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On regular neighborhoods of homotopic
embeddings of polyhedra in manifolds

Eugene Rafikov! and Dugan Repovs?

This paper is devoted to the following problem, raised independently in [8], [20]
and also by Stan’ko (unpublished): Find conditions for a compact k-polyhedron K
and a PL m-manifold M under which the following property holds:

(*) Ru(f(K)) = Ry(9(K)), for every two homotopic PL embeddings f,g :
K — M.

For a polyhedron K C M the notation Rj;(K) denotes a regular neighborhood
of K in M. A version of this problem, when the homeomorphism between the
regular neighborhoods is required to be an extension of f o g™! : g(K) = f(K)
over M, is better known and easier [13].

The special cases when M = R™ (then f and g are always homotopic) or when
K is a PL manifold are the most interesting. For M = R™ and m > 2k + 1 (in
particular, for k = 2, M = R™ and m > 5), the property (*) holds due to [13] (since
m-thickenings are classified by their tangent bundles). For k = 1 the property (*)
also holds. The only case not covered by the above remark is m = 2 and we
prove it below. It is clear that homotopic embeddings f and g are not necessarily
isotopic, i.e. do not always have the same rotation systems (which would trivially
imply that the regular neighborhoods are homeomorphic).

Lemma 1. If M is a 2-surface (not necessarily closed), K is a graph and f,g :
K — M are homotopic PL embeddings, then the regular neighborhoods of f(K)
and g(K) in M are homeomorphic.

Proof. In this proof we omit Z, coefficients from the notation of homology groups.
Let N = Ry(f(K)). We identify Hi(K) and Hi(N) by the inclusion-induced
isomorphism. Suppose first that M is orientable. Apply the Euler formula to the
graph f(K), embedded into the surface obtained from N by patching all holes by

1Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State
University, 119899, Moscow, Russia, e-mail: rafikov@mccme.ru

2The second author was supported in part by the Ministry for Science and Technology of the
Republic of Slovenia research grant No. J1-0885-0101-98, Institute for Mathematics, Physics
and Mechanics, University of Ljubljana, P. O. Box 2964, 1001 Ljubljana, Slovenia, e-mail:
dusan.repovs@fmf.uni-1j.si




302 Rafikov E. and Repovs§ D.

2-disks. We obtain that the number of holes in N is uniquely determined by the
genus of N, i.e., by rk H;(N). Therefore the topological type of N is uniquely
determined by rk H{(/V). But rk H; (V) equals to the rank of the intersection form
on H;(N). Let u, v be two embedded circles in f(K), representing homology classes
u,v € Hi(N). Clearly, the map f, : Hi(K) — H;(M) is uniquely determined by
the homotopy class of f. Then v Nv = u|g, (M) N v|m, (M) is uniquely determined
by the homotopy class of f. Therefore the intersection form on Hy(N) = Hy(K)
is uniquely determined by the homotopy class of f, and we are done.

Suppose now that M is nonorientable. Clearly, orientability of N is determined
by the homotopy class of f. By ‘genus’ of N we mean the nonorientable genus (i.e.
rk H,;(N)). By the same argument we are done. 0O

If m =k+12>3and K is a special polyhedron, then the property (*) holds by
(2], 13], [4], [17], [20]. The example M = R™, m > 3 and K = S™ 1V §'V S? shows
that the property (*) fails for ¥ = m — 1 [20]. The Dunce Hat example shows that
the property (*) is false for M = R* and a certain 2-polyhedron K [26], [9].

The regular neighborhood Rgrm(K) of a smooth k-submanifold K C R™ is
the space of a normal vector bundle. Therefore Rgm(K) does not depend on the
embedding K C R™ if either kK > m — 1 or (k = m — 2 and K is orientable [12],
[22]) or (K = S* and m > 3£ +1 [11], [6], [15]). On the other hand, there are
smooth embeddings K — R* of a closed nonorientable 2-manifold K with different
normal bundles: if K is a connected sum of ! copies of RP?, then (K — R?)
can assume every value from {—2l,—2] + 4,...,2l}, and only these values [16],
[21], see also [1], [18]. Haefliger also constructed a smooth embedding S'' — R’
with a nontrivial normal bundle [7]. It would be interesting to know whether the
regular neighborhoods, i.e. the spaces of normal bundles, are the same for such
embeddings.

Analogously, the regular neighborhood Rrm(K) of a PL locally flat k-subma-
nifold K C R™ is the space of a normal block bundle [23]. Therefore Rgm(K)
does not depend on the embedding K C R™ if either k > m — 1 or (k = m — 2
and K is orientable [23] Corollary 6.8, [24] Theorem 2) or K = S*. In particular,
Rg+(S?) = 8% x D? for any smooth or PL locally flat embedding S? C R*.

