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PREFACE

The cooperation between Slovene and Soviet mathematicians already
has a long history. The first contacts go back to 1960’s when France Krizani¢
visited the Moscow State University. In the 1970’s, first Ziga Knap, then
Dusan Pagon and lastly, Dusan Repovs followed the suit.

The first research institution to start joint mathematical research with
the Soviets was our Institute for Sociology — the team lead by Stane Saksida
and Ziga Knap has been cooperating with the Moscow State University for
over 15 years by now. ,

The Institute of Mathematics, Physics and Mechanics of the University
of Ljubljana at present has two long term programs of cooperation with
the Steklov mathematical Institute of the Soviet Academy of Sciences —
through the kind of cooperation the Slovene Academy of Arts and Sciences.
The first one is the Complex Analysis and it is directed by Josip Globevnik
whereas the second one is the Geometric Topology and is directed by Dusan
Repovs.

Towards the end of the year 1990 we started our initiative with the
Slovene Ministry of Science and Technology. A delegation consisting of
Valerij B. Kudryavcev, Ziga Knap, Stane Saksida, and Dusan Repovs held a
meeting with Ciril Baskovi¢, Councelor to the Minister, in which the idea of
holding a graduate workshop in mathematics and its applications in social
sciences was first presented.

The idea of organizing such a workshop was based on our common
goal to promote, broaden and intensify the cooperation particulary between
Ljubljana and Maribor on our side and Moscow and Thbilisi on the other
side.

The democratic changes which have taken part in both countries re-
cently have made such plans far more realistic than they would have be-
en some years ago. Slovenia, on its way to independence and international
recognition, was seeking new avenues of quality international cooperation.
No longer shall we have to send all our project proposals to the Belgrade
and wait (sometimes for years) to have the results of the Belgrade-Moscow
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negotiations, which for most of the time resulted in minimal concessions for
Slovenian partners.

On the other hand, Soviet Union has been increasingly opening up to the
world. For the Soviet science this is a great chance but also a great hazard.
On one hand the Soviet scientists can now freely travel abroad. However,
too many have already failed to return home, having extended their visit
abroad indefinitely. Now is therefore the time when a meaningful bilateral
cooperation between the two countries can at last be organized in such a
way that both parties see some benefit in it.

It was this main idea, which led us to set up the framework for such
a workshop. It’s main goal was to present to our graduate students of
mathematics and (to a slightly lesser degree) to our research community,
the topics in theoretical mathematics as well as in its applications in which
a quality joint research is already being done in the network Ljubljana-
Maribor-Moscow-Thbilisi. It is our hope that the future cooperation would
first expand along those lines and then include all subjects as the number
of participating scientists would grow.

Another important idea was intensively discussed with the Ministry —
the idea of opening one or two positions at the Universities of Ljubljana and
Maribor for Visiting Professors from the Soviet Union. Such a visitor would
not only give a yearlong graduate course for our students of mathematics
on some vital subject of modern mathematics but also actively join in the
research of our Institute for Mathematics, Physics an Mechanics and the
Institute for Social Sciences (formely Institute for Sociology). We are very
pleased that also this idea was met with an overall approval of the Ministry.

The Graduate Workshop in Mathematics and Its applications in Social
Sciences was held in Ljubljana from 23 to 27 September 1991. We have
invited some leading Soviet mathematicians to present one-hour lectures on
a very broad variety of subjects. Joining in from the Slovenian side, several
of our mathematicians were also invited to present general surveys on the
subject of their speciality.

The organisation of the workshop became an almost impossible task
after the sudden June agression of the Federal army on the independent
Republic of Slovenia, followed by the breakout of the Serbo-Croatian war.
As a result, the lines of communication between Slovenia and Soviet Union
were almost completely cut. The closure of airports in Slovenia and Croatia
as well as the blockade of the international trains made it virtually impossible
for our invited speakers to come to Ljubljana. Nevertheless, they did and
the workshop could be run as scheduled. One should note, that this was
the first international scientific meeting in Slovenia after the Declaration of
Independence — all others, scheduled for this period were either canceled
or postponed or moved to a location outside Slovenia.
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All invited speakers prepared their contributions for these Proceedings.
The Editor wishes to acknowledge their kind cooperation as well as the help
of the anonymous referees which critically examined all the manuscripts and
in some instances helped to improve the exposition. We also wish to express
our acknowledgements to the Slovene Minister for Science and Technology
Peter Tancig for his enthusiastic support of the workshop and his active
participation at the opening ceremony. We have also received the media
attention we usually do not expect for mathematics and it is our hope
that this will benefit the promotion of Slovene mathematics. Our thanks
also go to Minister’s councelor Ciril Baskovi¢ who was instrumental in the
outlining the framework of the workshop. Finally, we acknowledge the kind
cooperation of Ministry’s staff in the technical realization of the workshop,
in particular the help of Sonja Stamcar. The minute details of preparing the
Proceedings were supervised by Ciril Velkovrh whose help was, as always,
instrumental for the successful completion of the job.

Ljubljana, 31 October 1991 | The Editor

This publication was financially supported by the Ministry for Research
and Technology of the Republic of Slovenia.




6 Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991

CONTENTS

Yu. A. Bahturin, Recent developments in theory of varieties of Lie

algebras and Lie subalgebras...................c.ooi il 7-17
V. A. Buyjevié, O T-polnote v klasse determinovannyh funkeii........ 19-24
A. G. Chigogidze, CE-maps of nonmetrizable compacta............. 25-31
- A. N. Dranishnikov, Alternative construction of compacta with
different dimensions ............cooiiiiiii i i e 33-36
E. E. Gasanov, Matematiceskie modeli i sloZznost’ informacionnogo
273 T3 ;AR 37-52
Z. Knap, Reconstruction of missing values in data matrices.......... 55-57
V. B. Kudryavcev, Avtomati v geometriceskih sredinah ............. 59-65
D. Pagon, On representation of Cartan Algebras.................... 67-75
M. Perman, Poisson point processes with an application to combi-
08 ) o Tt 77-86
P. Petek, Fractals from counterexamples to applications............. 87-90
M. Petkovsek, T. Pisanski, Mathematica and graph theory .......... 91-98
. D. Repovs, A criterion for the endpoint compactification of an open
3-manifold with one end to be a generalized 3-manifold .......... 99-105
E. V. Shchepin, G. M. Nepomnyashchii, On character recognitions
viacritical points ... ... i e 107-110

P. V. Semenov, Selections of maps with nonconvex values......... 111-115



Graduate Workshop in Mathematics
and Its Applications,
Ljubljana, 23.~27. 9. 1991

RECENT DEVELOPMENTS IN THE THEORY OF
VARIETIES OF LIE ALGEBRAS AND LIE
SUBALGEBRAS

YU. BAHTURIN

Math. Subj. Class. (1991): 17B65, 17B70, 08B99, 14M99.

Key words: Lie algebra, colour Lie superalgebra, the variety of Lie algebras or super-
algebras, identical relation, the basis of the variety, the growth of the variety, finiteness
conditions.

Abstract. In the introduction we give the basical definitions of colour Lie superalgebra
and the variety of Lie algebras or superalgebras. Then the next problems connected with
the varieties of Lie superalgebras induced by identity relations are discussed: finiteness of
the variety bases, the growth of a variety, finiteness conditions on Lie algebras and special
Lie algebras.

The theory of varieties of algebraic systems dates back to the thirties
although a number of researches into this area had been made earlier with-
out mentioning the word variety. This can be illustrated, of course, by
W. Burnside’s work on groups with the law 2™ = 1 as well as by B. Nielsen
and O. Schreier work on free groups. The same can be said about the re-
search into varieties of Lie algebras where the important results of E. Witt,
W. Magnus, M. Hall, A. I. Shirshov and A. I. Kostrikin now fitting into the
framework of the theory had been obtained some decades before it became
a theory in the proper sense.

~ The first books where the theory of varieties of Lie algebras was first
dealt to a certain extent were R. Amayo and 1. Stewart Infinite-dimensional
Lie algebras (1974) and Y. Bahturin Lectures on Lie algebras (1978). In
1985 we published and in 1987 translated into English a monography entire-
ly devoted to varieties of Lie algebras called Identical Relations in Lie Al-
gebras (Nauka, Moscow 1985 ; VNU Science Press, Utrecht 1987). In 1989
Yu. P. Razmyslov published Identities of Algebras and Their Representa-
tions where he exposes his approach to the solution to a number of difficult
problems on varieties of Lie and associative algebras.

By a Lie algebra we will mean a vector space over a field F' endowed
with a bilinear operation (z,y) — [z, y] satisfying the identities

[, 2] = 0 implying the anticommutativity [z,y] = —[y, z] (1)

and the Jacobi identity

(2, [y, 2]) + 3, [2,2]] + [2,[2,8]] = 0. (2)
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A regular way for obtaining Lie algebras is to consider the bracket
operation (called the commutator)

[a,b] = ab — ba | | (3)

in an associative algebra A over F. A generalization of the class of Lie
algebras can be obtained if we consider F'-algebras graded by a commutative

group G: ,
L=@PrL, (4)
9geG

The gradeness means that [Lg, Ly] C Lgyy,. The generalization is
achieved if we consider a bilinear alternating form

e:GxG—- F
and replace (1) and (2) by a set of identities for graded elements
[2, y] = —e(g,h)[y,z] (5)

[[z,9], 2] = [=,[y, 2]] — (9, h)ly,[z,2]), z€ L,, y€ Ly (6)

If G = {0} then ¢(0,0) = 1 and (5), (6) amount to (1) and (2). An algebra
(4) satisfying (5) and (6) is called a colour Lie superalgebra. As above, a
regular way for obtaining colour Lie superalgebras is to considera G-graded
associative algebra

A= P4,

9€G

and to introduce the colour comutator by setting

[z,y] = zy — (g, h)yz (7)

It has been shown by M. Scheunert that if we replace the operation of L in
(4) by setting
[z,.'lla = 6(g1h)[z’y]7 z € L97 y€ Lh

then, for a suitable choice of two-cocycle § : G x G — F it is possible
to reduce to ordinary Lie superalgebras, i.e. with the grading group Z; =
G/G4, G4 = {g|¢(g,9) = 1} and with the bilinear function & : Z; x Z; —
F given by ¢(1,1) = —1. Ordinary Lie superalgebras were the class first
considered in a detail beyond the class of usual Lie algebras (see [Berezin
83], [Kac 77], [Schneuert 73]).

Already long time ago N. Jacobson has noticed that some theorems
about sets of operators closed under ordinary commutator ab — ba (e.g. En-
gel’s Theorem) remain valid if the ordinary commutator is replaced by a
more general bracket. Recent developments show that this observation is a
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very general pattern although the exact transfer of theorems from Lie alge-
bras to Lie superalgebras is by no means automatic and a number of the-
orems do not extend to the more general situation. A remarkable feature
is that Lie superalgebras over fields of zero characteristic behave like mod-
ular Lie algebras, i.e. over fields with positive characteristic p > 0. Latest
progress in this latter theory makes it possible to develop the theory of the
new level.

We are not going to dwell here upon all questions of the theory of vari-
eties of Lie algebras and superalgebras but rather survey some developments
which recently have led to some interesting results.

To begin with we define the variety of Lie algebras over a field F as a
class of all Lie algebras over F satisfying a fixed system of identical relations.
For example, the class A of all abelian Lie algebras, i.e. with trivial bracket is
the variety defined by the identical relation [z, y] = 0. Nilpotent Lie algebras
are those defined by the law [z;, 25, ..., Zz.41] = 0. The class of such algebras
is denoted by A.. Soluble Lie algebras satisfy on of the laws §,(z;,...,22.) =
= 0 where §;(z1,2;) = [21,2;] and

6'n.+1 (21, ...,232n+1) = [571,(21, ...,:cz,.), 5n(z2"+la veey &n+1 )] .

The notation for this class is S,,. To add to the list of identical relations
we mention two types of relations: the Negel identity (adz)™ = 0 where ad =
is the operator sending each y into [z,y], and the standard identity

Z (sgno)adz,qyadz,(g)---adz,m) =0 (8)
oES,,

where S,, is the symmetric group of n symbols. The Engel identity with
n = p — 1, p a prime, holds in Lie algebras of groups with identity z? = 1.
The standard identity (8) holds in (n — 1)-dimensional Lie algebras.

An important class of Lie algebras with identities can be obtained if we
consider special Lie algebras, i.e. Lie subalgebras under the bracket operation
in associative polynomial identity (PI) Lie algebras. This class is often
denoted by SPI.

In the case of graded algebras the identities are graded, that is, they
have the form

f(zl’ T2, ---azn) =0

where 2, € X, 22 € X,,,..., 2, € X,_, 91,92, ---,9n € G (we have

X=X,

9€G

in thecase of graded algebras). This relation holds in a Lie superalgebra (4)
if for any a, € Ly, a3 € Ly,,..., a,, € L, we have

flay,as,...,a,) = 0.
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| According to G. Birkhoff’s Theorem a non-empty class of algebras is

a variety if, and only if, it is closed vunder taking subalgebras, quotient-
algebras (factor-algebras) and Cartesian products of their members. One of
the methods of defining varieties is to consider varieties generated by one or
more Lie algebras, i.e. consisting of all algebras satisfying all the identities
holding in this or those algebras. A variety generated by a Lie algebra L is
denoted by var L.

An important concept is that of the free algebra of a variety V with
free generating set X. This algebra L = L(X,V) is the unique (up to
isomorphism) Lie algebra such that any mapping ¢ : X — M € V extends
uniquely to a homomorphism ¢ : L — M. A free algebra of the variety O
of all Lie algebras (over F) is called a free Lie algebra (with free generating
set X') denoted by L(X).

There are a number of questions concerning varieties which are under
consideration now.

1. Finite Basis Problem. It is not a completely solved problem whether
any set of identical relations of a Lie algebra over a field F is equivalent to its
finite subset? The first succes was achieved in 1970 when M. R. Vaughan-Lee
and later V. S. Drensky showed that over prime characteristic fields there
exist varieties (and even finite-dimensional algebras, provided that F is not
finite) which do not admit finite bases for their laws. In the decades to follow
various authors have been proving some theorems in the positive that have
culminated in a remarkable result of A. V. II'tyakov (see [II’tyakov 91a,b])
who has proved that any finitely generated special Lie algebra over any zero
characteristic field has finite basis for its laws. In particular, any finite-
dimensional Lie algebra over a field of characteristic zero is finitely based.
(The case of finite-dimensional soluble Lie algebras over zero characteristic
fields was first settled by A. N. Krasil’'nikov.) A. V. II'takov’s result is based
on the techniques developed by A. R. Kemer in his proof of the Specht
property for arbitrary varieties of associative algebras over zero characteristic
fields. Thus, the most important problem in this area now is to settle the
finite basis problem for algebras which do not admit finite generation or
which are not special. It is not obvious that the answer is in the positive.
It is important to remark that in many a situation the associative and
Lie algebras behave quite differently. This is the case, for example, in the
considerations concerning the growth of varieties and their free algebras.

2. Growth of varieties. Given a set X we consider the monoid W(X) of
all words in the alphabet X under juxtaposition of words and linear space
A(X) with basis W(X) and the same operation expanded by distributivity.
Clearly, A(X) is an associatove algebra and it is free associative in the sense
that every mapping of X into an associative algebra uniquely extends to
a hoomorphism of associative algebras. The elements of A(X) are called
(noncommutative) polynomials. A polynomial which is a linear combination
of the words of the same degree (=length) n is called homogenuous of degree
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n (including zeropolynomial) is denoted by A, (X). Thus we have
A(X) = ) An(X)
n=1

If we fix 24, ...,2, € X then an element a € A, (X) is called multilinear if it
depends on every variable z,,...,2,. The subspace of all such polynomials
is denoted by P(z,...,2,).

A remarkable fact is that A(X) is the universal enveloping algebra for
the free Lie algebra L(X). It is equivalent to say that under the commutator
operation (3) the subset X of A(X) generates a Lie algebra isomorphic to
L(X). There is a colour (and super) analog of this result.

Thus L,(X) = L(X)N A,(X) is the set of all homogenuous Lie polyno-
mials of degree n and '

PL(zq,....,2,) = P(21,...,2,) N L(21,,...,25)

is the set of all multilinear polynomials in the variables z,, ..., z,.

It is a simple result that any identical relation v = 0 has a consequence
w = 0 where w is multilinear of the same degree as v. If F is of zero charac-
teristic then the converse is also true i.e. every system of identities is equiv-
alent to a multilinear system, that is, with all member multilinear. Thus
the system of multilinear identities holding in a variety V is its important
characteristic. In fact, it turned out that it is more imoportant to consider
the sequence {c,(V)} with

cn(N) = dim PL(zy,....,2,,)/V(21, .oy 2)

where V(z,,...,2,) is the set of multilinear identities in the variables
zy,...,2, holding in V.
The sequence ¢, (V) belongs to one of three classes as follows:
(1) at most polynomial, i.e. with ¢,(V) < f(n) where f(t) is polynomial,
for all n;
(2) at most exponential, i.e. ¢,(V) < Cd" for some d;
(3) superexponential, i.e. not fitting into any of the cases (1) or (2).

S. P. Mischenko has shown that there exist no varieties of intermediate
growth.

An important theorem of A. Regev says that for a proper variety of
associative algebras its growth is at most exponential (a variety is called
proper if it is different from the variety of all associative algebras). This
important property does not hold for Lie algebras. For example, take V
given by

[z1, %2, 23], [24, 25, 26]] = O (9)

(Here we use so called right-normed notation of commutators:

[?:1, 29,y Tn) = [21, (22, ey 20)] )
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There are a number of interesting results concerning the growth of va-
rieties. For instance, varieties with polynomial growth over fields of charac-
teristics zero have finite basis property and consist of algebras with nilpo-
tent commutator subalgebra (the linear span of all commutators). Every
non-polynomial itself contains a just-non-polynomial variety, i.e. one which
is not polynomial itself but with every proper subvariety polynomial. Thus
the knowledge of just-non-polynomial varieties enables to determine whether
a variety under consideration is polynomial or not. No complete list of such
varieties in the general case is known. But in the case of soluble Lie alge-
bra there is a very nice theorem of S. P. Mischenko (see his survey of 91).
In the nonsoluble case there is only one just-non-polynomial variety known,
viz., vargl,, generated by 2 by 2 trace zero matrices which we denote by
Vo. To introduce the soluble ones we introduce three algebras in the form
of matrices. Thus we set

A= (I I )
0 0

where 7T is the infinite-dimensional Grassmann algebra. Also we set

B={(§ §)|ser reru},
c={(8 1)|sca serm}

where P is the two-dimensional non-abelian Lie algebra, Q three-dimensional
nilpotent non-abelian Lie algebra and F[t] is a natural P- and Q-module,
respectively. The operation is given by

Kg 5),(%1 J;l)]=([y,091] g°f1391°f).

Now we set V; = A, V, = B, V3 = C. We also define V, as the variety given
by the law

[[21, 22]1 [23, 24], [257 36]] =0
i.e. consisting of algebras with nilpotent commutator subalgebra of nilpotent
class two. .

Theorem. Varieties V;, 1 = 1,2,3,4, form the list of all just-non-
polynomial soluble varieties over any field of characteristic zero.

The consequences of the result include the description of soluble varieties
whose lattice of subvarieties is distributive, that is, satisfies the identity

UN(YUM)=(UNM)uUNY).

Here we come to another piece of techniques of importance for varieties of
algebras, not necessarily Lie algebras. Namely, the set PL(z,, ..., z,,) of mul-
tilinear Lie polynomials admits the natural action of the symmetric group
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S, (permutation of indices). The lattice of S,,-submodules of PL(z;,...,2,)
is anti-isomorphic to the lattice of varieties given by homogenuous identities
of degree n. The structure of this module is given in a theorem of A. A. Kly-
achko (see [Bahturin 85, Chapter 3]). Thus, in the study of varieties of Lie
algebras an important role is played by the theory of representations of the
symmetric group, e.g. Young diagram, etc. This is true in the case of zero
characteristic of the base field and one of the problems in this area (there are
many of them) is to apply representation theory in the prime characteristic
case as well. Returning to the distributivity we denote by PV (z,,...,z,) the
quotient space PL(#y,...,2,)/V (21, ..., 2, )consisting of polynomials vanish-
ing on V. Then the lattice of subvarieties of V is distributive if, and only
if each PV (zy,...,z,) has no multiple irreducible S, -submodules of multi-
plicity greater than 1. An open problem is to describe all varieties with dis-
tributive lattice of subvarieties. A corollary of the above theorem says that
either V with such a lattice is polynomial or it is equal to one of the varieties
V1, V; where V) is an explicitly defined extension of V;.

Turning out attention to varieties of Lie superalgebras we have to men-
tion that we have no analog of A. V. II'tyakov’s result in the case of Lie su-
peralgebras. However, many partial results on the posiitive solution of the
finite basis problem can be extended to this case. To formulate a result of
this kind we define the concept of the product of varieties if we define UV as
the class of all Lie (super) algebras L with an ideal 7 in &/ and the quotient-
algebra L/Z in V. We also say that a variety V has finite axiomatic rank if
it can be given by a set of laws depending on a fixed finite set of variables.
A result we want to formulate is due to V. V. Stovba and it says that over
a field of sufficiently many elements any subvariety of finite axiomatic rank
in a variety M. My is finitely based.

A complete picture of subvarieties does exist in the case of two-step
soluble (so called metabelian) varieties over fields of characteristic zero. Here
we can consider colour Lie superalgebras with arbitrary finite grading group
G and bilinear form ¢ : G x G — F. This information is contained in
the joint paper of V. S. Drensky and the author (see the monograph on
infinite dimensional Lie superalgebras in the list of references). It might
be of interest to give here one formula related to so called Hilbert series of
free algebras of varieties. We know that given a variety V the free algebra
L = L(X,V) decomposes into the direct sum of homogenuous components

L=@ L,. Ifd, = &imL, then
n=1

H(L,t) =Y dt"
1

n=

is called the Hilbert series of L. Now let

G+ ={g l 5(g7g) = 1}1 G— = {g I e(g,g) = _1} ’
X+ ={zg|g€G+}, X_ ={Zh|h€G_}, X=X+ uX_
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If A? is the variety of all metabelian Lie algebras | X, | =m, |X_|=n, L =
= L(X, A?) then we have

n
H(L,t) =1+ (m+n)t+ ((m+ n)t - 1)((—11—_———:));
We also proved that the variety under consideration is Specht, that is, each
of its subvarieties is finitely based.

