d a, ..., ). O

PROOF OF THEOREM 1.3 FORT = 4 AND k = 1. From now on assume that the
Kauffman bracket is calculated at a = e™/8, We prove the invariance of W(D)
under the move in Figure 4 (3). The invariance under the move in Figure 4 (b) is
verified analogously. Let D and D ' be the diagrams shown in Figure 3 (a). By | and
| we denote their first components.

Since w = a2 — v/2« it follows by Lemma 2.3 that we must only show that

() (Dol)— +/2(D) = (D' ol’) — V/2(D).

Applying (a) to the crossings marked in Figure 6 (&), we obtain — «/_ 2(D) = «/_ a3
(Dol) =2(Q) —(T),— v2(D") = —v2(S)and (D'0 ") = Q) + )
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To complete the proof of Theorem 1.3 forr = 4 and k = 1 we need the following
simple lemma.

LEMMA 2.4. Suppose that the diagram A contains the part shown in Figure 7 (a),
wherek > 0. Then (A) = 0.

PrOOF. By property (&) of the Kauffman bracket, we may assume that A has no
crossings outside the part shown. It is easy to see that A contains the part shown in
Figure 7 (b). Applying (a) to the two marked crossings in Figure 7 (b) and using (b)
one can easily obtain that (A) = 0. O

Applying (@) to the crossings of T and F; marked in Figure 6 (b) and Figure 8,
using Proposition 1.2 (for the first and the last equalities) and Lemma 2.4 (for the
second equality) we get that

, 141 .
(T)y=@A+D(F) + %(B = (1+0)(F1) = 2Q) + v2(S).

Hence, (D o l) — /2(D) = +/2a3(S) — v/2(S). Clearly, () is equivalent to the
equality v/2a3(S) = —2a3(Q’) + a 3(T’). Using Lemma 2.4 (for first equality),
applying (a) to the crossings of F and Smarked in Figure 6 (b) and Figure 8 and using
Proposition 1.2 (for the last two equalities) we obtain that

V2a%(S) = v2a%(S) + a Y(F)
=23%S) + a T’y + v2a 3(E,)
=-2a%Q) +a (T

and we are done. O
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