Conjecture 2.

a) Let f,g be any two smooth embeddings of the Klein bottle K into R* with the
normal Fuler classes 0 and 4, respectively. Then the reqular neighborhoods
of the images of f and g are not homeomorphic.

b) [cf. [10]] The regular neighborhood of f(RP?) does not depend on a smooth
embedding f : RP? — R*.
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Conjecture 3. There exists a (nonlocally flat) PL embedding S C R* such that
Rr1(S?) ¢ 8% x D

Construction of a candidate for Conjecture 3. Let B* be the standard 4-ball in
R* and S3 = 9B*. Take a (sliced) knot S* C S3 concordant to the trivial knot,

i.e. bounding a proper PL locally flat disk D? C R*\ B*. Take an embedded cone

on S! C 5% = 9B* inside B*. The union of this cone and the disk D? C R*\ B*
is a candidate for the required 2-sphere S C R*. By Lemma 4, N = Rg4(S?) is
obtained from D* by Dehn surgery along the knot S* C §% = 8D* with framing 0.
So it remains to prove Conjecture 5 below.

Lemma 4. Let B* C R* be the standard 4-ball and D?> C R*\ B* a proper locally
flat 2-disk. Let S* C R* be the 2-sphere formed by the union of D? and the cone

over 0D? with a vertez in B*. Let N = Rr4(S?). Then ON is obtained from S3
by Dehn surgery along 8D?* with framing 0.

Proof. In this proof we omit Z coefficients from the notation of homology groups.
Let D* = RR4\§4(D2). Then B*U D* = Rg«(S?). Next, B*N D* = 9B*NoD* =

Rsp4(0D?) is a solid torus. Since the embedding D? C R* is locally flat, it follows
that the pair (D*, D?) is standard [25]. Clearly, 8D* \ (B* N dD*) is also a solid
torus. Since the solid tori 9B*NAD* and dD*\ (B*N&D*) have common boundary,
it follows that N is obtained by Dehn surgery with some integer frame k (this is
clear by the definition from [14], which is equivalent to that from [19]). To prove
that k£ = 0 we assume that k¥ # 0 and obtain that H;(ON) = Zj. From this
we deduce that N cannot be embedded in R4, which is a contradiction. See the
details below.

Recall that 8D* C S° is a knot. Let A = §3\ (B*nD*) ~ 3\ 8D?% B =
OD*\ (B*NdD*) = D? x S'. Then AUB = 0N and AN B = §! x §'. We have
the Mayer-Vietoris sequence:

Hz(A) @D Hg(B)—)Hz(A N B)—)Hl(A N B)-;)Hl(A) &b Hl(B)—)Hl(A N B)—)O

| ] | | ]
0 — H3;(0ON) » ZoZ — AW/ — H;(ON) —0

The homomorphism « is given by a(a, b) = (a+ kb, —a), where the basis in H1(AN
B) is formed by the meridian of AN B and the boundary of the meridian disk of
B. So H,(ON) = Zy,, for every k # 0.

Now we prove that a 3-manifold M with odd torsion does not embed in R*
[5]. Suppose to the contrary, that M C R* were such an embedding. Let W; and
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W, be the closures of the connected components of R* \ M. By Alexander and
Poincaré duality theorems, we would have

Tors Hy (W) & Tors Hy(Ws) = Tors Hy(R*\ M) = Tors Hy(M).

By Alexander duality, Tors H;(W1) = Tors H;(W3). Therefore all torsion coeffi-
cients of M must be even. Contradiction. a

Conjecture 5. There exists a knot L, concordant to the trivial knot, but such that
L with the zero framing is not Kirby-equivalent to the trivial knot with the zero
framing.

Remark 6. We use notation and conventions from Lemma 4 and its proof. Let
us prove that H (ON) = Z, Hy(ON) = Z and the intersection product Hz(0N) X
Hy(ON) — Hy1(ON) is trivial (by the same argument higher Massey products on
Hy(ON) are also trivial). Particularly, they do not depend on the embedding 5% C
R* for the class of embeddings from Lemma, 4. In fact, the homology groups can be
calculated applying the Mayer-Vietoris sequence. To prove that the intersection
product on ON is trivial, observe that the generator of Hy(ON) is represented
by an orientable 2-surface, that is the union (along the common boundary) of
the meridian disk of B and Seifert surface in A. But the self-intersection of an
orientable 2-surface in a 3-manifold is trivial.

Conjecture 7.

a) For every k > 3 there exists a k-polyhedron K and PL embeddings f,g :
K — R* such that the regular neighborhoods of f(K) and g(K) in R?* are

not PL homeomorphic.

b) For every k > 3 there exists a PL embedding f : S® — R™"? such that the
regular neighborhood of f(S™) in R™"2 is not PL homeomorphic to S™ x D?.
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