It is of interest to try to solve the rationality problem, i.e. to determine
the varieties for which the Hilbert series of free algebras of finite rank
are rational, that is, can be presented as the ratio of two polynomials.
V.S. Drensky has proved some results in the case of varieties with polinomial
growth.

3. Finiteness conditions nad varieties of Lie algebras and Lie superal-
gebras. A condition on an algebra is called a finiteness condition provid-
ed it holds for all finite-dimensional algebras and there exists an infinite-
dimensional algebra with this condition. The most important finiteness co-
nditions are probably the following.

(i) Local finiteness. A Lie Algebra L over a field F is called locally finite if
every finite subset of L lies in a finite-dimensional subalgebra.

(ii) Residual finiteness. A Lie algebra L over a field F is called residualy
finite if for every z € L, 2 # 0, there exists a homomorphism ¢ : L - M
where M is finite-dimensional and ¢(z) # 0 in M. A finitely generated
residual finite Lie algebra has algorithmically solvable word problem.

(iii) Representability. A Lie algebra L over a field F is called representable
if there exists a field extension K O F such that the extended algebra
K @ L can be embedded in a finite dimensional algebra M over K. In

F

other words L can be represented by matrices of finite order over K.
(iv) Noetherian property. A Lie algebra L over a field F is called Noetherian
if any ascending chain of subalgebras in L has finite length. We say that
L is weakly Noetherian provided that any ascending chain of ideals of
L is of finite length.
(v) Artinian property. The same as just above (iv) but with ,ascending”
replaced by , descending”.

One of the most popular questions is to find out whether a given identical
relation ensures the local finiteness of respective algebras or not (in this
case we simply speak about the local finiteness of the variety). The most
important achievement in this area has become the result of E. I. Zel’manov
according to which any Lie algebra with the Engel condition (adz)™ = 0 is
locally finite (and, according to Engel’s Theorem, locally nilpotent) solving a
problem which remained open for some decades. (An important monograph
in this area is A. I. Kostrikin’s Around Burnside of 1986.)

The most extensive study of locally finite varieties exists in the case of
finite fields of coefficients and was initiated in the joint paper of A. Yu. Ol'-
shansky and the author where we proved that finite Lie algebras have finite
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bases for their laws. One of the most impressive recent achievements in
this area is a theorem of A. A. Premet and K. N. Semyonov in which
the authors describe residually finite varieties of Lie algebra. Using the
techniques developped in this paper and those arisen in the study of Engel
Lie algebras K. N. Semyonov later was able to explicitly write up a basis for
the laws of sl;(F) with F arbitrary finite of characteristic at least 5.

Theorem. Let F be a finite field of characteristicp > 3. A variety
Y over F is residually finite if and only if it is generated by a single finite-
dimensional algebra with all nilpotent subalgebras abelian.

The cases of char F = 2,3 remain so far open.

An easy observation shows that all algebras of a variety over an infinite
field are residually finite if, and only if, the variety is abelian. Thus, in
the case of infinite field, it is more appropriate to study locally residually
finite varieties, i.e. with finitely generated subalgebras residually finite. The
first non-trivial variety with this progerty was found by the author in 1972
when it was shown that the variety .A4“ of all metabelian Lie algebras over an
arbitrary field is localy residually finite. We have also produced an example
showing that the variety of cetre-by- metabelian Lie algebras, i.e. with the
quotient-algebra over the centre metabelian, does not enjoy the property
under consideration. I. B. Volichenko has shown (in all cases except char
F = 2) that a variety does not contain the variety of all centre-by-metabelian
Lie algebras if, and ony if, it satisfies a non-trivial identity of the form

(adz)(ady)™ + i ar(ady)*(adz)(ady)** =0
k=1

In 1988 and later M. V. Zaicev showed the above identity is crucial in
determining whether a variety has one of the finiteness conditions listed
some paragraphs earlier for finitely generated algebras. Thus he has proved
the following.

Theorem. Let F be a field of characteristic zero. Then the following
conditions are equivalent:
(i) V is a locally residually finite variety.
(i) V is a locally representable variety.
(iit) V satisfies some identity as above and every finitely generated algebra in
V has nilpotent commutator subalgebra.

In the case of finite fields of positive characteristic the identity under
consideration is equivalent to (i), (ii) and to some other finiteness conditions
even without the nilpotency of the commutator subalgebra.

In the joint paper of M. V. Zaicev and the author the above result
was generalized to the case of Lie superalgebras, sometimes even colour
superalg]ebras. Precise formulations and the proofs can be found in [Bahturin
et al. 91).
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A particularly interesting question is to find matrix representations for
free algebras of certain varieties of Lie algebras and Lie superalgebras. Some
examples have been dealt with in earlier papers of D. I. Eidel’kind.

4. Special Lie algebras. Special Lie algebras form a class which general-
izes finite-dimensional algebras (as previously, this is a finiteness condition,
due to Ado-Iwasawa’s Theorem). It has been considered in a detail in the
author’s monograph of 1985. A question which remains unsettled in this
book was V. N. Latyshev’s problem on the homomorphic image of a special
Lie algebra: is it always special itself? Due to a result of S. A. Pikhtil’kov
this question turned out to be equivalent (if char F' = 0) to a question of the
author: is it true that a central extension of an SPI-algebra is SPI itself?
Thus, in the course of a seminar for foreign graduates of Moscow Universi-
ty, we produced an example of an SPI algebra whose central extension, pre-
sumably, was not special. It turned out to be isomorphic to the commutator

subalgebra of the well-known Kac-Moody affine algebra Agl). But only in
1988 using our theorem of 1985 on the structure of PI-envelopes of semisim-
ple Lie algebras Yu. V. Billig found an elegant proof of non-speciality of the
algebra in question. In fact, he showed that all affine Lie algebras over fields
of characteristic zero are not special. However Yu. V. Billig has proved that
affine algebras over prime characteristic fields are special. This became an
impetus to his describing in 1990 the important class of affine modular Lie
algebras. An important question, therefore, is about the homomorphic im-
age of special Lie algebras over prime characteristic fields. Another question
of interest is to describe special varieties, that is, generated by special Lie
algebras. It is known that customary operations over special varieties sel-
dom lead to special varieties. Also, Yu. V. Billig’s results have proved the
existence of special varieties with non-special members. But it was shown
that all algebras in V, = varsl, have associative envelopes with identities
of the matrix algebra of order 2. It would be of interest to prove that all
algebras in V; are special.

The bibliography that follows is by no means complete. Moreover, in
many places in the text of the talk we omitted references. Normally, these
can be recovered in one of the monographs [Bahturin 85] or [Bahturin et
al. 91].
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O r-IIOJIHOTE B RKJIACCE I[ETEPMI/IHOBAHHLIX
&YHKINN
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Key words: completeness, determined functions

Abstract. In the article the author describes a solution to the completeness problem for
the class of maps of determined functions of words from finite alphabets. The solution
consists in the effective description of all r-precomplete classes.

B 3aMmeTke pelnaercs 3azadya o HOJHOTe B Kjlacce OoTOOpakeHUIA,
OCBHIIIECTBJAEMBIX eTepMUHOBAHbIMUA QYHKOUAMHK Ha CJIOBaX AJIMUHH T,
COCTaBJIEHHBIX M3 OYKB MPOM3BOJBLHOTO KOHEUHOTO ajlpaBUTa. ITO HO-
cTUTaeTcA nyTeM 3¢ PeKTUBHOI'O onncamm MHOX€CTBa BCeX T-OpeanoJi-
HBIX KJjaccoB. Bce HeonpenemieMLIe B IaJjbHeillleM OOHATHSA MOXKHO
matiTk B [1,2,3].

1. Oycts k > 2, E; = {0,...,k - 1}. Hycts t > 1, 1 Ef — MHOXe-
CTBO CJIOB IJIMHBI T, COCTAaBJIEHHBIX M3 3JieMeHTOB FE). Kaxmoe Takoe
cnoBo a GyneMm mpencrtaBiarh B Bune a = (a(l)...(a(t)). Iycts Ej} =

o0

U E}. Iycrs ng — MHOMXeCTBO BCeX NeTepMUHHPOBAHHEIX (YHKIHUH,
t=1
KOTOpBIe 3aBUCAT OT IepeMeHHLIX, HpMHMMaIOIMX 38adyenus u3 E;. Ha
Pf OOGBIYHBIM 06pa30M MOXXHO BBECTH ollepalWy CylepHO3UIHAM, a Ta-
K)Ke NOHATHE 3aMBIKaHWA MOJMHOYKECTB ng OTHOCTEJILHO 3THX OHepa-
muii [1,2]. IIycts 7 > 1. IIycts M C P; . MmBoxecTBo M Ha3niBaeTcA

T-NOANBM, €CIN 1A Bcakod ¢ymkmuu f(zq,...,2,) U3 P;‘ B 3aMbIKaHUU
M conepxurca ¢yukmusa g(zy,...,2,) Takas, 4To miaA joboro HaGopa
(a1, ...,a,) 2eMenTOB U3 Ej f(a,,..,a,) coBnanaer c g(ay,...,a,). MHO-
xectBo N C Pf HA3EIBAETCA T-npednoanbm xaaccom, eciu N He sABiA-

eTcA T-NONHKIM, HO AnA moboit dymkmmm f € PF /N mmomectso N'U{f}
7-monao. Mcoouab3ys [1,2,3] merko moka3aTh, YTO MHOKeCTBO BCeX T-
OpPennoJHBIX KIaCCOB 00pa3yeT MURUMAABHYIO KPUMEPUAALHYIO CUCTIEMY
ISl PacHO3HABAaHUSA T-NOJHOTHI NPOU3BOJbHEIX MHOXECTB [eTepMHHHU-
poBaHEIX GpyHKmMUIi. B wacTuTOCTH, IpH NMIOOKX k > 2 MUEMMaJIbHAA 1-
KpUTepHaJbHAsA CHCTeMa HM30MOp¢HA MHOXKECTBY NpPEeIIOJHEIX KJIaCCOB
B k-3maunmIx morukax [1,4,5].
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Mycts p > 1. Ilycts T = (4, ...,t)) — NpOM3BOJLELIL HaGOp LebIX
HeoTpunaTenpHbX uucen. Ilycrs Ef = E}* x---x Eif. Jlio6oe memycToe
nommuOoxkectBo R C ET HasnBaercsa oTHollenveM, 3amaHENM Ha EJ, a

YUCJO p — apHOCTBIO BTOTO OTHOWEHMA. . Pymkmusa f(z,,...,2,) us ng
COXpaHsAeT OTHOoWeHUe R, eciam mia nm060i COBOKyIHOCTH

{(a},...,a}), .., (a}, ..., al)}

1 n 1 n '
HabGopoB u3 R mabop (f(a;, "'.’.al)’ ...y f(ap, ...,a3)} Takke mpuHAIIEKUT
R. MBoxecTBO Bcex (YyHKIMIA, COXpaHAIMMNX OTHOoUmeHNe R, oGo3Ha-
uuM U(R). B TepMuHaX cOXpaHeHUs OTHOIIEHMIA AaIUM ONMCAHHUE MHO-
’KeCTBa BCeX T-IPeINoJIbHBIX KJaCCOB.

Iycts k& > 2. OnpenenuM ¢ymkmmio m, oTobpaxkeatomyio E; x Ef
Ha {0,1,..}. Hycts a; € E}*, ay € E,t:. Nycts t = min{t,,t;}. Torma
7(a1,83) = 0, ecimt ay(1) = ay(1),...,a1(¢) = az(t); ®(ar,83) =i (1 < i<
<t-1), ecan ay(1) = az(1),...,81(t — %) = az(t — %), HO a1 (t — 1+ 1) #
= ay(t — i +1); w(a1,a;) = t, ecm a;(1) # ay(1). Ha mMEONRecTBOE E}
onpeneJUM OTHOWIeHMe mpemnopsamka »=<« [6]. Iycts A = (al,...,apf
A' = (a},...,a,) — anementn us El; A < A’, ecnin nns mobrix i,j u3
{1,...,p} w(d,d; < 7(a;,q;).Iycts ¢ = max{t;,...,t,}, p < K*. Ilycrs
A = (a,,...,a,) — OPOM3BOJILHKIN 2/IeMeHT U3 Ef TaKOM, YTO AN NIOGHIX
i,j u3 {1,..,p}, i # j, ®(ai,a;) # 0. MmoxkecrBo Bcex A’ u3z E}
TakuX, 4To A’ < A Ha30BeM T-MHONCECTNEOM, 3a0ABAEMBLM FAEMERTIOM
A. Ilna o6o3HauyeENsa W-MHOXKeCTB OyldeM McmoJib30BaTh cuMGoa A.

JI1060e T-MHOXKecTBO A pa3buBaercsa Ha IBa NOJMHOMKECTBA: AM)
MHOMECTBO BCeX MaKCMMAaJbHBIX IO MOPAIKY »<« 3JIeMeHTOB M3 A,
A(™) — MHOXeCTBO Bcex ocTaBHIMXCA aieMeHTOB. Ecmm A C ET, 10
T = (t1,..,tp), {t1,..,tp}, Makcumym umcen u3 {t,,...,t,} o6ozHaumM
cootBercTBeHO T(A), {T(A)}, max{T(A)}. Yucno p HazoBeM apHOCTHIO
- T-MHOXecTBa A M 6yneM 06o3HaunTh p(A). Herpyamo BuaeTs, uto Ans
mob6bix %,j u3 {1,..,p(A)} 3Hauenme w(a;,a;) He 3aBUCHT OT BHIGOpa

aseMeHTa (ay, ..., 8p(a)) M3 AM) Tlostomy umcio 7(a;, a;) o6o3HaUNM

Kak 7a(%,7). Ha mmoxectBe {1,...,p(A)} ompenenmm ortHOmWeHHEe A-
axeusaseNmnocmu: Iucia i,j A-sKBUBAJIEHTHH, eJicH t; = t;, ®a(4,7) <
< 1. HoacranoBky v umcen 1,...,p(A) Ha30oBeM A-IOCTaHOBKOH, eciH
ans nwboro (ay,...,apa)) U3 A a,q), -, Gy(p)) TaKkKe IPUHALISKAT A,

?

2. OmumeMm BoceMb cHemuaJbHBIX ceMedTcTB oTHowenuit. Kaxk-
noe oTHolleHMe R u3 aTuX ceMelicTB sABAsAeTCA COGCTBEeHHHIM NOJIAMHO-
’KeCTBOM HEKOTOpOro w-MHOxecTBa AR, npudeM max{T(Agr)} < 7. B
HajbHeleM mHIeKC R B oGo3HauenMu Agr OylneM omMcKaTb M Bcerna
cunutath, uto T(A) = (ty,...,tpa))-

IIycte R C A. OtHomenne R Ha3oBeM A-pefaexcusnvim, e€ciiu

A(™) C R. OrnHomenwe R Ha3oBeM A-CMMMeTpPHUYHBIM, €CJIU JUIA JO-
6ux (ay,...,apa)) M3 R ¥ A-MOACTAHKOBH 7 (@.(1),...; Gy(p(a))) TaKkKe
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TPHEAIENKHAT | R. Ilns Bcsakoro t € {T(A)} ompemenuM MHOXeCTBO
Ei(R) C E}: a € E{(R), ecin nna moGoro a € Ex B A/R cymeCTByeT
aseMeHT (ay,...,ap(A)) Takolt, uTo ana Hekoroporo i € {1,...,p(A)} t;
=t, n(a;,a) <1, a;(t;) = a.

CewmeiticrBo Ty (7). (Ti(7) # 0 mpu arobux k > 2,7 > 1.) OTHO-
menue R € Ty(r) Torma u ToNBKO TOTZa, Koraa R A-pediaexkcusHO, A-
cuMMeTpuuHO U 1A moboro t € {T(A)} EL(R) # 0.

3amernM, uTo Kaxkmoe R € Ti(1) cyTs oTHOmeHHe U3 ceMelcTBa
»IeHTpaJibHbX« [1,4,5].

IMycts R C A. Ilns Beaxoro A = (ay,...,apa)) 43 A/R onpenenum
cucremy {€1(A),...,€pa)(A)} mommmoxecTs Ey : a € E(A)(1 £ i <
< p(A)), ecim B A/R cymecTByeT alleMeHT 4, ..., dy(A)) Takoii, 4ro
115 BCAKOro j # 1, a; = aj, 7(a;,a;) <1, d(t;) = a. Ilycts R ¢ Ti(7).
Torma nna merkoroporo t € {T(A)} Ei(R) # 0. Ha mmoxectBe A/R
onpenemmm otromernue Z(R)-axeusasenmuocmu: A = (af,..,ap4)) H
A = (a’l,...,a;( a)) EL(R)-oKBUBaJEHTHBI, €CIM CylleCTByeT HabOpA; =
= (ai, ...,a:,(A)), ey Ay = (af, ...,a;‘(A)) aJieMeHTOB U3 A/R, uncia
11,72, o in_1,Jn 13 {1,...,p(A)} Takme, uro A; = A, A, = A’ u nua
Bcsikoro [ € {1,...,n} af-l € EZ"(R), ti,, =ti, 1r(a", ;trl) <

CemeiictBo Gi(7). (Gp(7) #Oupu 7> 1, eciu k > 3, u npu 7 >
> 2,ecin k = 2.) OrtHowerne R € Gi(7) Torna ¥ TOJABKO TOrZa, KOrIa
R A-pediekcuBHO, A-CMMETPUYHO M BHINOJHEHH! CleNyOlIHe yCJIOBSA:

Iycts A — (ay,..;apa)) — 27emenT u3 A/R. Torma nnsa noboit
napel | U j A-skBuBajeHTHHIX uncen E(A)N E;(A) = 0. Eucm a; €
E,t‘(R), TO CYIIECTBYeT KJIacC A-3KBUBaJEHTHOCTH {1y, ...,1,} Takol, uTO
$>2,1€ {i1,..,15}, Ea(A)U -+ U E5(A) = E. Hyc'rbA’ (ay, - ,ap(A))
Takke mpunainexutA/R. Torna, ecmu a; € Ej(R), 1o a) € E;(R).
IIycts A u A’ ¥(R)-skBuBanentanl. Torna cyuiectByer A-moACTaHOBKaA
¥ TaKas, 4TO 1A JMO6bIX %, § u3 {1,...,p(A)}, ®(a;, ay(;)) > wa(4,j) v npu
7(ai, a,()) = 0 Ei(A) = €,(;)(A"). Ecmm p(A) = 2, To AM N R £o.

3aMmeTuM, 4yTo Kaxnoe R € Gi(l) cyTh oTHOWIeHHe M3 ceMeificTBa
OTHOIIEeHW, TOMOMOPQHBEIX »3JieMeATapHbIM« [1,4,5]. IIpu stom h < k,
m=1.

Oycts k> 3, 7 > 1. llycte m > 2, h > 2. uepe3 Q(m, h)oGo3rauum
MHOxecTBO Bcex cucteM{ R, ..., R,,} orHomenuit n3 Gy(7), yaoBierBop-
SIIOIMX CBOUCTBY Q.

CymecTByer 7-MHOXKEeCTBO A TaKoe, YTO U R C A, u umcia
I=1

1,...,p(A) obpa3yoT kmacc A-sKBUBaJeHTHOCTH. Jlng nobwix [,q¢ u3
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1,...,m} n ana Bcaxkoro A = (ay,...,a n3 AR ! =
() A (1119(0)) ™ A% cymecayer A4
= (@}, s Gy(a)) ¥3 A/R, Takoe, uto 7(ay,a1) < L. m(aya), apa)) < 15
npu h < p(A) ans Besakoro i € {1,...,p(A)} a; = al a; # E,i‘(Rq).

IOycts {Ry,...,Rm} € Q(m, k). Herpymno Bunets, uto Ei*(R;) # 0.
Bozee toro, Ej'(Ry) = -+ = E{*(Ry,). Ilycts a € Ef*(R;). Yepes Rf“)
(1 <1 < m) obo3naunm noAMHOKECTBO A Takoe,uTo A = (ay,...,Gy(a))
OPUHALIEKAT A/R}a) TOrga M TOJBKO Torza, kornma A € A/R; n
7(a,a;) < 1. OueBnmuo, R; C Rfa),n Rf“) — oTHomenue u3 Gi(7).
Ha muoxectBe {Ry,..., R} BBenieM oTHOmeHHUE §(a)-oxausasenocmu: R,

n R, §(a)-sxBHBaJIeHTHBI, eciIH Rfa) = R,(,a).TaKnM obpa3oM, MHOXe-

crBo {Ry, ..., R,y } pa3buBaercs Ha KiaccH §(a)-skBuBanienTHOCTH. [IycTh

m(a) — uKcio Takux KiaccoB. Yepe3 Rie,..,Ri.  06o3HAUMM mpo-
1 m(a)

K3BOJIBHYIO COBOKYNHOCTb OTHOWeHMiN3 { Ry, ..., R,,}, npunamnexammx
HONApHO Pa3MUYHEIM KiaccaM §(a)-sKBHBaJIeHTHOCTH.

IMycrs Q(m,h) — nomuoxectBo Q(m, k), cocTosmee U3 BCex CHC-
teM {Ry,..., R,,} Takux, uyto nns Hekotoporo a € E}'(R;), m(a) = m.

CewmeitcrBo Hi(7). (Hi(7) # O npm mobuix & > 9, 7 > 1.) OTHo-
mwerne R € Hi(r) Torma m Toamko Torma, xorma R = (2, R, rue

{Ry,...,R,} € é(m,h), h >3, m > 2u ana mobux a € E}(R,),
A,y Amm(a) 13 A/ Rf?.)), .Y R,(f )( | COOTBETCTBEHHO,
71, ...,jm(a) u3 {1,...,h} E,N---N Ejm(.) (Am(a)) £0. |

3ameTHM, 4To Kaxkmoe R € Hi(l) cyTs oTHOmeHMe U3 ceMeiicTBa

OoTHOWIeHUH, roMOMOPOHBIX »ajieMeHTapHBIM« [1,4,5]. IIpn atom A™ <
<k m>1.

CewmeiictBo Di(7). (Di(7) # 0 npu nmobeix k > 3, 7 > 1.) OTHO-
mesue R € Dj(r) torma m Toavko Torma, xkorma R = (2, R;, rae

{R,,....,R,} € 6(m,2), m<kopurt2>2, m< kopur=1, u qna mo-
661X a € E'(Ry), Ay, ...y Apy(q) U3 A/RE.:.'), ...,A/R‘(;)(‘) COOTBETCTBEHO CY-
IMECTBYIOT j1, ...y Jm(a). ¥3 {1,2} Taxme, uro €; (4,),...,;,, ., (A) nomapeo
He nepecekaiorca u £, (A)U---UE; . (Am()) = Ek.

3aMeTnM, uTo Kaxnoe R € Di(l) cyTp GMHapHOe OTpHOlIEHME,
onpenesiollee HeTpUBHaJbHOe pa3buenre Fy Kiacchl 9KBUBaJEHTOCTH
(1,4,5].

Hycts t > 1. Yepes Al (2 < h < k) 0603HaUMM T-MHOMKECTBO
takoe, 4yro T(A}) = (¢,...,t) u mia mobuix 3,5 u3 {1,..,p(A})}, i # j
h

WA;(iaj) =1.
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CemetictBo Si(7). (Si(7) # 0 upu mobeix k > 2, 7 > 1.) OTtHo-
menue R € Si(7) Torma m Toabko Torma, korma R C AL, t < T u cyme-
CTByeT MOICTaHOBKAa ¢, onpeleleHHas Ha Ej, koTopas pa3iaraeTcs B
npou3BelleHNe MUKJIOB OQMHAKOBOM NPOCTOM IJIMHHE p > 2 U TaKas, UTO
s moboro a € El(a,$(a)) € R u, ecain (ay,a;) € R, 10 a3 = ¢(a,).

CementicrBo My(7). (Mi(7) # 0 upu aro6eix k > 2, 7 > 1.) OTtHO-

merne R € M (7) Toraa m Toapko Torma, korga R C AL, t < 7 m nna
, R
HEKOTOPOro OTHOWIEHWA YAaCTHUYHOro MOpAdKa »<« ompene/leHHOIO Ha

E! u umeromero B tounoctu k'~! MakcuManbEBIX # k'~ MMHMMaJIBHBIX

R
2JIEMEHTOB, COPaBEeIVIUBO ClelAylollee: eciad a; < az, TO (a;,a3) € R u

R
Haobopor: ecau (a},a,) € R 1o a] < dj.
IIycts t > 1. Ilycts ®; — COBOKYHHOCTH BCex oTOOpakeHHM MHO-

KecTBa E,tc B MHOXECTBO HOJCTaHOBOK, onpeneiyieHuX Ha Ei. Iloacra-
HOBKY, KOTOpYIO oTOGpakeHne ¢ € ®; CTaBUT B COOTBETCTBUE 3JIEMEHRTY

a € E} o6o3snauum uepe3 ¢,. Ilycrs ¥; — nommuoxkecTBo &, cocro-
jolllee U3 BCeX OTOOpaKeHWN ¢ TaKuMxX, 4TO WA NO6HX a u o' u3 Ef
¢, coBunamaer ¢ @,, ecim w(a,a’) < 1. Ilycts k = p™, rme p — npo-

croe unuciao. Ilycr G = (Eg,+) — abGeneBa rpynma, B KOTOPOM KaXXIbIit
HeHYJIeBOll JIeMeHT MMeeT NOPAIOK p (djeMeHTapHasA p-rpymmna).Ecau
P # 2, 10 uepe3 I, o6o3raunM uncio u3 E, rakoe, uro 2:I, =1 (mod p).

CemelictBo Ly(7). (Lig(7) # 0 nns nwoboro T > 1, ecim k = p™, rae

p — mpocToe uucio, m > 1 opu k > 3, m > 1 npu k = 2.) OTHOMIEHANE

R € Li(1) Torma m TOABKO TOTAa, KOTA4 IJIA HEKOTOPOTro ¢ U3 Q. t<r

cOpaBelJIABO Cleaylolee:

a) IIycts k = p™,p > 2. Torma R C A} snement (a;,a;,a3) u3 A}
npusaIeXuT R, ecmu @, (ai(t)) = 1,(Pq,(as(t)) + ¢a,(az2(t)) u He
OpUHALIEKAT R B IPOTUBHOM cllyydae;

6) Hycts k = 2". Tormna R C A snemenTt (ay, as, a3, a4) u3 Al npuna-
anexuT R, ecnu ¢, (a1(t)) + @q,(a2(t)) = @q,(as(t)) + da,(as(t)) n me
OpUHAIEKUTR B IPOTUBHOM cliydae.
3aMeTuM, uto oTHOomeHUs u3 Si(1), My(1), Lx(1) coBnanmaior coort-

BETCTBEHHO C OTHOUIICHWSIMHM, 3aJaIOUIMMH KJIaCChl CAMOJBOMCTBEHHKIX,

MOHOTOHHBIX M KBa3WJIMHeHHBIX ¢yHKmuii k-3mausoii moruku [1,3,4,5].

Ilycte t > 2 m A; — GUHapHOE W-IIOIMHOMXKECTBO Takoe, uTo T(A;) =
= (t,t), WA'(].,Z) = 2.

CemeiicrBo Vi(7). (Vi(T) # 0 mpu mobux k > 2, 7 > 2.) OTtHo-
menne R € Vi(7) Torma u Tonbko Toraa, korma R C A, t < T u cmpa-
BEeIUBO clenywinee: (ap,a;) u3 AgM) OpuHaIIeXuT R, ecnu ay(t) =
= ay(t) ¥ He npuHaLIEKHUT R B IPOTUBHOM clydae; cymecTByeT ¢ € &,

(m)

Takoe,uTo (ay,a;) U3 A; ’ OpUHANIeXUT R, eciim A1d HEKOTOPOro a €
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Ei ay(t) = ¢,,(@), az(t) = ¢g,(a) ¥ Be mpuBamtexuT R B nporuBHOM
clydae.

IIycts Wk(T) = Tk(T)UGk(T)UHk(T)UDk(T)USk(T)UMk(T)ULk(T)U
Vk(T). :

Teopema 1. Ilycmv k > 2, 7 > 1. Mnoxcecmeo M C ng T-N0ANO

moz0a u moabvko moz0a, xozda das awbozo R € Wi(r) e M cywecmeyem
pynxyus f maxas, vmo f ¢ U(R).

Teopema 2. Ilycmv k > 2, 7 > 1. Mnowcecmeo N C Py"’ﬁe./memcar

T-NPednoAHsLM KAGCCOM Mozda t moabko mozda, xozda N = U(R) dax
nexomopozo R uz Wi(r).

Teopema 3. Ilycmo k > 2, 7 > 1.IIycmv Ry u Ry npunadaexcam
Wi(7) v U(R;) = U(R;). Toz2d0a Ry u R; umerom odunaxosyrno aprocms
P 2 1, odnoepemenno npunadaexcaem aubo Ti(7) Gi(7) aubo Hi(1) aubo
Dy(7) aubo Mi(T) u cywecmeyem nodcmanoexa ¥ wucea 1,...,p maxas,
umo (@y(1), -y G(p)) € Rz, ecau (ay,...,a,) € Ry u (afya;,...,a;a;)) € Ry,

ecau (ay,...,ap) € R;.
ABTOp CUMTaeT CBOMM IPUATHHIM JOJIOM BHIPa3uTh riy6okyio 6ia-

ronapaocTth B. b. KynpsasneBy 3a 6/plyo moMolllb ¥ DIOCTOSAHHOE BHU-
MaHHe K HacTosAlled pabore.

MoCKOBCKMI rocynapCTBeHHBIII yHUBEP3UTET.
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CE-MAPS OF NON-METRIZABLE COMPACTA
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Abstract: We generalize the well-known result of G. Kozlowski which states that every
CE-map onto a finite-dimensional compactum is a hereditary shape equivalence.

Amap f : X — Y is said to be CE-map if for each point y € Y
the fiber f~!(y) has trivial shape. A map f : X — Y is said to be a
hereditary shape equivalence if for each closed subset F' C Y the restriction
f/f"YF): f~}(F) — F is a shape equivalence (i.e. f/f~!(F) induces an
isomorphism in the shape category [2]). It is well known [2] that a CE-map
f : X — Y between metrizable compacta with dimY < oo is a hereditary
shape equivalence (of course, the converse is true without any restriction).
Our goal is to generalize the above result to the case of maps between non-
metrizable compacta.

A necessary information concerning inverse spectra is contained in [3].
We note here only that exp , A denotes a directed set of all countable subsets

of the set A. All inverse spectra S = {X,, pg, A} have surjective projections.
For each a € A we will denote by p, : limS — X, the corresponding limit
projection. A map f : X — Y is said to be functionaly closed if for each
closed and G;s-subset F of X it’s image f(F) is a closed and Gg-subset of
Y as well. Evidently any map between metrizable compacta is functionaly
closed.

The following proposition gives a spectral characterization of CE-maps.

Proposition. Let f : X — Y be a functionally closed surjection
between compacta.Then the following conditions are equivalent:
(i) fis a CE-map;
(ii) there exists two w-spectra Sx, Sy and a strictly commuting morphi-
sm {f,}: Sx — Sy consisting of CE-maps such that X = lim Sy,
Y =lim Sy and f = lim{f,}.

Proof. Embed Y into the product Q" (Q denotes the Hilbert cube) and
X into the product Q" x Q7 in such a way that f = »;/X, where m; :
Q" x Q" — Q"denotes the natural projection onto the first factor (here =
is a suitable uncountable cardinal number). For each a,f € exp, 7 with

a < BletY, = n,(Y), Xo = (w0 x 70 )(X), ¢ = 7a/Y, Do = (7 %
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1)/ X, g5 = wg/Yp, P = (75 x wg)/Xﬁ and f, = n{/X,, where ' : Q* x
Q% — Q° denotes the projections onto the first factor and =, : Q"' - Q%,

x2 . QP — Q7 denote the projection onto the corresponding subproducts.
Ewdently the limit spaces of w-spectra Sy = {X,, pa,expw 7} and Sy =

= {Ya, pa,exp 7} coincide with X and Y, respectively. Note also that f =
lim{ f,}. By functionally closedness of f and by [3],we can suppose without
loss of generality that the morphism {f,} : Sx — Sy strictly commutes.

Let a € exp, 7 and U, = {UZY : n € w} be an open basis of Q*. Then
we put A(a,n,m) = {y, € Yo : f1(va) C UZ x U2}.

Claim. Let a € exp,T,U, = {U;7 : n € w} be a countable open basis
of Q% containing unions and intersections of its finite subfamilies and let
A(a,n,m) # 0. Then there ezists an index B = B(a,n,m) € exp, T such

that B > a and for each point yg € (¢5)"1(A(a, n,m)) there ezists an open
neighborhood Gy, of the fiber fz 1(yp) in QP x QP such that Gy, C (7ra

x8)~"1(U2 x U2) and the inclusion map
— (78 x xB)" W (U x UZ)

is null-homotopic (in 75 x x8)~1)(U2 x UZ)).

Proof. Let y € ¢5'(A(a,n,m)). Then f;'(g.(y)) C U2 x UZ. Con-
sequently

F () € P2t (£3(2a(¥))) € (7o x 7a) " H(UR x UR).

Since the fiber f~1(y) has a trivial shape and Q7 x Q" is an AR-compactum
there exists an open F, neighbourhood G, of f~!(y) in Q™ x Q" such that
G, C (my x7,) Y (UZ x UZ) and the inclusion map G, — (7, x 7o)~ (U x
US) is null-homotopic. Evidently

F (g3 (A(a,n,m))) C | {Gy : v € 2" (A(a,n,m))}.

Since the space f~!(¢;!(A(a,n,m))) is Lindeloff we can choose a coun-
table subfamily {Gy : k € w} of {G, : y € ¢5'(A(a,n,m))} such that
gz (A(a,n,m))) C U{G} : k € w}. By [3],there exist an index 8 > «a
and open subsets Gf of QP x Q° such that Gy = (mg x wg)“l(Gf), k€ w.
Fix for each k € w a map i : Gﬁ — Gy such that (w3 x 7g)i, = idG.p and
a homotopy Hj : Gy x I — (w4 X my) Y (U2 x UZ) connecting the inclusion

and the constant maps. Then the composition (wg x 73)Hi(ix x idf) is a
homotopy showing that the inclusion map

By (28 x xB) 1 (U2 x U2)
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is null-homotoplc in (75 x 75)~"Y(Ug x U2). It only remains to show that
ifys € (¢5)"1(A(a,n,m)), then f5'(yg) C G for some k € w. Indeed, fix
a point y € ¢5'(A(a,n,m)) such that g5(y) = ys. Then f~!(y) C G for

some k € w. Since the morphism {f,} is strictly commuting it follows easily
that

5 (8) = pa(f71(¥)) € (w5 x 7p)((mp x 7)1 (G})) = GX -

The claim is proved.

We return to the proof of the proposition. We wish to use the proposition
1.3 from [3] with respect to the following relation L C (exp, 7)%

L = {(a,B) € (exp,7)? : @ < B and there exists a countable open basis
= U,‘i‘ : n € w} of Q% containing unions and intersections of its finite

subfamilies and satisfying the following condition: for each (n,m) € w? with
A(e,n,m) # 0 and for each point yg € (¢5)~1(A(a,n,m)) there exists an
open neighbourhood G, of the fiber f7 Y(yp) in QP x Qﬁ such that

Gy, C (78 x xB)"Y (U2 x U2)
and the inclusion map
Gy, = (xB) 1 (U x UR)

is null-homotopic in (1ra X ﬂ'a) WUz x UZ)}.

Let us show that for each a € exp , 7 there exists an index 8 € exp
such that (a B) € L (the first condition of proposition (1.3) from [3]) Let

= {UZ : n € w} be any countable open basis of Q% containing u.mons
and intersections of its finite subfamilies. For each pair (n,m) € w? with
A(a,n,m) # 0 fix an index B(n,m) = B(a,n,m) > a satisfying the above
claim. By [3], there exists an index 8 € exp,T such that 8 > B(n,m)
for each (n,m) € w? with A(a,n, m) # 0. Let us show that (a,8) € L.
For consider a pair (n m) € w? such that A(a,n,m) # 0 and let y5 be an

arbitrary point of (qa) 1(A(a,n,m)). Clearly,

¥ = 0y (6) € (™) (A(0,n,m)).

By the choice of f(n,m), there exists an open neighbourhood G of the fiber
fﬁ'(:t,m)(y) in QA(mm) x QPA("™) such that the inclusion map

C < (wg(n,m) % rg(",m))—l(vg x U2)
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is null-homotopic. Let W = (”Lﬂi(n,m) X wg(n,m))‘l(G). Then

fEl(yﬁ) C f,}'(qg(n,m))'l(qg(n,m)(yﬂ))) =
= (pg("v'm))_l(fﬂ_(}'"m)(y))(wg(n’m) X Wg(n7m))_l(fﬁ-(1"m)(y))
C (*mm) X To(mm) () =W .

At the same time

W = (%5m) X Tomm) " (G) € (% my X Th(my) ™
((wg(ﬂ,m) % wg("’m))"l(U,‘:‘ X Urcrxz)) -
= (8 x wg)'l(U,? x Upm) -

Since the restriction

(%Bnm) X Thiamy) / (76 x 78) (U3 x U5)

(wo X 76) (U2 x UZ) = (x50™ x x5m™)=1y(v2 x UZ)
is a soft map (see [3]) it follows from the choice of G that the inclusion map
W < (x5 x #5)~1(UZ x U2) is null-homotopic in (75 x #2)~}(UZ x Us).

Consequently, (a,8) € L and the first condition of the proposition (1.3)
from [3] is verified.

Now suppose that (a,8) € L and v > . Let us show that (a,v) €
L (the second condition of proposition 1.3 from [3]). Let y, € (¢d)7!

(A(a,n,m)) and y5 = gj(y,). Clearly, y5 € (¢5)"1(A(a,n,m)). Since
(a, B) € L it follows that there exists an open neighbourhood G4 of the fiber
fgl(yﬁ) in QP x QP such that inclusion map Gp — (7:2 X wg)‘l(U,‘{‘ x Ug) is
null-homotopic in (75 x #2)~}(UZ x UZ). Let G, = (72 x 73)"'(Gp). Then

£y () SF7((93) " (g3(w)) = (3) ' (5 (ys)) €
C(mg x 7)™ (f5' (up)) C (73 x 73) 7 (Gp) = G,.
At the same time
G = (7] x W) 7H(Gp) € (1) x 737 (xE x 78)~1(US x US)) =
=(72 x ®)"N(UZ x UZ).
Since the restriction
(7} x w3) [ (%3 x x2) "N (U x Uy) :

(7Y x 7)Y US x UZ) — (78 x xB)"1 (U2 x US)
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is a soft map it follows from the choice of G4 that the conclusion map G., —

7y x o) WU x UZ) is null-homotopic in (7d x 7q) 1 (UZ x UZ). Hence
§a v) € L and the second condition of the proposition (1.3) from [3] is
verified.

Now let {a; : k € w} be a countable chain in exp , 7 and (ax,8) € L for
each k € w and for some 3 € exp, 7. Let us show that (a,8) € L, where
a = sup{ay : k € w} (the third condition of the proposition (1. 3) of [3]).

Since (a,8) € L we can fix a countable open basis {U,, = Ug* : n €
w} of Q** containing unions and intersections of it’s finite subfam1hes and
satisfying the corresponding properties from the definition of L. We denote
by U, the collection of unions and intersections of all finite subfamilies of

the collection
| LUH{(#5) 7 (Ue,) : k € W}

Since a = sup{ay : k € w} it follows from the definition of an w-spectrum
[3] that Q% is naturally homeomorphic to the limit space of the inverse

sequence {Q"" , T, ,w}. Consequently, U, is a countable open basis of Q*
containing unions and intersections of its finite subfamilies. Let (n,m) €
w?, A(a,n,m) # 0 and yg € (¢5)"'(A(a,n,m)). This means, by above

definitions, that f;!(y.) C UZ x U2, where y, = qg(yg). It is easy to see
that there exist an integer k¥ € w and elements U7*,U* € U,, such that

fl(ya) € (7g, x®3, ) YU x U2*) C Ug x UZ. Since the morphism {f,}
is strictly commuting it follows that

fa_kl(qgk(ya)) = pgk(fa—l(ya)) = (Tgk x ng)(fc:l(ya)) g
C(mg, x 72 )((7&, x ®2 )N U2* x UX*)) = US* x U2~

Consequently, g5, (¥3) = ¢2, (¥o) € A(ay,r,8) and yg € (g5,)" I(A(ak,r,s))
Since (ax, ) € L there exists an open neighbourhood G of fﬂ (yp) in QP x

QP such that
Gp C (%8, x x8 ) WU x UM)

and the inclusion map
Gp— (78, x x5, )7 1U* x U
is null-homotopic. It only remains to note that
Gp C(78, x 8 )" WU x U*) =
=(x8 x 7B) (7, x 7L )N U x U)) C (=8 x xB) "1 (US x UZ).

The third condition of the proposition (1.3) from [3] is verified as well.
By proposition (1.3) from [3], the set A of L-reflexive indexes is closed
and cofinal in exp,, 7. It only remains to show that for each a € A the map
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: Xq — Y, is a CE-map. Indeed, let W be any open neighbourhood
of the ﬁber fa (¥o) in Q“ x Q%, where y, is an arbitrary point of Y.
Since U, contains unions and intersections of its finite subfamilies, there
exist U,‘,”,U“ € U, such that f; (yo) C US x UL C W. Consequently, by
the definition of L and by the condition (a a) € L, there exists an open
neighbourhood G of f;(y,) in Q* x Q* such that G C US x U2 and the
inclusion map G — UZ x UZ is null-homotopic in U x U > Smce Q% x
Q% is an AR—compactum it follows that f l(yc,) has a trivial shape. This
finishes the proof of implication (i)—(ii). An inverse implication is trivial.
Proposition is proved.

Theorem. Let f : X — Y be functionally closed surjection between
compacta and dimY < oo. Then the following conditions are equivalent:

(i) f is a CE-map;

(ii) f ts a hereditary shape equivalnece.

Proof. (i)—(ii). It suffices to show that f is a shape equivalence.

Let Sy = {Xo,,pg,A} and Sy = {Ya,qg,A} be two w-spectra such that
limSy = X and limSy = Y. Fix also a strictly commuting morphism
{foa} : Sx — Sy such that f = lim{f,}. By proposition, we can assume
without loss of generality that each map f, : X, — Y, is a CE-map. By [1],
we can assume additionally that dimY, < oo for each a € A. Then, by [2
each f, is a shape equivalence.
- Let us show that in this situation f is a shape equivalence as well. For it
is sufficient to show that a natural correspondence [Y, P] — [X, P] induced
by f is bijective for each finite polyhedron P.

Let ¢ : X — P be any map. Then, by [3], there ex1sts an index a €
A and a map ¢, : X, — P such that ¢ = ¢P,po- Since f, is a shape
equivalence there is a map ¢, : Y, — P such that ¢, ~ ¥, f,. Then ¢ =
= PaPa = YaJaPa = Yaqaf. Consequently, ¢ ~ ¢ f, where ¢ = p,q,. This
shows that the above correspondence is a surjection.

Suppose now that we have two maps ;,%, : Y — P such that ¢; f ~
¥ f. Fix an index a € A and two maps ¥§,¥9 : Y, — P such that ¢, =
= Yigqa (k = 1,2). Clearly, ¥{ faPa =~ %3 faPo. Then there is an index

B € A such that ﬂ > a and ¥y fapg ~ g fapg. Consequently, ¢§’qg fs =
(s fapa o~ fapa = Y5 2 fs. Since f3 is a shape equjvalence we conclude

that ¢ qa ~ Y3 qo, It only remains to note that v, = ¥f QQQﬂ ~ g qaqﬁ =
= 1. Hence the above correspondence is injective. This finishes the proof
of the implication (i)—(ii).

The other implication is trivial.
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Abstract: We present an alternative method of constructing compacta with different
covering and cohomological dimensions (over arbitrary group G).

In [D-W1] there is a unified approach to constructions of compacta with
different cohomological and also covering dimensions which were constructed
in [Dr1-6] and [D-W2]. It is based on Edward-Walsh modifications of
polyhedra. Here we give an alternative approach. The Edward-Walsh
modification exists only with Eilenberg-MacLane space K(G,n) where G
is a ring with unit. This new approach is valid for arbitrary group G.
Unfortunatelly it is not so geometric. I am very thankful to V. Uspenskii
who recalled me the idea of that alternative approach.

Definition. A map f : L — K between polyhedra is called combinato-
rial with respect to some triangulations A and x provided f~1(A) is a sub-
polyhedron of A for every simplex A C K. It means that prevmage of any
polyhedron A with respect to x is a polyhedron with respect to M.

By P(L, A, k) we denote the set of all pairs (A, a) where A is a subpo-
lyhedron of L with respect to triangulation A and a : A — K is a continuous
map. Every combinatorial mapping f : (L,A) — (K, x) induces an inclusion
P(f): P(K,x,Y) = P(L,A,Y) for any space Y.

Suppose that A C L is a closed subset and a : A — K is a continuous
map. By K-resolution of L along (A, a) we call a projection £ in the following
pull-back diagram '

L 5 KxI
¢l L=
r = conK = KxI/K x {1}
where 7 is natural projection of K X [0, 1] onto the cone of K and 8 is an

extension of a : A - K = K x {0}. It is easy to see that the restriction
a 0 §|¢-1(4) has the extension w o u where w : K x I — K is the projection.

A generalized cohomology theory h* is called continuous if for every

countable CW-complex W with compact stratification W; ¢ W, C ... C
W, C ... there is an equality A*(W) = lim h*(W;).
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Lemma. For any continuous cohomology h* and any h-acyclic coun-

table CW-complez K for every compact polyhedron L and v € h*(L) there
ezist inverse system of compact polyhedra

K g
LZLI(";LQ(—-F—L,(-:—

supplied with triangulations A; and with combinatorial projections and direct
system of inclusions

1 i
g €
Cl 2 C2 — ... > C,' s

where C; is countable dense subset in P(L;,);, K) and €' +1 15 the restriction
of P(9:*') and a map x : N — C = imC; with the properties

1) for every lk].im mesh gf(A\x) =0

2) for all n,x(n) € im(eZ) and the map a = (%) (x(n)): A —- K
has the property

(*) the restriction aoggH[(gﬁ“)“(A) has an ertension to a map of L,
3) #x (c) = oo for eachce C
4) (G¥)*(y # 0 for all k.

Proof. Fix an epimorphism ¥ = (¥;,%;) : N - N x N. Apply
induction to construct L,,, A, g7_;,Cp,e_, and x, : ¥1(n) x N — C, with
the properties 1) mesh g?*()A,) < 1/n, 2) the map x,-1(¥(n — 1)) has the
property (*) 3) #x5!(c) = oo for all ¢ € im x, and 4) (g7)*(v) # 0.

We may assume that g} is constant map and easily obtain all formalities
for n = 1. Assume that it is done for n. First consider a K-resolution { :

L, — L, of L, along (A4, a) = xn(¥(n)). Since £7!(z) is homeomorphic to
a point or to K then by virtue of assumption of Lemma and Vietoris-Begle
theorem [D-K] we have £*(g7'(v)) # 0. Without loss of generality we may

assume that L,, is a polyhedron L C L, such that ()" (g7(7)) # 0. Define
L,;y = L and g7t = §iL- Choose A, ; to satisfy 1). Since K-resolution §

admits the property (*) for a then a restriction of £ has the same property.
Hence 2) holds.

Choose a countable dense subset C,, 4, in P(,41, A, K) such that

P(gn ™) (Pn) C Coi

and define e} ; as a restriction of P(g5,,). If ¥y(n + 1) = ¥, (k) for some
k < n then define x,41 = eﬁ +1 © Xk otherwise define x,, arbitrarily with
the property #x;}H(c) = oo for all ¢ € C,41. So, all the properties 1)-4)
are satisfied.

We define x = (Ued, o xn) 0 ¥. It is easy to verify that the properties
1)-4) hold.
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Recall that X 7K denotes the property: for each closed subset A C X
and for every map f: A — K there is an extension f: X — K.

Theorem. Let K be a countable CW-complexr and h be a continuous
cohomology theory with h*(K) = 0. Then for every n there is a compactum
X of the dimension dim X > n with the property XTK.

Proof. Since h is not trivial then h*(S™) # 0. Let ¥ be nontrivial
element of h*(S,). Apply Lemma to obtain X as a limit of inverse system
{Li,97*'}. The condition 4) of Lemma implies that the projection g§°
X — S" is an essential and hence dim X > n.

Let us verify the property X7K. Consider arbitrary map f A —

K where A C X. From condition 1) of Lemma and compactness of X it

follows that there exist a number K and a mapping fi : Ax — K of star

neighbourhood A4, = St(g,‘j°(A) Ai) of g7°(A) with respect to triangulation

Ar such that f. o ¢g2° is homotopic to f. Since the set C; is dense in

P(Lk, Ak, K) = [I1C(A, K) then there exists a map 8 : Ay — K homotopic
A

to fi and B € Cj. By the property 3) of Lemma #x~!(c) = oo where ¢ =
e%,((Ap, B)). Choose m > k and m € x~*(c). Since ek, ((Ax,B)) = (em) 1o
x(m) then due to (x) of 2) there is an extension n of the restriction (3 o
g o gm“l( g™ -1(A44)- Homotopy extension theorem implies that there is

an extension ¢ : L,,;; — K of themap fk°917cn+1|(g,""+‘)-1(A,‘)- The restriction
of (o gy, onto A is homotopic to f. Therefore there is an extension for f.
Proposition. X7(Y V Z) = X71Y.

By using this Proposition it is possible to generalize Theorem to the
following

Theorem 1. Let {K;} be a family of countable CW-complezes acyclic
with respect to continuous cohomology theory h. Then for every n there exists

a compactum X with covering dimension > n having the property XTK; for
all ¢.

Remark. Theorem 1 is still valid for any truncated cohomology which
are continuous and satisfy Vietoris-Begle theorem.

All familiar to me examples in cohomological dimension theory can
be constructed by using Theorem 1 and some famous facts from algebraic
topology such as

I?*(K(l[%], 1);2,)=0, H*(K(Z,1);Q) =0,
K:(K(Z,3);Z,)~0, and [K(Z,2)0*S%" ~o0.
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Abstract. In the article author gives an overview of mathematical models of information
query in data bases. The focus of the article is on special classes of algorithms.

B HacTosIllee BpeMs ONHMM M3 aKTyaJbHeWIINX HampaBlIeHUM pa3-
BUTHUSA COBPEMEHHOM MaTeMaTHYeCKOU HayKH ABJIAIOTCSA BOIPOCHI HPOEK-
TUPOBaHUA aBTOMaTU3MpoBaHHBIX cucTeM. [IpnueM mmpokoe pacmpo-
CTpaHeHHe NOJIyuYnJia KOHNennus 6a3 JaHAWX, COTIACHO KOTOPOM AxpoM
VHEGOPMAMMOHHON CHUCTEMBl CTAHOBATCA IaHHBIE, ONpelesIeHHbIM obpa-
30M opraHA3oBaHHbIe. CTPYKTYpHl OpPraHEM3aIlyM NaHHLIX OPU 3TOM
BLIOMpPAIOTCA B COOTBETCTBUM CO MHOTMMH KPUTEPUAMH, OIHUM W3
OCHOBHBIX CpeIyl KOTOPBIX ABJIAIOTCSA BpeMsA NOMCKa MHPopmamuu. U
MO3TOMBI BIOJIHE NOHATHO TO BHUMAaHWE B JINTepaType, KOTOpoe mpos-
BJSIIOTCA K mpobieMaM uHPOpManuoHHOra moucka [1-7]. Cpems aTux
XOTeJNOoCh Ohl BHLIENUTH T€, KOTOPhle CBA3aHBI C UCCeNIeIOBAHUEM BHI-
YUCJINTENbHON CIOKHOCTH aJIFOPUTMOB moucka uHpopmanuu. OcHOB-
HadA Macca paboT B 2TOM HallpaBJIeHMM CBf3aHA ¢ pa3paboTKo# HOBBIX
e PeKTUBHBIX AJTOPUTMOB NOUCKA, HAXOMHAIUX MHOTOYHCJI€HHEIe IPU-
JOXKEHUA B PA3JUYHBIX 06JIACTAX, TAaKAX, KaK MAlIMHHOE NPOEKTHPO-
BaHHMe, MaUIMHHAA rpaduKa, OMGINOTEeYHO-UHPOPMANUOHHLIE CUCTEMBI,
pOBOTOTEXHMKA, CHUCTEMBl UCKYCCTBEHHOI'O MHTEJJIeKTa M MHOTHX IpY-
rux [1,5,7-10]. B aTux paGorax OmeHMBAETCA CIOXKHOCTH IpelJiarae-
MBIX aJrOpPMUTMOB (Yallle BCEro MOPANOK CIOXKHOCTH) M CPaBHUBAETCSA
' CO CJIOKHOCTIO paHee pa3paboTaHHEIX aJropuTMoB. B psane pabor uc-
noBelyeTcss APYTroil HOAXON, CBA3aHHBIA ¢ BBEIEeHMEM MATEMATHUYECKUX
MoJzesel BBIUMCIEHNM, UCIOJIb3yEeMBIX I'IaBHBIM 0Opa3oM s moJiyde-
HUA HYDKHUX ONEHOK CJIOXKHOCTH Bbruamcienuit [5,11-13]. Cpemn sTux
Mozeneil HauboJiee U3BECTOHI ABJNAseTCA, TaK Ha3biBaMoe ajrebpaunye-
ckoe nepeso Briuncienuit Ber-Opa [11]. Kak pasnoBuanocts anrebpa-
MUYEeCKOro liepeBa BBIYMCJIEHUII MOXKHO paccMaTpUBaTh ajirebpandeckoe
nepeBo pemenui nopsnka d [12]. B cayuae xorna d pasBHO 1, noayua-
eTCA JNHelHOe IepeBO pelleHHii, ¢ MCIOJb30BaHUEM KOTOPOIo MOJIyue-
Hbl JIOKa3aTeJNbCTBA PAJLAa HIMKHNX ONEHOK cioxkHocTH [13-16].
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B nannoit cratbe npeanaraetcs o63op pa6ot aBTOpa, NOCBAICHMX

MaTeMaTH4YeCKOMY MOIeJMpOBaHUIO MHGOPMANMOHHOT amoMcKa. Eciau
yKa3aHHbIe BbIIIE€ MaTeMaTHYecKe MOJeNM BBLIYMCJIEHHH mpemgna3Haya-
JUACh AJA UCIJIOb30BaHUA B HIMPOKOM KpYre BHIYMCJIMUTENbHBIX NpOLEC-
coB (cM. [7]), TO aBTOp mpeamOYNTAET CHENUATU3IUPOBATCA Ha MOJENAX,
npenda3HavyeHHUBIX UIA UCCIeIOBAHNA HEKOTOPBIX aJFOPUTMOB MOUCKA
nEpopMmanuu. Takadg »y3Kasd cOemuaJM3alUA« NpeljaraeMbiX MoOJieH
I03BOJIAET HAaNEeATHhCA Ha HOJIyhIYeHWe GoJlee MHTEpPECHBIX pPe3yJITATOB,
B 4aCTHOCTH 6GoJiee TOUHBIX OMEHOK CJIOXKHOCTH.

IIpu pa3spaboTke aTUX Moneeil HCOONB3YIOTCA OPHUHIMILI ¥ ANIa-
pPAT TEOpPHUHM YIPaBIAIIAX CHUCTEeM, ¥ BBOIATCA HOBbIEe KJACCHI yIpa-
BJISIIOIIAX CHUCTEM.

Crauanla ¢opMmaaulyeM NOHATHE 3aNa4yd MHPOPMAIMOHHOTO IOM-
cka (3UII). B paborax [2,4-7] BBomMIMCh pa3inyAEMe POPMATU3AMIMA
3UII, so Mu1 maguMm cobcTBeHRYIO PopMan3anuio, 6osee yno6HYI0O HAM
ISl UCHOJIb30BAHUA B JaJjibHelleM.

IIycts BaM nambl nBa MHOXecTBa Y M X. IlepBoe MHOXecTBO Y
SABJIAETCA MHOMXeCTBOM 00bekToB moucka. M3 ajeMeHTOB 3TOro MHO-
’KeCTBa COCTABJAIOTCA WHPOPMANMOHHbIE MAaCCHUBBI, B KOTOPBIX HNPOM3-
BOIMTCA MOMCK HYXKHBIX OG'BEKTOB. DJeMeHThHl MHOXecTBa Y, Oynem
Ha3bIBaTh, 3a0ucAMU. BTopoe MHOXecTBO X HazoBeM MHOXECTBOM 3a-
IPOCOB, a €ro sjJeMeHThl — 3amnpocaMu. IlycTh Ha ZeKapTOBOM IpoO-
u3BeneHnn X X Y 3azmaHo GUMHapHOe OTHOIIEHWE p, T.e. 3aJaHO HEKoe
nomMHOXKecTBO R C X XY um z p y, ecin (z,y) € R. OrtHolueHne p
OyzieM Ha3bIBaTh OTHOIIEHHEM NOHCKa. B comep:aTeJbHOM CMEICJTE p
ONMCBhIBaeT KPUTEPHUIl CEMaHTHYECKOr0 COOTBETCTBHUA 3alMCH 3alpocy,
1 MbI 6yeM rOBOPHUTb, YTO 3alUch ¥ € Y yIOBJIeTBOpPAET 3alpocy z €
X,ecmnzpy. :

Mon 3anaueit mapopmanvornnora noucka (3UII) 6ynem noruMaTts
tpoiiksl I = (X,V,p), rme X — MHO¥ecTBO 3ampocoB; V — HeKkoTopoe
KOHeYHOe INOIMHOXKECTBO MHOKecTBa Y, KOTopoe B JaJibHeiilieM OyneM
Ha3elBaTh 6MbGAMOTEKOM; p — OTHOLIEeHMEe MOUCKa, 3alaHHoe Ha X X Y;
u GymeM cuuTaTh, uTO 3amava I = (X,V,p) cocrour B mepeunciaHUU
IJIsA TPON3BOJBHO B3ATOro z € X BCeX TeX M TOJNIbKO Tex 3amuceil uz V,
KOTOpPEIE YIOBJIETBOPAIOT 3alpOCy Z.

X pOHOJIOTHYECKN HCCledyeMble aBTOPOM MOJENIU 3BOJIIOIMOHUPO-
BaJIM B CTOPOHHI Bce GoJiibliero o6061enss 1 oxBaTa Bce GoJjiee mIMpo-
Koro Kiacca ajroputmoB. Ho B aToi#t paborte moitnmem B o6paTHON XpO-
HOJIOTMUYECKOM MOC/IeJOBATEJBLHOCTH U BBE/IeM CHadaJlla caMyio oburyro
MoJiellb, a MMEHHO KJIaCC ynpaBJAIOIHUX CUCTEM HA3MBAHHBIX aBTOPOM
MHGOPMAIUOHHLIMHA CETAMHU C MEepeKIIoUYaTeNAMH.

BBeneM mnoHATHEe HHPOPMANMOHHOW CeTH C NepeKJIYaTelAMU
(UCII). lIyctp HaM naHbI MHOdecTBa X M Y, onucaHHBle paHee, MHO-
#ecTBO F cMMBOJIOB O HOMECTHMX IIpeJMKATOB, ONpe/ieJeHHbIX Ha MHO-
#KecTBe X, KOTOpoe Ha30BeM 6a30BbIM MHOKECTBOM HpeNUKaTOB, U MHO-
’kecBo G CMMBOJIOB OJHOMECTHbIX HepekJjivareneil, onpeaejennblX Ha
mHOXKecTBe X. Ilon mepeksaiouaTensmMu OyneM noHMMaTh (yHKIUH,
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06JIACTBIO 3HAUEeHUN KOTOPBLIX SIBJAIOTCH KoHeYHble NOIAMHOMXKeECTBA Ha-
typaJjbHoro psaaa. [laper F = (F,G) nazopeM 6a30BbIM MHOKECTBOM.

Onpenenenue nousata MCII moxso npa3buts Ha IBa 3Tama. Ha
nepBOM dTalle PACKPHIBAETCA CTPYKTYpPHadA (CXeMHasA) 4acThb 3TOTO IO-
HATUSA, Ha BTOPOM — (QyHKIUOHAJbHAA.

1. sran. Onpeneneane UCII ¢ Toukn 3peHUs ee CTPYKTYPHI.

IIycth HaM maHa OpHMEHTHPOBaHA MHOIONOJIIOCHAA CETh.

BeLoesuM B Helt OMH MOJNIOC ¥ HAa30BEM €ro KOPHEM, a OCTaJIbHbIE
IOJIFOCa Ha30BeM JIMCThAMMU.

BeroenuM B ceTH HeKOTOpHUE BepPUIMHBI U Ha30BeM MX TOUYKAMH Ile-
pekaoveHus (moaoca MOryT ObITh TOYKaMU IEePEKJIIOUEeHN ).

Ecmu f BepmmBa ceTH, TO 4epe3s g 0603HAUUM HOJyCTeleHb MC-
X0Oa BeplUIXHHI 3.

Kaxmo#t Touyke mepeknaodyerEnsa § comocTaBUM HEKHMM cUMBoOJI u3 G,
TaKoi, UTO MaKCUMaJIbHOE€ 3HaueHWe IepeKJIovaTelid, COOTBETCTBYIO-
Ilero dTOMY CHMBOJY, He IpeBHILaeT 3. ITO COOTBETCTBHEe Ha30BeM
Harpy3Koll TOuUeK mepeKJIoOYeHUs.

Ilna xkaxxnoit Touku nepekaouesusa B pebpam, U3 Hee M3XOIANINM,
NOCTaBMM BO B3aMMOOIHO3HAUYHOE COOTBETCBHME YMCJIAa M3 MHOXECTBa
{1,%3}. DTH pebpa Ha30BeM NepeKIIOYATILHBIMU, & DTO COOTBETCTBHE
— aHrpy3KOM MepeKJlodaTedbHRIX pebep.

Pebpa, He sABiAIOmMUECcA NepeKJOYaTeJbHBIM, Ha30BEM MpeaUKa-
THBIMH.

KaxxnoMy npemvkaTHOMY pebpy ceTH CONOCTABUM HEKOTOPBIA CHM-
BOJI U3 MHOKecTBa F'. DTO cooTBeTCcTBME Ha30BeM Harpy3koil pebGep.

ComocTaBUM KaXKIOMY JHCTY CEeTH HEKOTOPYIO 3allMCh U3 MHOMKec-
TBa Y. DTO COOTBETCTBHE Ha30BeM HArpy3KO#l JIMCThEB.

[MonydeHByI0 HArpyXeHHYIO ceTh Ha30BeM MHPOPMANMOHHON ceThbio
¢ mepekJaoYaTeNAMU Hald 6a3oBeiM MHOXKectBoM F = (F, G).

2. aran. Onpenenenune pyaxknuorupoBanusa UCII.
IIycts mam nama UCII U.

IlocnenoBaTeIbHOCTh OPMEHTUPOBAHHBIX pebep cetu (a;, as),
(a2, a3), ..., (Am-10,,) Ha30BeM OpHEHTHPOBAHHOMN [eNbIO OT BEPUIMHK
Q] K BeplIMHE Q.

Ecmu f(z) npemukat, To Ny = {z € X : f(z) = 1}.
Ecimm n — BaTypajdHOe 4mcio, a ¢g(z) — Hekuil mepekjaodaTels,
TO Yepe3 {7 (z) o6o3pauUMM NpeaMKaT, onpenejeHHLi Ha X, Takoi, uTo

Nen ={z € X : g(z) =n}.

O603HaYNM X
G={{:9€GneN}.

Ecau ¢ pe6po cern, 1o 4yepes [¢] o6o3maunuM ero Harpysky.
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[IpoBomMocTBIO pebpa (a,ﬂ) Ha30BeM MpeJMKaT, i)aBHLn‘?I

a) [(a,B)], ecin pe6po — npemkaTHOE;

6) d,(""’ )], ecau pebpo — mepekJioudaTelibHOe, Tlle § — NepPeKJII0YUBa-
TeJIb, COOTBETCBYIOIUMI BepIIMHE Q.

I[IpoBomMMOCTBIO OPpHMEHTHPOBAHHOUM IleIM HAa30BeM KOHDbIOHKIIUAIO
npoBoaMMocTelt pebep menm.

B UCII no aganorum ¢ KOETAKTHRIMM CXEMaMM BBelleM JUIA KayKIo#
napbl BepUIMHE a M  ¢yHKOUIO IPOBOIMMOCTH f,3 OT BepIIMHBI a K
BepiunHae § ciaenyiomum obpa3zom:

1) ectm a =B, 10 fop(z) =1 (2 € X);

2) ecsm a # B u He cymectByeTr B UIIC opuerTOpOBaHHBIX memeil ot
a k 3, To f.p(z) = 0;

3) ecim a # f ¥ MHOXKeCTBO OPMEHTHPOBAHHLIX Heneif oT a kK § He my-
cTO, TO f,3(Z) paBHO IM3BLIOKOMM NPOBOAMMOCTE BCEX OPHMEHTHPO-
BaHHBIX Iemell oT a K f.
dyaxnuio npoBomuMoctu oT KopHsA U CII k HekoTopoit Bepuinae B

W CII nazoBem ¢pyHKOUeH PunabTpa BepmuHH S U oGo3HauUM ds(z).

Onpenennm misa UCIH U dpyrkmimo §: X — 2Y, koTopyio HazoBeM
¢ynknueit orBeta cetu U, ciaenyromum obpa3oMm. Bo3bmeM mpoussu-
onbHbIN 3anpoc z € X. Ilna xkaxnoro mucta UCII U Beruncium ¢ynsk-
uuio ero ¢puabTpa Ha 3ampoce z. Omnpenenum MHOXkecTBO J, KOTOpoe
COCTaBUM M3 3aIUCEH, COOTBETCTBYIOUIUX JUCTHAM, GYHKIUHN GUILTPOB
KOTOPBIX OKa3aJIMCh PaBHBIM 1 Ha 3ampoce z. DTO MHOXKECTBO 3amuceit
Ha30BeM OTBeTOM Ha 3ampoc z. Temepb o6bABMM MHOXKecTBo J 3Haue-
aveM ¢yHKOMM oTBeTta & Ha 3ampoce z, T.e. §(z) = J.

Bynem rosoputh, uro MCII U peanmsyeT omnpeleleHHYIO BhIIIe
¢yHKMio orBeTa .

TeMm caMpiM Mul onucaau ¢ysxknuonupuBanue M CII u monsocTsio
onpeneansiv NOHATHE WHPOPMAIVOHHOM ceTH.

HNycts U — HEKOTOpadA moacers (T.e. HPOU3BOJIbHOE NOIMHOMKECTBO
Bepuinn B pebep) UIIC U. Yepes (U) 063HaAUMM MHOXKECTBO 3amucei,
COOTBETCTBYIOWUX JUCTHAM 3TOM MOACETH.

B uyacTHOCTH, ecid a — HeKOTOPhIi JucT cet U, 1o (a) — ecThb
MHOeCTBO, COCTOsAIlee M3 OJHOIO 2JE€MEHTa — 3allICH, COOTBETCBTY-
oleil JUCTy a, ¥ MO3TOMH Hox (a) Mel 6yneM MOHMMAaTh 3allHCh, COO-
TBETCTBYIOINYIO JIUCTY .

Torna ckaxkem, uro UCII U paspemaer 3UIl I = (X,V,p), ecan
A Joboro 3anpoca z € X oTBeT Ha dTOT 3aIpPOC COAEPKUT BCe Te M
TONBKO Te 3alMcHU M3 V, KoTopble yAOBJIETBOPAIOT 3aNpocy z, T.e.

Va(S(z) = {y €V :z py}).

BieneM cinenyromme obo3HayeHUA.
ITyctes U — UCIL.
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Yepes R(U), P(U), L(U) (nam upocro R, P, L) 0603HaIUM MHOKEC-
TBa BepUIVH, TOYEK IEePEKIIoUYeHNsA U JUCTheB ceTH U COOTBETCTBEHHO.

Ucnons3ys sTu obo3HaueHUA, GYHKOUIO OTBeTa MOXKHO IpelcTa-
BUTH CJIeyIOIIUM obpa3oM:

$(z) = ({a € L(U): da(z) = 1})

BBeneMm eme omao o6o3BavyeHue.

IIyctes y upousBonbHasA 3amuch U3 Y. OGo3zpauuMm uepes O(y, p) =
={zeX:zpy}.

®yBKIUIO Xy ,, Takylo, uto N, = O(y,p), OyaeM Ha3BIBATh Xapak-
TepPUCTHYECKON PyHKIMEN 3amucH Y.

Yepe3 Ly(y) 0603HaAUMM MHOXKeCTBO JIUCTheB ceTH U, KOTOpPHIM
COOTBETCTBYeT 3aluCh Y.

CopasemnBa cienyiolas TeOpeMa.

Teopema 1. UCII U paspewaem 3UII I = (X,V, p) mozda u moasvxo
mozda, xozda das awbotl sanucu y € V, maxot, ymo

a) O(y,p) =0, aubo Ly(y) =0, aubo Vv ¢(z)=0;
a€Ly(y)

6) O(y,p) # 0 cnpasedaueo Ly(y) # 0 u aEIX;(y) #(z) = xy,0(2).

IIycts HaM naHBI MHOKECTBO 3ampocoB X, MHOXKeCTBO 3amuceit Y,
oTHOIIeHMe moucKa p Ha X X Y, u 6a3oBoe MHOXKecTBO F = (F,G).

CkaxeM, uTo 6a30Boe MHOXECTBO IpeaUKaTOB F MOJIHO IUIA OTHO-
HIeHNs NOMCKa p, ecau ana moboit 3UIl I = (X,V,p), rne V C Y, cy-

‘mectByer UCII U man 6a30BniM MHOkecTBoM F, paspemaromasn 3UII
I.

IlokakeM cienylomuii pe3ynbTaT, OTHOCAIMMCA K npoGieMe HoJ-
motel miasa ACII.

Teopema 2. Ilycmb 3adanvt Muoxcecmea 3anpocoe X, zanuced Y u
omnowenue noucxa p ua X x Y. Tozda 6azoaoe muoxwcecmso F = (F,G)
bydem noansM 0ad omuowenud p mozda u Moavko mozda, x020a O0AF

awbotli sanucu y € Y dynxyuwo X, ,(z) moxcrno npedcmasums gopmyaoii
euda

i=179<

XXV E i),

ede f;; € FUG.

Kaxnoit UCIl U moxuo conocraButh Hekmii anropurMm. Ilpenno-
naraeTcs, YTO STOT aJrOPUTM XPAaHUT B cBoeil (BHeuleHeil) maMATH
crpyktypy UCII U. BxoaHuMu HaHHBIMM aJITOPUTMa ABJIAETCA 3a0POC.
BrixoqHRIM NaHHBIMU sIBJIAETCA MHOXKECTBO 3amucei.

OnuiieM STOT aJIrOPUTM.
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[Iyctp Ha BXxoa ajropuTMa moctymua 3anpoc X. Pabory aJjro-
pUATMa HauMHaeM U3 KopHA ceTH U, o6bABNASA 9TO TeKylleil BepUIMHON
nepBoro mara. Eciau Tekymas BeplIMHA eCTh TOYKa HepeKJIo4YeHH,
TO BHIYHCJIAEM Ha 3alpoce z NepekJiodaTesb, COOTBETCTBYIOUIMIA NaH-
HOU BeplnHE M 06bsABIsEeM KOoHell pebpa, UCXOodAllero U3 TeKyleid Bep-
IIMHBI Harpy3Ka KOTOPOro paBHA 3HAYEHWUIO NePeKITIOYUTENA, TeKylleH
BepUIIMHOHN clenyromero Iara, ecCjiy TOJbKO 3Ta BepIlIWHA He Oblia Te-
Kylleil Ha mpeAblayuux marax. Eciam Tekyiiada BepiIMHA He SABJsETC-
A TOYKOM mepeKJIOYEeHHA, TO IPOCMATPUBAEM IO OYepeld HMCXOIAlNue
M3 Hee pebGpa M BHIUYMCIIAEM 3HAUEHUA NPeIAKATOB, IPUNMCAHHBIX 3TUM
pebpaMm, Ha 3ampoce z. KoHmel pebGep, KOTOPBIM COOTBETCTBYIOT Ipe-
OAKATBI CO 3HAYEHUSIMHU, paBHaAMU 1, 06'bABIsAEeM TeKyUIMMY BeplIUHA-
MM cJieAyollero Iara, eCJy TOJbKO Ha ODpeIblAyIIMX LIarax 3THU Bep-
INMHBI He OGBbABIANKCH TEKYIIMMM. 3aTeM NepeXxoIuM K CledylolneMy
" miary, Ha KOTOpOM [aHHasA Iponenypa MOBTOpPAETCA IJUIA BCeX TeKYIIUX
BEepIIMH OYepeqHOro Iara. Yepe3 HeKOTOpOe KOJMYECTBO IIaroB, MBI
monaZieM BO BcCe BepIIMHBI, QYHKIUM (UILTPOB KOTOPBHIX paBHBEI 1 Ha
3anpoce z. Ecau cpemm sTUX BepHIMH eCTh JHUCThsA, TO 3alMCH, CO-
OTBETCTBYIOUIME B3THUX JHUCThAM BKJIOUYaeM B BbIXOJHbIe JaHHBIE AJIIO-
putMma. Ocraerca zaMetuts, uto ecau M CII pa3pemaer 3anauy I, To
MHOXXeCTBO, NOJIy4YeHHOe Ha BBIXOJIe aJropUTMa, OyaeT colepskaTh Bce
Te U TOJIbKO Te 3amucu 6ubGamoteku (U), KOTOpble yIOBIETBOPAIOT 3a-
npocy z. T.e. nonydennsiit anroputm pemaet 3UII I = (X,V,p), rue
V = (U), u 3HaUUT ABJIAETCA aJTrOPUTMOM HOMCKA.

TakuMm o6pazom UCII, kak yonpaBiasiomas cucteMa, MOXKeT paccMa-
TPUBATHCA, KaK MOJENb AJropuTMa NOMCKa, paboTaloumero Hal OaH-
HbBIMH, OPraHU3OBAHHBEIMH B CTPYKTYpPY, OlpeleisieMYyIO CTPYKTYpo#

NCII.

Beenem teneps moaaTue cioxaoct UCII. Ho cravaia onpenesrum
noraTHe ciaoxaocty MCII ma 3ampoce.

ByneM cunTaTh, UTO BpeMs BBIYHACIEHUSA JIOOOro mepeKkIIoYMUTENA
n3 G nIpUMepHO OJMHAKOBO M XapaKTepHU3YyeTCs UYHUCJIOM a, a BpeMms
BhIYMCIeHNA Jio6oro npemmkaTa u3 F — uuciowm b.

Ilycts HaM nana Hekasa MUCII U u npou3BoibHO B3ATHIN 3aupoc & €
X. llyctb A — onpenenennsit pagee aaroputM, conocrapnennrit UCII
U. Cnoxnoctbio UCII U ma 3anpoce z HaszoBeMm umuciao T(U,z), pas-
HOe KOJIMYECTBY MepeKjoyaTenell, BEIUMCIEHHERX aJropuTMoM A npm
moJavye Ha ero BXOJ 3alpoca z, YMHOXeHHOe Ha a, IJIIOC KOJWeCTBO
BBHIUMCJIEHHBIX IPEIUKATOB, yMHOXKeHHOe Ha b, T.e.

T(U,z)=b Y.  ¢s(z)-vs+a- 3. ¢s(z).

BER(UN\P(U) BeP(U)

Benuuuna T(U, z) xapakrepu3yeT BpeMsa paboThl aJlropurMa A npu
nojave Ha ero BXoJ 3alipoca Z.



Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991 43

Cunoxnvoctb UCII MoKHO BBOJMTL IO pa3HOMY, HalpuMep KaK Ma-
KCUMMAaJIHYIO CJOXHOCTh Ha 3alpoce, KaK OObIYHO U LeJieaTcsA, HO B paM-
KaX paccMaTpUBaeMoOi Moneqy OKa3bIBaeTcsi YINOOGHBIM HCCIeNOBATh
cpeldHee 3HaudeHME CJIOKHOCTH Ha 3ampoce, MO3TOMY MLl BBelleM IOHA-
tve caoxkpocTr M CII Kak cpemnee 3mauvenne cioxkaoctu U CII Ha 3a-
npoce, B3sAToe 0O MHOXKECTBY BCeX 3alpOCOB, IJIA 9TOr0, BBElleM Bepo-
ATHOCTHOE NPOCTPAHCTBO HAJ MHOXKECTBOM 3alpocoB X, moJ KOTOPBIM
6ynem nmoEMMaTh Tpouky (X,eo,P), rme ¢ — BekoTopasa anrebpa mox-
MHOXeCTB MHOXecTBa X, P — BepoATHOCTHaA Mepa Ha 0, T.e. alH-
THBHas Mepa, Takad, uro P(X) = 1.

CuopaBemvBa cilenyouas JieMMa.

Jlemma 1. Ecau anzebpa o codepxcum ece muoxncecmea Ny, 20e f €

F UG, mo das wwboti UCIT U nad bazoewm muoxcecmeom F = (F,G)
pynxyus T(U, z), xax pynxyus om z, seagemca cayyaiinot eeaununot.

Tenepb Mbl MokeM onpeneaunTh ciaokEocTh T(U) cerm U, Kak Ma-
TeMaTUUYeCKoe OKUIaHWe clydaitnoil Beauuunsl T(U,z):

T(U) = MT(V,2) = [ T(U, ) P(dz) = [(b- > #6(z) s+

X3eR(UN\P(U)
+a- Y ¢p(z)) P(dz) =b-> sP(Ny,) +a- > P(Ny,).
BeP(U) BER\P BEP

Ecau (8,a) — pebpo, TO CIOXKHOCTBIO 3TOro peGpa Ha30BeM UKCIO
a) P(Ng,) — ecnu (B,a) — npemikaTHOe pebGpo;
6) P(Ng,)/¥p — encu aTo pebpo — mepexinovaTeIbHOE.

Toraa B 3Tux Tepmunax ciaoxkaocts VCII paBHa cymMMe clIOXHOCT-
eit pebep UCII.

IIycts BaM nana Bekaa 3UII I. CrnoxuocThio 3anaun I npm 6a3o-
BOM MHOXecTBe JF Ha30BeM YMCJIO :

T(I,F)=inf{T(U):U € U(I1,F)},

rae uepe3 U(I,F) o6oznaueno MHOkecTBo Bcex MCII Han Ga3oBhM
MHOXeCTBoM F, pa3pemalomux 3anavy I.

Knacc UCII — aTo coBceM HOBHIM Kilacc M paHee B NevYaTH He
NOABJSAJCH.

B cnyuae, xorma 6a3oBoe MHOMeCTBO Nepekiaiodarteieii G mycTo,
T.e. B ceTAX HeT mepekiwuaTteineii, To NCIl ma3bBaeTca mEPopMann-
OHHBIMHM ceTAMHU ¢ AyGiaupoBanueM juctbeB (MCI). Knacc UCI ra-
KXKe CpPaBHUTENbHO HOBHIA M BBommicsa B [28]. B kmacce UCI Gynmem
CUMTaTh, UTO YHKCJIO b, XapaKkTepusymollee BpeMs BHIUMCIEHUA IpeIu-
KaToB u3 F, paBHO 1.

B kxnacce UCIl copasennuBa cienymoouan HAXKHAS OLEHKA.
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Teopema 3. Ilyems I = (X,V,p) — 3HIl, F = (F,G)— basosoe
MHONCECTNBO, NOAHOE OAA OMHOWENUS p U Ydobaemeopsouee ycaosuw0

aemmull, mozda
T(1,F)> 3 P(O(y,0)).-
yev

CyTb TeopeMbl 3aKJIOYaeTCA B TOM, UTO BpeMsA NHMCKa He MeHbIIe
BpeMeHH, TpebyeMoro Ha nepedyuciieHUEe OTBETA.

Takoro pe3yiabTaTa CTOMT OXuaath M B kiaacce MCII, mo stoT
pe3yJbTaT ellle He omy6JIMKOBaH.

NCI, pa3nuYHBIM JUCTBAM KOTOPOH COOTBETCTBYIOT pa3JIMUHEIE
3amMcH, Ha3biBaeTcd nEpopmanuonHOii cetbio (MC). D10 nousaTue Buep-
Bhle BBeIeHO B [24]. BoJjee nocTyuabiMu M3naHUAMU ABIsAOTCA [25,26].

NC, rpa¢ koTOopoit ABNseTCA NepeBOM, a JHUCThA COBHANAIOTC BUC-
SIYAMM BeplIMHAMM JepeBa, Ha30BeM MHPopManuoHHEKM Aepesom (M II).

Bnepsrie nomstue UIl 6wvimo omy6GiaukoBaHo B pabGortax [19-21].

Kaacc M1 nccnenoBajica Takke B KaHIMIATCKON mUCcCepTalldM aBTOPA.

NIl yno6HbI ¥ MHTEpECHBI T€M, YTO CTPYKTYpPhl ZaHHBIX, UM COOT-
BeTCTBYIOIMEe, IPAKTUYHEI ¥ MX FOPpa3/io Npollle pealn3oBaTh Ha 9 BM.
Torma kak UC o6nagaroT 60JMIMMHA BO3MOKHOCTAMU U OXBATHIBAIOT
6oJslee MIMpPOKUHA KiIacc aiaroputMmoB. I[losToMy mpezncraBiigeT MHATEpec
BbISIBJIEHHE KJIACCOB 3aJay MHPOPMAIMMOHHOI'O IMOMCKA, IS KOTOPBIX
onTvMaJjbHBeE (T.e. ¢ MUHMMaJAbHOM cioxkHOCThIO) UC Haxomarcsa B
knacce U II. :

OmE U3 TakuX KiaccoB npuBomutca B [27]. OnumeM ero u maamm
OCHOBHBIE pe3yJTaTH [27].

CkaxkeMm, yto UCIl obGnanmaer A-cBoiicTBOM, ecClMi KOp€Hb CeTH
MMeeT MoJIycTeneHb 3axoha O, KaKIObli JIUCT CeTHM MMeeT MOJIyCTeneHb
ucxona O, ¥ ceTb COCTOUT TOJILKO M3 BepIIMH ¥ pebep, NpHUHALIEKAIMX
XoTA OBl OmMHON memM, Bedylleil U3 KOPpHA B KaKoM-/1HUOO JIKCT.

CkaxkeM, 4YTO BeplIMHA @ CeTH MOCTMXKUMAa M3 BEPKUHEI (3, eclid U3
B B a cymecTByeT OpUEHTUPOBAHHASA NElb.

IIycts B — Bepmna Hekotopoit MCII. O6o3nauum uepes Vi MHO-
’KeCTBO 3alMcell, COOTBETCTBYIOLIMX JUCTbAM, JOCTHKUMBIM K3 BEpPLIU-
HHI (.

CxkaxeM, uto MIC, paspematomas 3UIl I = (X,V, p),o6mnanaer Bj-
cBoiicTBOM,eciIi s Noboit BepummHnl B ceTH, 3a UCKIYUYeHUEM KOPHA

Ny, = U O(y,p) wiu ¢g = v Xy.p
YEVs y€EV;s

O6o3raYNM

m
ng{VXy.-j,p:m:]-ak, 15i1<i2<...<im<k},

1=1
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raoe I = <X’ V7p> T 3I/IH7 {y11y2)'"7yk} =V. _
CxaxeM, uTo 6a3oBoe MHOxecTBO F = (F, Q) obnanaer Cj-cBoiict-
BoM, eciu 1A Vf € F Ny € o, u MHO)kecTBO U(I,F) He mycTo (3Iech
I=(X,V,p) — 3UIl, 0 — anre6bpa nommuoxects X ).
CkaxeMm, uro Wl Hanm 6a30BBIM MHOXKECTBOM Fé obnanaer Dj-
CBOMCTBOM, ecJU OHO oOJjanaeT A-cBoiicTBoM, m Br-cBoMcTBOM.
O6osmaunm uepes D! mmoxectBo Bcex WMII, obnanatommx Dj-
CBOMCTBOM.
CxaxeM, uto 3UII I = (X,V, p) obnanaer E-cBoiicTBoM, eciau
a) mna noboit 3amucu y € V O(y, p) € o u P(O(y, p)) # 0;
6) mna awobex ¥y, y~ €V, Takux, uyto y # y~

P(O(y,p)NO(Y",p))=0.

CopaBemnBa cledyolilas TeopeMa.

Teopema 4. Ilyecms I = (X,V,p) — 3HUII, obaadarwwas E-ceot-
cmeom, F = (F,0) — npoussoavnoe basosoe mnoxcecmeo, obaadarowee
Cr-ceoticmeom, U — npouseoavras UCII nad bazoeum muoxcecmeom F,

paspewarwas 3UI I. Tozda cywecmeyem U D € D!, maxoe ymo

T(D)<T(U).

CkaxeM,uto 3UIl I = (X,V,0) obnamaer F-cpoiicTBoM, eciu
oHa obnamaer E-cBoiictBoM M misa maobuix y, y- € V P(O(y,p)) =
= P(O(y",»))-

O6o3rayuM

R(k) = 3 - k[logs K] + 4 - 4(k — 30°8: ) 4 max(0, k — 2 - 3l08: 4]) |

CopaBemnuBa clenyionias TeopeMa.

Teopema 5. Ecau I = (X,V, p) — 3HII, obradarwuwas F-ceoticmeonm,
F = (F,0) — basosoe mnoxcecmeo, obaradawwee Cj-ceoticmeom, U —
HCA, paspewyrowas CHII I, mo

2dey €V, k=|V| — mownocmo 6ubaruomexu V.

Ilna cpaBHeHMA OTMeTHM, UTO HMKHAA oleHKa ciaoxuaoctu 3HUII,
nojydaeMms ¢ TeopeMhl 3 IJiA 3a1a4, obnanalomux F-cBoiicTBoM, paBHA
KOHCTaHTe, He NpeBblmalomeii 1.

B paGore [28] nccnenyerca cienyroumas 3alada moucka. JlaHo Ko-
HeYyHOe MHOMeCTBO ToueK U3 oTpe3ka [0,1]. 3anpoc 3anaer Hekuit oTpe-
30K [a,b] C [0,1]. Hano nepeunciuTh Bce TOUKM M3 MHOKECTBA KOTOPHIE
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lonaJaloT B OTPe30K [a,b]. DTo M3BecTHasA 3a4a4a, ABJIAOUIANCS OAHON

n3 Ga3UCHBIX B reOMeTPUYECKMX 3aavuax NOMcKa 7], moayuMBuminx pa-
clIpocTpaHeHHe B 3BA3M C Pa3BUTHEM KOMILIOTOPHON rpaduku v Ipy-
rmx KOMOBIOTOPHTHIX Aucouniue. B naveO# paGoTe He CTONLKO NpH-
BOINATCA aJITOPUTMBI pellleENsA 3TOM 3a4auM (XOTA NOCHeOHWUM U3 [pU-
Be/leHHEIX aJITOPATMOB MHTEpeceH M caM Io cebe, U B cpenHeM Tpebyer
[IOMHMO BpeMeHH, XeoOX0QMMOro Ha HepedyncleHue OTBeTa, JIMIlb KOH-
CTaHTHOE BpeMs), CKOJIBKO MCCIeNyeTcsa KaKue aJITOPUTMBI BO3HMKAIOT,
ecJI4 OrpaHMYMBaTh HabOOp NOCTYHNHHIX CPenCcTB,UiIHn, 6ojee popMaHO,
NpY pa3JUYHLIX $a30BHIX MHOXKecTBaX. IlojydeHnl Takke HEKOTOpDBIE
HUKHVE OIleHKH, C IOMOIIbIO KOTOPHIX MMOKA3LIBAETCA, YTO COOTBETCTBY-
IolIVie TOJYYeHHble aJTOPUTME He MOT'YT ObITh CyIIeCTBEHHO YJyO6eHBI
Npu JaHHLIX OrpaHMYEHUAX Ha HaGOp NOCTYIHBIX CpPENCTB.

B 3UII u3 [28] MEOXKecTBO 3amuceit Y ects orpesok [0,1], MEOXKeCT-
BO 3anpocoB X ecThb MHOXeCTBO OTpe3kKoB [u,v] C [0,1], unu MHOXKeECTBO
nap TOYeK au ,v), Takux,uto 0 < u < v <1, 1e. X = {z = (u,v) : 0 <
<u<v<l1

Ha X 3a1aHO BepOATHOCTHOe mpocTpaHCTBO (X, p, P),rne o— aa-
rebpa NOIMHOXKECTB MHOXKeCTBa X, CONePKalolIA BCe IPAMOYTOJbHIKHA
CO CTOPOHAMHM HapaJlieJbHbBIM OCAM KOOPIMHAT ¥ NPAMOBIrOJIbHbIE PaB-
HobGenpeHAble TPEYTOJMbHUKMA C KaTeTaMU TaKiKe HapaljieIibHbIMUA OCAM
KoopIMHaT, P — BeposTHOCTHas Mepa Ha 0. ByneM cumraTh, UTO Me-
pa P onpenensierca ¢pyHKnMei#l MIOTHOCTH pacupelelleHUss BEPOATHO-
creit p(u,v), 1.e. 1ua VB € ¢ P(B) = [ p(u,v)dudv. [IpuueM nns yno6-

B

CTBa JOTOBOPHUMCS CYUTaTh, 4To p(u,v) onpenesieHa Ha BCceM KBalpare
[0,1] x [0,1], HO TpH (u,v) ¢ X p(u,v) = 0.

OTHOWeHME MOMCKa, KOTOpoe GylneM OGO3HAYMTHL 4Yepe3 py, OOpe-
NeJisAeTcs COOTHOUIeHNEM

(uiv)pﬂy — “S ?IS”,

rie (v,v) € X, y€Y.
0O603naunM

Myy={z=(u,v)eX:u<b v>a}.
PaccMoTpuM caydai, kKoraa 6a30Boe MOKECTBO NPEAMKATOB PaBHO
Fl = {fa,b : (a’b) € X}a

rae Ny, , = M,, a 6a30Boe MEOXecTBO Fi = (F,0).

Ot™eruM, yto qna Vf € Fy Ny €o,annaVy €Y O(y,pu) = My -,
a nasa npoussoabroit 3UIL I = (X, V, py) U(I,F,) # 0.

CnpaBeIMBBI cllelyOllNe TEOPEMBI.

Teopema 6. Ecau gynxyud naomuocmu pacnpedesenus 8CposmMuo-
cmeti p(u,v), onpedeasouas mepy P seposmnocmnozo npocmpancmea
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HA0 MHONCECTRBOM 3anpocos X, ozpanuuena, mo 0ax npoussoasvnot IUII
I= <X, v, Pn)

> P(O(y,pu)) < T(1,71) < ) P(O(y, pu)) + £(k)

yeV yev

2de k = |V|, £&(k) = O(VE) npu k — co.

TeopeMma 7. Cywecmeyem maxad GyHKYUs nAOMHOCMU pacnpedea-
nud aeposmnocmuets p(u,v), YMmo ecau ¢ nomowb0 Hee onpedeaums mepy
P 8EPOAMHOCIINOZO NPOCMPARCTEA HAO MHONCECTIEOM 3anpocos X, no
cyuecmayem maxas SUII I = (X,V, py), wmo

T(I,71) =) P(O(y,pu)) + £(k),
yeV

2de k = |V|, € = O(Vk) npu k — co.

Ba3oBoe MHOXecTBo F, HacTOJNbKO y3Koe, uro npu HemM MC mHe
MMeIOT HUKaKoro npeumyimectBa nepen MIl, nosToMy MOXKHO CUHATATH
OlleHKH TeopeM 6 U 7, ABJAAIOTCA ONEHKaAMH, KOTOpble MOYKHO HNOJYYHUT
B Kiaacce UIIL.

Bo3bpMeM Tenmephb B kKauecTBe 6a30BOro MHOXKECTBa IPeIMKATOB Clle-
Oyiolile MHOXKeCTBO

F2 = P1 U {fO,a ta € [0, 1]},
rme  — CUMBOJI JIOTMYECKOTO OTPHIAHMA, M npuMeM Fp = (Fy,0).
OueBunno, uro nna Vf € F, Ny € o.
CopeBeyIMBH CJleoyOIAE TEOPEMBI.

Teopema 8. Iycms I = (X,V,py) — 3HII, 20e V = {y1,..-,¥i},
npuvem 0 < y; < ... <y < 1. Toeda

k-1
T(I,%3) < Y P(O(3is Pu)) + 2 Jlog; K] -

1=1

ITa OIeHKa nocturaetcsa B Kiacce UC.

Teopema 9. as awbozo k € N cywecmeyem maxas Gynxyus nao-

mHocmu pacnpedeanus seposmmuocmuet p"(u, v), onpedeasow,as Mepy ae-
poamnocmnozo npocmpancmea nad X, u maxas bubauomexa Vi, Mownoc-

mu k, onpedeasouas emecme ¢ p*(u,v) UM I, = (X, Vi, py), ¥mo das
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2106020 6a308020 mnowcecmasa F = (F,B), maxoeo, wmo U(I,F) # 0, u

oasVfeFNseo

T(Ix, F) 2 ) P(O(y,pu)) + (3-loggk — 1) - k/(2-k +1) >
yEVi

> Z P(O(y7pn)) + c-log2k,
yEV:

20e ¢ — KONCMANMA, 8 KGNeCTee XOMOPOl MONCHO 83AMb, NANPUMED, C =
=2-(3-logz2-1)/5.

O6o3ma4yuM
A, ={(y,v)eX:ulv<u+a}

PaccMoTpuMm canydail, korga 6a3o0Boe MHOXKECTBO NpeIUKAaTOB paB-
HO

F3=F,u{f,— N;, =A,, ac[0,1]}u{f,:ac(0,1]}.
HlorsatHO, yTo s Vf € F3 Ny € o,
HyCTb ]'.3 = <F3,0)

CopaBennusa cienyromas TeopeMa.

Teopema 10. ITycmb gynxyus naomuocmu pacnpedesenus 8epos-
mnocmeti p(u,v), onpedeasowas mepy P eeposmuocmnozo npocmpan-
cmea nad smroxcecmaom zanpocoe X, maxas, wmo p(u,v) < c. Ilycms
I =(X,V,pu) — npoussoasvnas 3HUII, maxas, wmo |V| = k. Tozda

T(I,%5) < Y P(O(3,pu)) + 2 logglog k + 6 + 2 c.
yeV

DTa olueHKa nocturaetcsa B kiacce UCIL.
BBeneM ciemyouye nmepexaovdaTenu

1(2)_ 1, ecimz € A,
9alZ) =12, ecamz ¢ A,.

Ecin z = (u,v), To g2(z) = max(1,]u- (m + 1)]).

O6o3aunM
G, = {g}(z):a € [0,1]} U {gi(z): m € N},
f4 = (-F'Z’G1> .

Bynem c4ydTaTh ,4TO UMCIO @&, XapaKTepU3Npylolllee BPeMA BbIUH-
cJieHUs neperaounteneil u3 G, paBaa 1. Torma copasemnusa ciemny-
I0lasA TeopeMa.
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Teopema 11. Ilycms dynxyus naomuocmu pacnpedesenud eepod-
muocmeti p(u,v), onpedeasouas mepy P eseposmuocmuozo npocmpan-
cmea Had muoxcecmeom sanpocoe X, ozpanuvena. Ilyems I = (X, V, py)
— npouseoavnas 3UII. Tueda

T(I,F) < 3 P(O(y, pu) + 3.
yev

OnuieM ailropuTM, Ha KOTOPOM JOCTUTAETCA MOCJHENHAA OIEHKA.

YnopsanouuM 3anucu B 6ubauorexke V = {y1,¥2, ..., Yk} TaK, 4T0 ¥ <
<v2 < ... L Yk

Hycts S = {81,..,8m}, e s; = if/(m+ 1), i = I,;m. Ilna Kaxknoro
s; (i = 1,m) malinem nBa meiaslx umcia l; ¥ r;, mepBoe M3 KOTOPHIX
ABJsIeTCA HOMepoM Ommkaiimielt K 8; 3anucu U3 V, MeHblIell, 4yeM $;, a
BTOpoe — HOMepoM Oiamkaiimeil k s; 3anmucu u3 V, He MeHbIuell, ueM
;. '

IIycts HaM nmaB Hekmit 3ampoc z = (u,v) € X. Ilouck mo aTomy
3anpocy OyneM OCyLecTBATH CJeAyOIMUM oOpa3oM.

CHauvaJia BBIYUCJIMM JJIMHY WHTEpPBaJa Z.

Eciu v — u < 1/(m + 1), T.e. ecau g%/(m“)(z) = 1, TO ¢ IOMOUIbIO
IATOXOMUYECKOTO NOMCKa 3a log, K aros HaxoquMm caMylo Jo6oro 3a-
OMCh, HAXOMAULYIOCA He JieBee JIeBOro KOHIla 3aIpoca. 3aTeM cjieBa Ha-
OpaBo, HauMHasA C HalWIeHHON 3alMCH, OIPOCMATPHBAEeM 3allMCH, CPaB-
HUBasA UX C OPaBLIM KOHIOM 3alpoca, M €CIM OKa3bIBaeTCsA, UTO oye-
pelHas 3amUCh He GoJIbllle IPAaBOro KOHIA, TO 3TY 3alMCh BKJIIOYaeM B
OTBeT, a ecau GoJibllie, TO HOUCK NPeKpallaeM.

Ecan v—u > 1/(m+1), MBI ¢ IOMOLIBIO HEPEKIIOYATENA g,?n HalineMm
B MHOXeCTBe S CaMyIO TOYKY §;, NONaJalollyi0 B MHTepBaJ Z (TaKa-
s TOUKa 00sA3aTeNbHO CyIIeCTBYeT), 3aTeM IO cchiike l; maeM B 6im-
xKaluryio cieBa K 8; 3anuch 6mbauoreku V um nposepseMm nomaner Ju
OHa B z, €C/IA ONAaJaeT, TO CIpaBa Ha JIeBO MPOCMaTpHUBaeM clelylo-
I[He 3alMCH M poBepseM Ha MomaJaHHe B . 3aTeM MIEM MO CChUIKe 7;
¥, HauuHAA C 3a0UCH, B KOTOPYIO BeleT 9Ta CChlIKa, IPOCMaTpUBaeM
clieBa HAaIpaBO 3allMCH C NIPOBEPKOM Ha momaJaHWe B Z.

TakuM o6Gpa3oM, B IepBOM cliydyae MOMHMMO NEpPEYUCICHHS OTBe-
Ta MBI TpaTnM Bpemsa O(logk), a B BTopoM — Bpems, HeoGxomHMMOE
Ha BBIYMCIIEHHje IBYX MepeKJrodaTeseit gll/(m+1)(z) u g2 (z). Beibpas

HoAXoIAMMM obpa3oM mapaMmeTp m (HampuMep, B3siB €ro paBHbIM [2 -
-logy k + 1) - €], rne ¢ Takoe, uto p(u,v) < ¢) MOKHO HOBUTHCA TOrO,
4yTOOH! epBbIll ciaydyail MPpOoUCXoaui HACTOJIbKO PEIKO, UYTO CIOXKHOCTD,
¥M JaBaeMasi B CpelHeM, He NMpeBOCXOoAuja 1, u3 yero M nojyvaercs
OIleHKa TeopeMhl 11.

B [25] B knacce UC ucciienosadiica cnydait, korna oTHOIIeHMe MO-
VICKa ABJIAETCA OTHOIIEHNEM JIMHCWHOrO KBa3WINOPAIKA.
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Ilon oTHOlIEeHMEM JuMHEeHHOro KBa3uNoOpAlKa OyneM NoHuMaTh 6u-
HapHOe OTHoIIeHWe X, onpenenesHoe Ha X x X u nns nobwx z,y,z €
X, ynoBieTBopIOllee YCIOBUAM:

a) pediekcuBHOCTH X <X Z;
6) Tpam3uTuUBHOCTH (z < y)&(y < 2) = (z < 2);
B) cBsa3HOCTH (2 X y)V (y X 2).

O6o3HaunM:
Fo = {fy(z): Ny, = O(y,=),y € X} — MHOXeCTBO LpeJIMKaTOB;
UC(I,F) — muoxectso UC man 6a30BbIM MHONKecTBOM F, pa3pe-
maromux 3UII I;
TC(I,F) =inf{T(U): U € U°(1, F)}.

- B pa6ore [25] nokaszaHa cienyrolas TeopeMa.

Teopema 12. FEcau mnoxcecmea zanpocos u 3anucel cosenadaom
u obosnavennt X, omnowenue noucxka < na X x X seasgemcd omnowe-
HUueM AUuHelin020 Keaszunopsdxa, eepoimuocmuoe npocmparcmeo nad X
(X, o, P), maxoe, umo anzebpa o codepxrcum aece mnoxcecmnea O(y, <), 2de
y € Y, basosoe muoxcecmeo F = (F,0), maxo, wmo F D Fy, mo das aw-

bott 3UI I = (X, 1,<)

TE(I,F) =1+ }_ P(O(y, %)) - min P(O(y, X))
yeVv v

B pa6otax [19-23] uccnenosanca knacc UJI nna crenyromux oTHO-
HIeHUN TOMCKa:
a) X =Y = B} = {a=(a,...,,,) : @; € {0,1},% = 1,n}, oTHOWmEHNE
IOMCKa p; — »He MeHblle NO-KOMIOHEHTHO« — OIpeNelseTcs COo-
OTHOILEHNEM:

(215 s Za)P1(¥1) s 90) = 2 2 w0 i =1,

6) X =Y = B}, oTHOIIeHNe NOUCKa 07 — »PacCTosHNE 10 X3MMHUATY
He MPEeBOCXOMUT 1« — onpenenseTcsa COOTHOIIEHHUEM:

zpy <= p(z,y)<1,

rae p(z,y) — KOJIMYECTBO KOMIIOHEHT, IO KOTOPHIM BEKTOpa Z U VY
He COBIIaJaloT;
B) X =Y = B}, oTHOIEeHNe NIOUCKa p3 — »He Oojbllle IO HOpMeK —

onmpenejsieTca COOTHOIIeHUEM:

n
zZp3y < ”2” < ”y”7 rne ”(21, "'azn)” = Zzn—zzi +1;

=1
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— n _ —_— . y - —_ n
r) X = B} = {a = (aj,...,a,) : a; € {0,1,2}, ¢ = 1,n}, Y = B,
OTHOIIIEHHE NMOUCKa pgy — »UICHTUYHOCTH BbIAEJEHHBIX KOMIIOHEHT«

— onpeneiseTcsas COOTHOIICHUEeM:

(1o 1) Pa(V1y o0y Yp) &= ecmm 2, #2, T0 2;=y;, i=1,n.

ITockonbKy BO BCeX 3THX CHAydasX MHOMKECTBa 3alPOCOB ABJISAIOTCA
IMCKPETHEIMU MHOXECTBaMM, TO BEPOATHOCTHOE HPOCTPAHCTBO ONpe-
IleJiUM PaBHOMEPHBIM pacpelieleHMM BepoATHOCTel, T.e. mis jaroboro
sanpoca 2 € X P(z) = 1/|X|, rae |X| — MoumOCTH MHOXecTBa X.

B oTauuum oT mpemiaymux ciyvaeB IUIA 9THX OTHOUIEHHM MccClle-
noBaJuauch He cinoxaocTH 3MII, a craenyromme ¢pyrxknun, xapakrepusy-
Iol[Me CJIOXKHOCTDb Hesoro kiaacca 3UIL:

— D
1)T(k,n,p, F) = }Iel%T I,7),

2)T(k,n,p, F) = |T5|7! ) TP(1,7),
IeT}

roe n — napaMetrTp, xapaKTepM3onmnnﬁ Pa3MOTPEHOCTh MHOXKECTB 3a-
npocos ¥ 3amuceil; p € {p1,p2,p3,p4}; F = (F,0); T} = {I = (X,V,p) :

V| = k}; TP(I,F) min T(D); D(I,F) — muoxectBo NI man 6a3o-
DeD(I,¥)

BeIM MHOKecTBoM F, paspematoumnx 3UII I. ABtopoM Ghinm monayde-
Hbl aCMMIOTOTHYECKe ONEeHKHM THUX (YHKOMI IpH n — 0o.

B caMbix paammx pabGorax aBTopa [17,18] paccMaTpuBaca ciaeny-
oM caydaif. MHoXecTBa 3anpocoB M 3anmuceil ABIAIOTCA n-MepPHLIM
eMHENYHEAM KyO6oM. OTHOlIeHMe NOMCKAa €CTh OTHOIeHWe MIAEHTHYHO-
CTH 3alMCH 3amnpocy. Ba3oBoe MHOXeCTBO, Takoe, 4UTo 6a3oBoe MHO-
’KeCTBO IPeIUKATOB MyCTO, a 6a30Boe MHOXKeCTBO NepeKJioUaTeslei co-
CTOMT M3 IepeKaiodaTeriell, NpUANMAJUIINX 2 3HaYeHHA. 3aldavda HcC-
cjieqoBaJIach Ha momkiacce knacca U, cocroameM u3 6unapamx U,
T.e. IepeBbeB, Ka)KIad BHYTPeHAA BeplIMHa KOTODHIX MMeeT MOJYycCTe-
nenb ucxona 2. Cunoxmocts UJI Gpanacs He KaK CpemHAA CJIOXKHOCTh
o 3alpocaM, a KaK MaKCUMaJbHas CJOXHOCTb Ha 3ampoce. Bpoim-
much ¢yEKnuu IllearOHA KaKk MaKCMMaJIbHASA CJIQXKHOCT 3ajiay MHPopMa-
OUOHHOra IIOMCKa C OAWHAKOBOM MOIIHOCTBHIO OMOIMOTEK, KOTOPhIe HC-
clieIOBaJINCh NpH pa3HbIX 6a30BbIX MHOXkecTBaXx. McciienoBanach Tak-
ke yHKOUA, paBHAA MUHMMYMY MOIIHOCTH 6a30BOro MHOXKeCTBa nepe-
KiIo4yaTeiell, oGecneynBalomero JorapupMmuUecKuii MOUCK, T.e. MOKUCK,
PaBHBIA IO BpeMeHM JIorapu(My OT MOIIHOCTH GuGJIMOTEKH. '

Cnucok JuTepaTyphl
[1] . Kuyt, Hexyccmeo npozpamuposanus oas 35M, Coptuposka u nouck, 1.3, Mup,
Mocksa 1978.

[2] T. Centon, Aemomamuuecxas obpabomxa, Tparenuje u noucx unpopmayuu, Cos.
pamo, Mocksa 1973.




52 Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991

(3] Isk. MapruH, Opzanusayus 663 OGHNNT 6 SHNUCAUMEALNNT cucmemar, Mup, Mo-
ckBa 1978.

(4] P. AnscBene, U. Berenep, 3adauu noucxa, Mup, Mocxna 1982.

(5] A. Axo, Ilx. Xoakpodr, IIxk. Yasman, [locmpoenue u anasaus SHNUCAUMEADNIT
aazopummoe, Mup, Mocxsa 1979.

(6] B. H. PemeTHukoB, Aazebpausecxa meopus undopmayuonoza noucxa, llporpamupo-
Banue 3 (1979) 68-74.

[7] . JIm, ®. OpenapaTa, Busucaumesvnas zeomempusa, O630p.-B xu., KuGepnern-

yeckul#t c6opuuk 24 (1987) 5-96.

[8] D. T. Lee, C. K. Wong, Quintari trees: A file structures for multidimensional database
systems, ACM Trans. Database Syst. 1 (1980) 339-353.

[9] B. M. Chazelle, Filtering search: a new approach to query-answering, In:Porc. 24'"
IEEE Annu. Symp. Found. Comput. Sci. , Nov. (1983) 122-132.

[10] H. Edelsbrunner, M. H. Overmars, R. Siedel, Some methods of computational geometry
appliedto computer graphics, I1IG, Technische Univ. Graz, Austria, Tech. Rep. 117
(1983).

[11] M. Ben-Or, Lower bounds for algebraic computation trees, In: Proc. 15*®* ACM Annu.
Symp. Theory Comput., (1983) 80-86.

[12] J. M. Steele, A. C. Yao, Lower bounds for algebraic decmon trees, J. Algorith. 3 (1982)
1-8.

[13] D. P. Dobkin, R. J. Lipton, On the complezity of computatzons under varying sets of
primitives, J. Comput. Syst. Sci. 18 (1979) 86-91.

[14] D. P. Dobkin, A nonlinear lower bound on search tree programs for sovling knapsack
problems, J. Comput. Syst. Sci. 13 (1976) 69-73.

[15] D. P. Dobkin, R. J. Lipton, A lower bound of 1/2n? on linear search programs for the
knapsack problems J. Comput. Sci. 16 (1978) 413-417.

[16] A. C. Yao, R. L. Rivest, On the polyhedral decision problem,SIAM J. Comput. 9 (1980)

343-347.

[17] ©. 9. T'acanos, O caoxcnocmu noucxa e maccuee byasescxkur eexmopos, [Ipenpunt
P-5-U87 NA® AH bIsCCP, Tamxkent 1985.

[18] 9. O. TI'acanos, O caoxmcrocmu noucxa & maccuse byseecxur eexmopos, BecTn.
Mock. yn-Ta, cep. 15, Botunca. maTemaruka u kubepueTrxa (1987) 66-68.

[19] B. 9. T'acanos, Hexomopbie oyenxu caoxcrocmu noucxa undopmayuu, Pusuueckoe
M MaTeMaTH4YecKoe MOJeJHPOBaHMe MHCKPeTHMX cucTeM. MexaysoBcku#h cGopHHK
Tpynos 56 (1985) 43-47.

[20] 9. ©. Tacanos, Oyenxu cpednet caoacnocmu noucxa ungopmayuu, Mpenpunt P-5-
86 Usdd AH Y3CCP, Tamkent 1985.

[21] B. B. Iacanos, Aazopumms nocmpoenus unfopmayuonnniz depeaves, [Ipenpunr P-
5-N88 UAP AH Y3aCCP, Tamkeur 1985.

[22] 9. D. TacanoB, O nexOMOPHT OYEHKAT CAONCHOCTIYU NOUCKE uNPopMayuu, Aiarebpa,
Joruka U teopmus umceda, llon. pea. O. B. Jlynanopa u A. Y. Kocrpukuna — HNan-
Bo MTI'Y, Mocksa 1986.

[23] 9. O. TacanoB, O 00noil oyenxe caoacrocmu noucxa ungopmayuu, Yuca. MeToan
B MaT. ¢pusmuke, U3sn-so MI'Y, Mocksa 1986.—

[24] 9. B. Tacanos, O sude ONMUMAALNBT UHPOPMAYUONNBT cemetl OAF OMMOWEHUTT
aunetinozo xeasunopsoxa, Ipenpunr P-5-303 U1® AH Y3CCP, Tamkent 1987.

[25] ©. 9. Tacanos, Onmumanssnsie unGopmayuonrbie cemu Oad omHOWENUN NOUCKG,
AGAAVUUICA OMHOWEHUAM AUNEUNO020 Kaasunopioxa, KoHcTpykuuu B anreGpe
aoruke, Uan-so Teepckoro roc. yju-ta, TBeps 1990.—

[26] ©. O. Tacanos, 06 o6noll mamemamuveckoli MOdeAY UNPOPMAYUOKNNOLZO NOUCKGE,
Iluckpernas mMaremaruka 3 (1991) 69-76.

[27] ©. 3. IN'acanoB, HuXicKAA 04ENKG CAONCHOCTNU UNPOPMAYUONNLT cemeth AN 00NO20
NAGCCA 300GY% undopMayuonnozo noucka, JluckpeThaa MaTeMaTHKa (B neuaTH).



Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991 53

[28] ©. D. T'acanos, O noucxe mouex, nonadavuuz 8 unmepeaavi, JlnckpeTnas Matema-
THka (B MeyaTH).

E. E. Gasanov
Moscow State University,
Moscow, Russia







55

Graduate Workshop in Mathematics
and Its Applications,
Ljubljana, 23.—27. 9. 1991

RECONSTRUCTION OF MISSING VALUES IN DATA
MATRICES

7. KNAP

Math. Subj. Class. (1991) 65G99, 68P06, 68T10

Key words: missing values, reconstruction of missing values, data matrix, pattern
recognition

Abstract. In this article we describe a combinatorico-logical method for reconstructing
missing values in data matrices, which is based upon the test approach.

In the article we examine the question of reconstruction of data matrices.
Herein we propose a method for construction, which is based upon a method
of pattern recognition. We will examine some logically possible cases, which
arise given the hypothesis that either the columns or rows are properties,
respectively, or that each could be either property or entity. This method
can be generalised to include cases in which only some rows are properties
and other rows are entities and also the case in which it is unknown which
are entities and which are properties.

Given are two alphabets, A = {a;,a,,...,a,} and B = {*}, and we are
to examine the matrix T’ = ||d;;||, whose elements are members of the union
AU B; let us define d = {*} as undetermined.

We will consider the following cases (problems):

(1) the columns of the matrix are properties or parameters and the rows
represent entities;

(2) the columns of the matrix represent entities and the rows represent
properties or parameters (problem (2) is a dual of the problem (1));

(3) both the rows and columns represent properties (or parameters);

(4) it is unknown whether the rows or columns represent properties;

(5) some of the columns and some of the rows represent properties.

We will be concern with reconstuction of matrices which represent cases
(1) to (5). Hencefore we will refer to each of this cases as problem (1),
problem (2), ... , problem (5).

Obviously problems (1) and (2) are mutually eqivalent. Meanwhile,
problem (5) implies problems (1), (2) and (3). In particular, we examine
problem (1) and problem (3) with a view to demonstrate how to solve
problems (4) and (5) on the basis of these solutions.
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In order to solve problem (1) we constuct in matrix T a submatrix 7",
which consists in successive rows and columns which do not contain any ,,*”
as element. We will refer to such a submatrix as a block. We call block
T' maximal block, if there does not exist any submatrix M which contains
submatrix T’ and is not equal to 7/. We refer to the set of all maximal
blocks TV of T as B(T'). We select an arbitrary maximal block T” from B(T).
For simplicity’s sake we will asume that the submatrix 7" lies in the upper
left corner of matrix T and has t' rows and s’ columns. Let us consider an
arbitrary and not everywhere determined row a, bearing the number [ > t/
of the submatrix T} which consists in the first s’ columns of matrix T. We
will show how to reconstuct the unknown elements ,,*” of a. We construct
submatrix 7" from T' by selecting all those columns of row a which do not
contain undetermined elements ,*”. In the case in which T” is empty, we
don’t reconstruct any unknown elements at all. If 7" is not empty then we
construct from it 7" which consists in all pairwise distinct rows of T such
that each row of T has an equivalent representative row in 7"”/. On the
bases of matrix T"”/, we compute the set of all tests which we designate as
T(T"). It will be recalled that the test of an arbitrary matrix A is the set of
all columns of A, which form such a submatrix of A, which consists only in
pairwise distinct rows. We recomend a method for determining , similarity”
of a to rows of 7. On the bases of similarity of a to rows of 7"’ we
determine similarity of a to equivalent rows of T” and of 7. This in turn
enables reconstruction of the unknown elements ., *” of a and likewise of the
whole matrix.

Let us examine problem (3). We treate this case in analogous fashion as
problem (1), and in this sense we reconstruct all the missing elements ,,*” of
T. Then we solve problem (1) with hypothesis that the rows represent prop-
erties and the columns entities (i.e. transposition of matrix in problem (1)
proper) and so we reconstruct each missing element. In this solution to each
missing element , *” of matrix T correspond to a unique mean code which we
will refere to as virtual reconstruction element for the value of ,*” accord-
ing to the method of problems (1) and (2). We compute the average values
of these codes, and, we construct the matrix T'7T**. Matrix T** constitutes
the solution to the problem (3). Let us remark, in passing, that problem
(3) admits approximate solution by implication from problem (1), which al-
so admits approximate solutions. Now, let us examine problem (4). Here
we must consider three cases; i.e. firstly, the columns represent properties
and rows do not; secondly, the rows represent properties and the columns
do not; thirdly, both, rows and columns represent properties. Therefore the
following consequencies are obvious. In the first case we solve the problem
(1), in the second case we solve problem (2) and in the third case we solve
problem (3). By implication, the set of all three solutions constitutes the
complete solution of problem (4). Accordingly again by implication we de-
rive approximate solutions for problem (4) from the corresponding approxi-
mate solutions to problems (1), (2) and (3) respectively. By specifying the
problem further a customer may select any one of solutions (1), (2) or (3)
or any of their combinations.
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Now we are in a position to examine problem (5), which we divide
into several cases. First we consider the case in which a columns represent
properties and rows do not. In this case, however, we construct a submatrix
of T, which contains all the columns representing properties and for this
case we solve problem (1), which in turn yields all possible missing values
for elements ,,*” for this particular submatrix of T. Then we compute the
transpose matrix of T and repeat the above procedure, which yields other
set of reconstructed missing values. From the results of these two cases we
compute a set of weights, which enable (in part) the reconstructin of the
unknown elements ,*” of the matrix in problem (5). There are cases in
which this problem is not solvable in its entirety. As above, approximate
solutions of problem (5) follow from the approximate solutions to each of
problems (1), (2) and (3) respectively. All the procedures described above
lend themselves to algorithmic formulation and indeed algorithms for these
procedures exist and are described in [1],[2],[3].

Moreover, our approach affords generalisation to include cases in which
rows and columns of matrix T are members of an equivalence classes (tax-
ons). In this generalised form our problem approaches the problem of pat-
tern recognition, which is the subject of a subsequente article.

The lecture derives for the most part from articles [4],[5].
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Abstract. In the article the author gives an overview of various approaches, which
were published in past 20 years, to the description of automata behaviour in defined
geometrical environments. For each approach, the author describes the fundamental
concepts, problems, methods of solution, unsolved problems and achievements.

B nocnemame romu Bce Gousblllee BHMMaHHME NPUBJIEKaeT TEMATH-
Ka, CBfi3aHafl C aBTOMATHBIM aHAIUW30M HM300pakenuit, rpados, dop-
MaJbHUX A3BIKOB M IPYTHX IMCKPETHRIX cucTeM. B obeif cioxHOCTH
OO 3TOM TeMaTWKe Yy)Ke onyOGJMKOBaHHI CBHIIIE CTa PaboT.

IloBuauMoMy, ONHOM M3 MEPBBIX CTaTeil 8TOro HampaBJieHUA cle-
nyer cumtath pabGory K. Illemmoma 1951 roma [47], B KoTopoit ‘dpak-
TUYECKM PacCMaTpMBajach 3alladya OOMCKa aBTOMATOM-MBIILIO ONpe-
ZIleNleHHON mes B JaBMpPHHTe, UTO B 3HaUWTeJbHON Mepe ompenenio
TeMaTHUKY HalpaB/JeHWs Ha NocJjelyoliue rofbl. JIpyruM MCTOYHHMKOM
HallpaBJIeHNs MOKHO CUMTATh PACCMOTPEHHWe BRIYMCIMUTEJbHBIX CUCTEM
C BHelleHe#l DaMATHIO B BHIE IJIOCKOCTH MM OpocTpaHcTBa [18], xoTa
3[eCh OHM CPaBHUTEIbHO GHICTBO 6me BHITECHEHbH MHOT'OJIEHTOYHBIMH
BHIUYKUCIUATEAMM.

Pa6ora K. IlleaHORA NOBOJILEO JOJTO HE no.uyqa,na pa3Butusa. Boa-
MOKHO, 3TO GRIJIO CBA3aHO C TEM YTO OCHOBHOE BHMMAaHHE CIIENHAJIVICTOB.
1O TEOPHUM aBTOMATOB GHIJIO CBA3aHO C U3y4YeHHMEM BO3MOXKHOCTeH aBTO-
MaTOB ¥ IlepepaboTKe CIIOB, 3a KOTOPHIMHU He CKPhIBAJIHUCh MHTepIpe-
TaOuM. I9TO GHIJIIO XapaKTEePHO IS BCeX OCHOBHHIX BHAOB NOBeIEHMIA
aBTOMAaTOB M NIpeJe BCero TaKMX, Kak aBTOMaThi-npeobpasaBaTenw,
aBTOMATHI-aKIeNTOPH U Ip. Pwnnqﬂue BONPOCHI, CBA3aHHBLIE C D TUMH
TUNAMM NOBeAeHUI mompekHeMy OCTalOTCA IJIaBHBIMA B TEOPHM aBTO-
MaToB. JIpyro#i xapakTepHO#i 0COGEHHOCThIO 3/eCh SABJASETCA TO, UTO
aBTOMAT IO OTHOIIEHHWIO K MHOXXECTBY BXOJHHIX CJIOB, TO-€CTh K »Cpe-
ne«, Bo3ne#icTByloilleifi Ha Hero, BHICTyNaeT JIMUIL B POJM »HOJiy4yaTe-
Jsi«, HUKAK He BJIUAA Ha Hee. ITH 0COOEHHOCTH OTCYTCTBYIOT B Mo-
IeJ »aBTOMaT B JaOMPHHTE«, YTO CYIIaeCTBEHHO OrpaHMUYMBaET Ie-
peHoC pe3yJbTaTOB [UIA NPYTHX THUIOB NOBENEeHWII aBTOMATOB Ha 3Ty
MoOJenb.
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OnpenesieEHYyI0 aKTUBHOCTb B M3YUYeHMM NOBEeIeHHUsA aBTOMATOB B
nabupuETax M rpagax soi3Baita myGaukana K. lémma [16,17]. B ueit
6bli1a popmanusoBaHa Monenb lllerHORA M B KauecTBe NaGUpUHTA pac-
CMOTpeH axMaTooOpa3Has CBA3HAA KOHPYrypamusa KJIEeTOK Ha HJIOCKO-
CTH MM aHAJOTMYHBIX KyGMKOB B IPOCTPaHCTBe (IIaXMaTHEIE JaGUPHH-
THI), a B KaUeCTBe aBTOMATOB — KOHEYHbIE aBTOMATHl, KOTOpbie, 060-
3peBasd HEKOTOPHIO OKPECTHOCTH KJIETKH BKOTOPOM HAXOIATCA, MOTYT
nepeMemaThCA B COCENHYIO KJIETKYy B OJHOM M3 KOODIWHATHHIX Halpa-
Bienuii. B paboTe moaydeHhl HEKOTOpHIe pe3ynbTaThl IO 3alade 06XO-
J1a TaKMX JaGMPUHTOB aBTOMATOB M BHIEJIEH KaK aKTyaJIbHRIH BoOpoc
O CyIIeCTBOBATHMM aBTOMaTa, OOXOIAINEro Bce Takue JaOUMPUHTHI; IPHU-
BeleHh COOOpaKeHMs B NOJIb3y TOrO, YTO B Cly4Yae INPOCTPaHCTBEH-
HOro JaGUpMHTA IS aBTOMAaTa MOYKHO HOCTPOMUTH JaOMPHUHT-JIOBYLIKY.
X. Mroanep [33] ana 3amaEHEOro aBTOMaTa MOCTPOMI IJIOCKYIO JIOBY-
mKy B Bume 3-rpada, a JI. Iynmax — maxMaTHYIO JOBYLIKY, OIHAKO
ero o6ocHOBaHME OKa3aJioch ciaymKoM rpoMasakuMm. A. C. Iloaxosasunm
[71,72] cymecTBeHHO ympoCTHJ mOKa3aTelbCTBO aToro ¢akra. X. AE-
TeJlbMaH [2] ONEHMJ CIIOKHOCTH Takoll JOBYNIKM IO YMCIY KJIETOK B
geil, a X. Mroanep [34] yka3an, yTo Bcerna B KayeCcTBe Hee MOXKHO
BHIOpaTh TpexcBaA3awii nabupuaT. 3ateM X. ABTenbMaH, II. Bynak u
X.A. Ponnuk [1] mocTponnu KOHEUHYIO JIOBYWIKY I/JAA KOHeYHON cHCTe-
MBI aBTOMATOB ¥ GeCKOHeUHYIO JOBYWIKY Cpa3y JJsA BCeX NONYCTHUMBIX
aBroMatoB. ®. XodMman [24] man xapakTepH3anuio CHeNMAJIbHBIX TH-
noB rpa¢oB, KoTopas NO3BOJIMJIa 3aTE€M CYIIECTBEHHO YNPOCTHUTh Bce
KOHCTPYKIMH B YIOMAHYTHX YTBEPKIECHUAX, NOCTPOUTH IPHUBOIMUMYIO
3eCh JIOBYUIKY IJI BCeX KOHEUYHHIX CHCTEM aBTOMATOB, B KOTOPOIA aB-
TOMATHl OCTAIOTCA B OFPAaHMUYEHHOM Ilape. |

Hapsany ¢ aTMMHM De3yJbTaTaM, YKa3bIBaHIOIMMHM Ha OrpaHHYe-
HOCTBb BOB3MOXKHOCTeil aBTOMATOB, OLIJIM MOCTPOEHHI NPHUMEPH! KJIACCOB
1abMPHUHETOB, KOTOphie OOXOOATCSA OMHUM aBTOMATOM. DTH pe3yJibTaTH
6n1au 0606mennt A. H. 3nipuueBniM [62], KoTOpHIA ycTaHOBMJ, 4YTO
KJIACC BCeX IJIOCKHX HIaAXMaTHBHIX JaOHPHMHTOB, MMEHIOIUX ILIPH Orpa-
HAYEHHOI'O JMaMeTpa, Takke o6XxonsacTa omauM aBToMaToM. A. A. 3o-
A0THIK [61] pacumpmua »ToT Kiacc, MOKa3aB, YTO MOXHO pPacMaTpH-
BaTh OrpaHWYEHHOCTh IbIP JUIOb N0 (PUKCHPOBAHHOMY HANpPaBJIEHHUIO.
B atnx maborax coaepkaTch TaKXe OINEHKM BpeMeHM obOxona iabu-
PMHTOB M YMCJIa COCTOSHMI IUIs aBTOMaTOB. AHAaJM3y CBOUCTB Harpy-
’KeHHHIX I'padoB nocssamena pabora E. K. Kynpsasnesa [73], xoTopo-
51 YCTAaHOBJIMBAeT, C KaKo#l CJIOKHOCTBIO MOXeT OBITh pellleHa 3aJava
5KBMBAJEHTHOCTH NOBEJEeHUs aBTOMATOB B TaKUX rpadax.

HeBo3MoxkHOCT 06X0a BCeX IJIOCKMX IHaXMapHBIX J1abupUHTOB
OJHUM aBTOMATOM BBLIBHMHYJa BOHPOC 06 M3y4YyeHHMM BO3MOMKHBIX YCJIH-
eHUi MoJelIM aBTOMaTa, y)Ke pelleHIoIUX 3anauy obxona.

PaccMoTpeHH HECKOJBKO BapMaHTOB TaKoro ycuijaeHusa. ['1aBHBIM
13 HUX ABJAETCA CHCTEMa B3aMMOIEMCTBYIOINMX aBTOMATOB, HaM3hIBa-
eMs KOJIIeKTMBOM. B oTiMuMe OT cCHCTeMhl He3aBMCHMMBIX aBTOMAaTOB
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KOJINIEKTUB aHaJU3UTyeT JIaOUPHHTHI C yYeTOM MOJIOXKEHHUA ero »4le-
HOB« B jJabupunaTte. IIpocTtelimiM npencraBuTesneM KOJIJIEKTHBA ABJIA-
eTcs CUCTEeMa aBTOMATOB ¢ KaMHAMH; KaMHM NpPeICTaBisaioT coboil aB-
TOMaThl 6€3 maMATHl M WX IepeMellleHWe ompeneiseTca APYTMMH aB-
TOMaTaM#4 KOJIJIEKTUBa; TaKUX 0oOpa3oM KaMHM MTPaloT PoJjb OTPaHHMU-
yeHOU BHelleHeil maMATH. Y cTtaHoBJeHEO $. XodpmanoMm [22,23], uTo
KOJIJIEKTMB M3 OQHOI'O aBTOMaTa M OJHOTO KaMHa He MOKeT 0OOUTH Bce
K.m.M. nabupuats; M. Batom u II. Kosen [6] manu mabpocok o6ocHa-
BaHHA TOTO, YTO KOJJIEKTMB K3 OHOI'O aBTOMAaTa M ABYX KaMHeil pella-
eT 3Ty 3akady, OTMETHUB IIPM 9TOM, UTO KOJIJIEKTUB M3 OBYX aBTOMATOB
NOJKEeH pellaTh ee ToxXe. B pabore [65] mpuBeneHO HOJNHOE MOKa3a-
TeJbCTBO 3TUX ¢pakToB. Hapany c atuMm B A. Xemepausnr [21], K. Kpu-
resa [30] noka3aHO, YTO KJIacC YKa3aHHBIX JaGMPHHTOB AOMYyCKaeT ecTe-
CTBEHHOE pacjioeHHe TaKoe, YTO IJIA JI0GOro cjIos ero HaMAYTCA KOJI-
JIeKTUB U3 OJHOT'O aBTOMAaTa C KaMHeM, oOXoIAInuil aTOT cJoif; B Kade-
CTBe IapaMeTpa cleCh BHICTYIIaeT UMCJIO ObIp B JaOUpHHTE.

AHaJIOTUYHBII BOOpPOC IUIA KJIACCa BCeX KOHEYHBIX M GeCKOHEUHBIX
n. M. 71aOMPHUHTOB McciaenyeTca B Tabotax M. Bumoma, Y. Cakom [5],
3. Xabacunacku, M. Kapomacku [19], A. Szeptiowski [49], I". Kuianu-
Gapanl [64], A. B. Armxanca [58]. B HMX ycTaBOB/IEHH HEKOTODLIE
IpocTeillie MO YMCJIY aBTOMATOB M KaMHeil KOJJIEKTHBBI, oGXonsliue
BCe TakKue JaBGUpHHTH; B paboTe [64] 3aBepuIeHO onMcaHMe BCeX TAaKUX
KOJIJIEKTUBOB, B Hell ke NIpHUBeNEHO pellleHHe YKa3aHHOW 3amauM I
N1abMpPUHTOB, HecolepKalux GeckoHeuHble ObIpbl. 1A cnemmanbHOTO
cinydas JaOGMpHHETA, MMEHIOIIEro BUI MJIOCKOCTH B AHIKaHC [58] yka-
3aHO OBa THUIA NPOCTEHIINX KOJNJIEKTUBOB (IBa aBTOMAaTa OIUH KaMeHb
¥ OIVWH aBTOMAaT TPM KaMHA, oOxonAuuii ero).

Ilns nabupunToB Gosee obiero Buaa [5,67] noka3aHO HaJaUuMe JO-
BYIIKM YK€ B TPEXMepDHOM ciliydae. Y cTaHOBIjeHO [67] Hammume Gecko-
HEYHON TpexMepHO! NOBYWIKM Cpa3y IJA BCeX KOJJIEKTUBOB aBTOMa-
ToB. IIpM 2TOM KOJIJIEKTMBH OCTAalOTCA B lIape OrpaHWYEHHOI'O palM-
yca B aToi soBymKe. I[lomobGHble pe3ysbTaThl OKa3hIBAHIOTCA BEPHBIMM
! B IJIaHApHOM clydae, HJA JIaOMPUHTOB MMeEIOUMUX BHI KyOUUecKoro
rpada [38]. -

CoemmnajbHBEIM KJlacCaMM JIaDMPHHTOB SBJISETCA TaK Ha3MBaeMhle
CHUTHATypHBHI U 7-nabupuatel. Jlaa mepBoro Buaa B paborax [74,66]
noJiydeHbl ONUCAHWUA NPOCTEHIINX KOJJIEKTHBOB aBTOMATOB C KaMHSMH,
HaXOAIIMX cHenualbHyI0 BEPUIMHY B 3THX JabupuraTax. [las BTopo-
ro BUJla YCTaHOBJIEHA peAyKnus obXxolla MX OO cHenHaJIbHbBIM IMUKJIaM K
OTKpPHITON mpoGieMe cOBHmaJeHUA S3BIKOB PacCIO3HABAEMBIX JeTEePMH-
HUPOBAHHKIM M HelleTEPMUHUPOBAHHBIMY JIMHEHHO OrpaHUMYEHHBIMHA Ma-
IIMHAMHUBl TBIOPHMHTA, YTO CBUAETEJILCTBYeT O OOJbIIMX HOTEHIMAJb-
HBIX TPYIHOCTAX TE€MaTHKH.

HauaTo MccienoBarue 3aayd 0 BCTpeue KOJIJIEKTUBOB aBTOMATOB B
gabupuaTax. OHa COCTOUT B yCTAHOBJIEHMM IUIA 3aJaHO¥ Hmaphl KOJI-
JIGKTUBOB M JTaGMPUHTOB BCTPEYAIOTCA JU OHU B HeM Uiy HeT. O UM
U3 BO3MOXKHBIX TOJIKOBAHMW 3TO# 3aJayd MOKeT OLITh ONKUCaHMe A
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3aJaHHOI'o KJacca JIa.6lePIHTOB BCeX TeX map KOJJIEKTUBOB, KOTOpbIe

BCTPEYaHIOTCA B JI[OGOM nagnpman‘e 13 9TOro KJacca. D AHI[)K&HC [BQ]
paccMOTpeH cHelMallbHbIM cily4abl Bcell OqHOMEPHOU M Bceil mByMep-
HOM JIeHThl M yYKa3aHbl IpOCTeiIre TIOHhI KOJJEKTUBOB aBTOMATOB pe-
MIaIOIMMUX 3alady O BCTpede B HUX.

3necs IPUMBOIMTCA pellleEMe TaKoM 3allauyM IJIA KJIACCOB BCeX KO-
HEeYHBIX II. M. JIJaOMPUHTOB, ¥ TaKKe KOHEUHBIX U GECKOHEYHHIX 1. M. Ja-
OMPHUHTOB NyTeM YKa3aHMA BCeX IPOCTeMIINX THUNOB Map, KOJJIEKTHBOB
aBTOMAaTOB, pPelIaloNIUX 3alavdy O BCTpede B HUX.

B. U. TI'pynckoit [60] paccMoTpeHn BapuaHT 3aJayM O BCpPTeUH
IBYX aBTOMAaTOB, XaXOIAIIWXCA B OTHOIUICHUM »XMINHHMK-KepTBa«, IIe
aBTOMAT-»XHMIIHUK” « MATAETCSA NOTHATH KepTBY, a Ta — ybexaT oT He-
ro; B3auMoJeNACTBMe IPOMUCXOINUT B KBajpaTHOM Jabupunre. I[IpuBoxn-
ATCA yCJIOBHUSA, IPU KOTOPHIX yKa3aHHasA BcTpeva NpoucxoauT. B pabo-
tax [14,12,58] paccMaTpuBaduCch BO3MOKHOCTH Goslee obmux Momeneit
aBTOMaTOB B NabupmuaTax. B paGorax [14,12] noka3zaso, uTo aBTOMAT
C Mara3vHHOM NaMATHIO He MOXKeT OoOOMTH Bce NaOMPHUHTHI, UMejUlI[AE
Buz 3-rpados, a B [58] npuBMIOEHE IpUMepPhl ABTOMATOB CO CUeTYMKa-
MM, CO CTeKaM¥ M Mara3uHaMH. Y CTaHOBJIEHO, YTO aBTOMAaT C Mara-
3MHOM ODXOIMT BCe OIJHOCBA3HbIE KOHEUHBIE IJIOCKNE M. JIaGUPUHTHI U
OCTaHOBJIUBaeTCA Mociie ob6xola.

3anava aHaju3a IJIA aBTOMATOB M JaOMPHMHTOB M3y4ainach (4,26,
21,36,44,50]. Omna cocTOMT IA 3aJaHHOTO KOJIJIEKTHBA aBTOMAaTOB
B ONMCAHWU BceX JaOUPHUHTOB, KOTOpble OBXOMATCA 3TUM KOJJIEKTH-
BOM NpPHA BO3MOXMHBIX JONOJJHUTEJBHBIX COTJIalleHUAX THUIa TpeGoBaHWU
OCTaHOBOK mocie o6xona. IlombiTkM ommcaTh 3TH JaOUPHUHTH B BHIE
anrebpul Knuan BcTpeTnnn 3aTpynerus [26,27]; aHAJOTHUKO 06CTOUT
IeJI0o C BhIICHEHMEeM OTHONIEHMM MeXIy KJjaccaMH JIaGMpPHUATOB, npen-
CTAaBJAIONUX OpellleHAe 3aJadd aHAJM3a MU 33aJaHHLIX KOJIJIEKTHBOB
aBToMaToB [26]. B paGore [4] noka3zano, 4TO Kiacchl TabGUPHUHTOB, 06-
XOOuMble aBTOMaTaMHM C KaMHSAMM, HeOrpaHWUYEeHO BO3PacTaloOT C YyBe-
nuJYeHVeM uMcia KamHA. B pabGote [44] npuBuIeHb npuMepsl KJIacCOB
1aOMPUHTOB, KOTOPble MOTBIT OBITH pellleHWeM 3aJauM aHAJIU3a. ITOT
noknan cnenad B. B. Kyapsasunesum no cosmectroit ¢ III. Ymrymauuem
u I'. Kunubapno# paboTsl, noaToMy aTa MyOJIMKAONA MOXKET CUMTATCA
COBMECTHOM.
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Abstract: We give a description of simple modular Lie algebras and their irreducible
modules. An attemp is made to reduce the study of modular Lie algebra modules to the
well known classification of irreducible modules of simple Lie algebras over an algebraically
closed field of characteristic zero.

1 Introduction

Definition 1. A Lie algebra is a vector space over some field F with an
additional antisymmetric and bilinear binary operation (usually called
the bracket operation) which must also satisfy the following condition

[[z’ y]’z] + [[y, 2]72] + [[z’ 3]’ y] =0
known as Jacobi identity.

Definition 2. The Lie algebra L is called simple if it contains no non-
trivial subspaces closed under the bracket operation when being multiplied
with all elements from L (such subspaces are called ideals).

Examgle. Let C2 be the 3-dimensional complex vector space and
x :C3 x> — C3 the usual vector product. Then (C3, +, x) will be a Lie
algebra and this algebra is simple.

Lets denote by B = {i,j,k} an orthonormed basis of C3. If a subspace
K contains a nonzero vector zi + yj + zk, then multiplying it twice by the
right element from B we’ll get one of the basical vectors and multiplying it
with the others we’ll obtain all elements from B. So the only nonzero ideal
is the whole algebra and this means that L is simple. =

2 Classical simple Lie algebras

The complete description of simple finite dimenional complex Lie alge-
bras was given by E. Cartan [1] and H. Coxeter [2]. Such algebras form four
infinite series which can be represented in the following matrix form:

A, ={T € M, ,,(C)|trT = 0} (general Lie algebras),
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B, = {T € M2,11(C)|f1(Tz,y) = - f1(2,Ty)} and
D, = {T € M;,(C)|f2(T=,y) = — f2(=,Ty)} (orthogonal algebras),
C, = {T € M2,(C)|f3(T=,y) = — f5(2,Ty)} (symplectic algebras),

where fi, f2, f3 are bilinear forms, given by matrices

1 0 O '
o 0 I,]|, ( IO Ié‘) and (__(} I(;‘ ) , respectively.
o I, O n "

Further more, five exceptional finite dimensional simple Lie algebras exist,
which are usually denoted as Eg, E;, Eg, F; and G,.

Definition 3. A linear mapping p : L — Lin(V) from a Lie algebra L
to the space of homomorphisms of some vector space V' over the same field
F is called the representation of Lie algebra L if and only if for any two
elements z,y € L p([z,y]) = p(2)p(y) — p(y)p(z). The vector space V is in
this case called L-module.

Definition 4. The representation p (module V) is called irreducible
if no nontivial subspace U C V is mapped into itself by all homomorphisms
p(z), z € L. A completely reducible representation (module) is the direct
sum of irreducible subrepresentations (submodules).

H. Weyl [9] proved the complete reducibility of finite dimensional repre-
sentation of simple Lie algebras over an algebraically closed field of charac-
teristic zero. At the end of this introduction we are giving a brief description
of irreducible modules in this case.

Let L be a finite dimensional simple complex Lie algebra and H its abelian
subalgebra, containing all elements, which action on L by bracket operation
is semissimple (the Cartan subalgebra). Then we can write down the
root decompositionof L= HQ® > L,.

Also, H acts diagonally on any L-module V : hv = A(h)v, which is a
direct sum of weight spaces, corresponding to weights A. The vector
v € V), is called maximal, if it is annihilated by all subspaces of algebra
L, corresponding to positive roots. The L-module generated by maximal
vector v of weight A is called standard cyclic module (of weight ).

It turns out that for each element A of the dual space H* a unique (up
to isomorphism) irreducible standard cyclic L-module of highest weight A
exists, which is finite dimensional precisely in the case when all values A(h;)
(h; belongs to the basis of H) are nonnegative integers.

All details can be found in Jacobson’s monography [4].
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3 Differential extensions of linear Lie algebras

Let A be a commutative associative algebra over a field F, and {D; : i =
=1,2,...,,n} a set of commutating derivations of algebra .A. Then the space

D= {}n: a;D; : a; € A} with the Poisson bracket operation

(3> a;D;, Z b;D;] = Z (a:D;(b;) — b; D;(a;))D;

1—1 ’.7—
will be a Lie algebra.

The linearity and anticommutativity of the operation follow immediately
from the definition. Also:

(3 a:D;, z b;D;), i ¢ Di] =

1=1

= (@Di(b;)Ds(ex)- bD(a,)D (c1)=c; D@ Di(be)+ Di{ ) D)

1,7,k=1
~a;¢; Di(D;(bi)) + bic; Di(D;(ax))) D

Permutting twice cyclicaly all three elements and sumxmng we get 0 so the
Jacobi identity is also satisfied. =

If E;; is the usuall basis of the space of linear transformations of a vector

space V over F, we define [E, ;, Ex] = §; E;; — 6;1Ey; and extend this
operation by hnea.rlty The obtamed general linear Lie algebra we’ll denote
M(n), where n = dim V.

We can also introduce the structure of Lie algebra on the product M(n) =
= .A® M(n) defining [a @ A, b B] = ab@[A, B]. Finally, for every linear

transformatlon D, acting on A, we denote by D the element DI €
Lin(A) @ M(n) acting on elements from M(n) in the natural way:
F

D(a@A) = D(a)® A.
Theorem 1. For every Lie subalgebra K C M(n) the set

K= {Za,D E Di(a;) R E;; € AQ K}

i=1 t,7=1
is a subalgebra of D.

Proof If D = S~ a;D;, D' = 3" b;D; and [D,D'] = 3" ¢, Dy, and we
=1 1=1 k=1
denote

- n

D= 3 Di(a)® Ek, D' = Z Di(b;) @ Ex,;

1,k=1 2,k=1
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by direct computation using our definitions we obtain

i Di(c;)® E;; =

t,7=1

= 3 (3 (Di(ax)D(b;) — Di(bi) Dx(a;) + arDi(Di(b;))-

1,)=1 k=1

—bDi(Di(a;)))) @ Ei; =
= [D,D'] + D(D') - D'(D) € AQ K, yielding [D,D'] € K. =
We'll call the Lie algebra X the extension of algebra K.

4 Lie algebras of Cartan type

The four infinite series of simple modular Lie algebras known as Lie al-
gebras of Cartan type were first introduced by Kostrikin and Shafarevich
[6], using the derivations annihilating or acting invariantly on some differen-
tial forms. We use the same representation of these algebras (the first three
series), but give a slightly different definition.

Let I(n) = {a = (a1, a2, ...,a,) : & € N U {0} }.

For a prime number p = charF and a n-tuple m € N™ we define
I(n,m)={a € I(n):a; <p™} and
P(n) = Fty,ta, ..., t,] = (t* = t72¢3°...t5")

Definition 5. Let O(n) = P(n)* be the dual space and {z(*) : a €
I(n)} its basis, dual to all ¢*.

Introducing the multiplication z(®) z(8) = (°tF)z(e+0) where (*1F) =
= ﬁ (""’C;"l_ ﬁ"), we obtain an associative algebra, called the divided power
algibra.

This algebra has a natural gradation: O(n) = ? Or(n), where

Ok(n) = () : |a] = 3 a; = k).

1=1
We'll concentrate our attention on its subalgebra O(n,m) = (z{®) : a €
I(n,m)).

Definition 6. The linear mappings D; : z(®) — 2(®), where a = a;—
— 8, ;, called special derivations of devided power algebra, with Poisson
multiplication span general Lie algebras of Cartan type W(n,m) =

= {‘Zj a;D; :a; € O(n,.f_n_)}-
1=1
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These algebras are simple, excluding the casep =2, n=1, m = 1.
Definition 7. Extending the special linear algebra A,,, containing all
- n n
matrices with trace 0, we obtain algebras S(n,m) = {}_ a;D; : }_ Di(a;) =
i=1 i=1

= 0}.

Their commutators S(n,m) = S(n,m)’ are simple algebras called spec1al
algebras of Cartan type.

Definition 8. Similarly, starting with the symplectic algebra C,, con-
tainig all matrices of the form (A B) where B, C are simmetric matrices of

dimension n and D = — AT and taking the second commutator of the exten-
sion, we obtain Hamiltonian algebras of Cartan type H (2n m), which
are simple in the case of Char F > 2.

5 The mixed product of representations and graded
representations of graded Lie algebras

In the following we’ll denote by L = L(n,m) any of the introduced
above finite dimensional Lie algebras of Cartan type and by L the direct sum
L@ O(n,m). As in the above constructions elements of L are represented
as derivations of O(n,m), this representation is called the identity or the
derivation representation of L and is usually denoted by §.

Theorem 2. Let K be a subalgebra of M(n), K its extension and
K = K®O(n,m). If p is any representation of algebra K and o is a
representation of K, such that the restriction o|p(nm) is an associative
algebra representation, then 7 = p 7:( o defined as

D+ f)=a(D+Ekf)@I+ (clomm ®p)(D), where k € F,

is a representation of algebra X, called the mixed product of represen-
tations o, p.

Proof. Let D = Z a;D;, D' = E b;D;, f € O(n,m) and ¢g(D) =
= o(D)@I. Then [Z(D) a(D')] = U(ID D']) and [g(D), o(f)] = 2(D(f)).
Let us denote p = 0|o(n,m) & p and for any f;,g; € O(n,m), T; € K

D=3 fi®T, D' = E.%@T

=1
Then p(D)e(D') = ‘?51 o(£:)® p(T))(o(D) ®I) = }_:1 o(£:)o(D") @ p(T>),
while ‘ B |
o(D)p(D) = (e(D) Q)L o(£) @) = 3 o(D)o(£) @A(T.).
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So we obtain the following commutators:

[o(D), (D)) = -p(D(D)), [p(D’),a(D)] = —p(D(D")).
We already know (proof of theorem 1) that [D, D'] = [D, '] + D(D') -
D'(D), so applying p to this identity we obtain o([D, D) = [p(D, p(D")] +
+p(2(D") - p(DAD).
Then [r(D),7(D')] = [p(D) + &(D), p(D') + &(D")] =

= [p(D), (D)) + [p(D), o D)+

+la(D), p(D")] + [a(D),e(D")] =

= p([D, D)) - D(D) + D(D') + &([D, D)) =

= p([D, D)) + &((D, D']) = 7([D, D')).
Finally, from 7(f) = ko(f) ® I for f € O(n,m), we obtain

[7(£),7(9)] = 0 = 7([f, g]) and
[+(D), ()] =

(o(D)RI+ Y. o(f) RA(T) ) (ka(F) @ pI) - (ka(f) ®T) (o(D) @I+

1=1

+ 3 o(f)@a(T)) =

klo(D),o() @I = ko([D, f)QI = ka(D(f)) R I =
= 7(D(f)) = =([D, f]).

So, 7 indeed is a representation of algebra X . =

All Cartan algebras, mentioned in Section 3, are graded of depth 1:

L= @ L;and[L;,L;] C Ly,
i>-1

where L; = {}n: a;D; :dega; =i+ 1} Pz : |a| = 1).
)=1

So we can study special representations (modules) of this algebras,
connected with their gradation.

Definition 9. The representation p : L — Lin(V) (L- module V') is
graded if V = @ V; and p(L;)V; C Viy;.
j20
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Without loosing generality we can assume, that the subspace Vj is
nonzero and call it the base space of our representation. Then the following
connections between p and its base space can be obtained.

Theorem 3. A graded representation p : L — Lin(V') of a graded Lie
algebra L is irreducible if and only if its restriction pg = p|r, : Lo — Lin(Vp)
is irreducible, p(L)V, = V and the only vectors annihilated by p(L_,) are
elements of V.

Proof. Let U(L) be the universal enveloping algebra of algebra L and
V = @ V; an irreducible graded L-module.

i>0

If W is a proper submodule of V, by straightforward verification we
obtain that U(L)W will be a proper L-submodule of V.

On the other hand, let us denote by N; = (v € V; : U( D L;);v = 0)
k>0

and NV = @ N,'.
>0

Then by induction on 7 + 7 we can prove that

Vv; € N; U(® Lk)_,-_le(L)jv,- =0.
k<0

Also V/Ny is graded and taking any its element ¥; = v; + Ny € (V; +
+ Ny)/Ny, i> 0 such that

U(D Li)v; = 0, we obtain U( P Li)v; € Ny and finally U( P Li)_;v; €
k<0 k<0 k<O
NvNVo=0. =

Theorem 4. For every irreducible representation py : Ly — Lin(V})
there exists exactly one irreducible graded representation of graded Lie

algebra L = @ L; with the base space V;.
i>—1

Proof. Let V be the irreducible graded L-module (L) @ V, and
: U(L-1+L,)

W = Vo @ W any other graded L-module with the same base space. Then
W/Nw will be irreducible and, as Ny C W, isomorphic to V;. So the
linear mapping ¢ : z @ v — zv, where
z € U(L), v € Vp, is a module homomorphism and its kernel must be the
unique homogeneous maximal submodule Ny C W. Finally V = W/Ny .
n

Theorem 5. An irreducible representation p : L — Lin(V) is equiv-
alent to a graded representation of graded Lie algebra L if and only if p|;,
contains a nontrivial irreducible representation: po(Lo)Vy C Vg C V, and

I Vo\Vo = 0, where I} is the ideal spanned by @ L, in U(L).
k>0
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Proof. If V is a graded irreducible module, than the first condition is
obvious and the second one follows from more general inclusion Z;V, C V.

On the other hand, suppose that both conditions, mentioned above,
are satisfied. Then V = U(L)V, and ¢ defined by u@v — uv will be a
homomorphism of L-module W =U(L) @  Vponto V. Lets denote by
U(L-1+Lo)
Wy = Ker ¢ the maximal proper submodule of W. If we assume, that V is
not graded, W, will not coincide with Ny and W will be the sum of this two
submodules. Foreachv e Vj 1Qv=w+n,w e Wy,n= > u;,@v; € Ny.

As the linear space W is isomorphic to U( P Lk)®Vo and Nw C @ W;,
k>0 3>0

this yields 1v = p(w + n) = p(n) = S w;v; € ILVO, contradictory to our
second presumption. =

6 Irreducible representations of simple modular Lie algebras

Now, let’s return to the extended derivation representation of our Cartan
algebras. If p is an irreducible representation of Ly and k € F \ {0},
then § >k< p will be an irreducible representation of L. As Ly = Lo@ F,

its irreducible representations are of the form p = (p,k), where p is an
irreducible representation of Ly and k I = p(1).

Then, from theorem 4 it immediately follows that for any irreducible
representation
po : Lo — Lin(Vp) and k € F \ {0} the unique irreducible graded represen-
tation of L;, determined by (po, k) is p : Ly — Lin(Vp), where Vj, is the
mixed product of modules O(n, m) and V

Theorem 6. If p : L — Lin(V) is a graded representation with
base space Vy and Yv € @V, p(L_1)v # 0, then there exists a graded
1>0 _
monomorphism
V — V,, which extends the natural isomorphism V5 — 1 @ Vj.

Proof. Suppose that the vector v belongs to the i-th gradeof V = @ V;
k>0

and a € I(n,m). Then the the linear operator ¢ : V — Vj, defined by
p(v)= ¥ 2@ D ...DIv,

|or|=i

will be a graded monomorphism V —» Vj, and its restriction on V, maps
each w € Vj into 1 @ w. So ¢ is the required monomorphism. =

Finally, we can formulate the statement, describing the close connection
between the irreducible graded representations of simple modular Lie alge-
bras of Cartan type and the representations of classical simple Lie algebras,
Cartan algebras are obtained from as differential extensions.
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Theorem 7. For any zero grade representation of a Lie algebra from
the first three Cartan series pg : Ly — Lin(V), dimV < oo and the

subrepresentation o : L — Lin(W), such that V; C W in the case of general
Cartan algebra and V; C W if L = S(n,m), H(n,m), the modules W and
V coincide (o = p).

Proof. If V is irreducible, we take for any k € Z%* such m that p™ is
greater than k. As V(W isa submodule of V', which contains V; or V;, we
have V, C W,

In the case of reducible representation p, we can take its decomposition
and obtain the same result using the following property of the mixed product
of representations:

(U X V(U X W)yxU X (V/W), for any submodule W C V.
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Abstract. Poisson point processes are widely used in probability theory and mathema-
tical statistics. In this paper these processes are introduced in a simple setting when the
space where these processes take values is just (0,00). The two theorems proved in the
paper treat the case when the Poisson point processes are renormalised to be probability
measures. The distribution of the largest atom in this renormalised process is described
and formulae for the joint distribution of the n largest atoms are given. These results
are used to rederive some formulae for the limiting distribution of the longest cycle in a
random permutation.

1. Introduction.

The theory of Poisson point processes has experienced rapid growth
in the last two decades and has found wide application in probability,
particularly excursion theory, and mathematical statistics. Informally, a
Poisson point process is a random scatter of points in an arbitrary space,
such that the number of points in disjoint sets are independent Poisson
random variables.

In order to define a Poisson point process formally, let (S,S) be a
measurable space and A a o-finite measure defined on this space. A Poisson
point process associated with the measure A is a random measure N taking
values in the space S* of all discrete measures on the space S endowed with
the o-field generated by all random variables { N(A) : A € S}, and such that
for any finite collection of disjoint measurable sets {4; € S:1 < i < n} we
have

moe AMAIA(4;)]F
PN(A) = by N4 = k) = [T — 2

=1

for any integers k; > 0,1 < 7 < n. In other words, for the above collection
of disjoint sets the random variables {N(4;) : 1 < ¢ < n} are independent
of each other and are distributed according to the Poisson law with mean
A(A;). Note that for any Borel set A € S

EN(A) = A(A). (1.2)
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The number A(A) is thus the expected mass of the Borel set A and the
measure A will therefore be referred to as the mean measure of the Poisson
point process. The notation PP P(A) will be used to denote a Poisson point
process with mean measure A.

Example: The simplest example of a Poisson point process is obtained
by taking S = (0,00) endowed with the usual Borel o-field, and, by taking
the Lebesgue measure as the mean measure A. An alternative description
of the random measure N in this case is the following: Let &1, §,,£3,...; be
a sequence of independent, identically distributed random variables taking
values in (0, 00), each having the exponential distribution with parameter 1.
In other words

y
Pz<b<y)= [ eds, 0<z <y

Let the sequence (X; : ¢ > 1) denote the partial sums of the original

sequence:
i
X; =) &,
~

and finally define the random measure N on (0,00) by
N(A)={i: Xi € A}

for any Borel set A C (0,00) where | - | denotes the cardinality of a set.
For a proof that the random measure N defined this way is a Poisson point
process see for example Billingsley, pp. 260-265.

This paper will be concerned with Poisson point processes on (0, 00)
whose mean measure satisfies some additional hypotheses. We will require
A to be a Lévy measure which means that

A(e,0) < o0 foralle>0, (3.a)
A(0,00) = 00 and | (3.b)

/0 ' sA(ds) < co. - (3.)

Let V; > V, > V... denote the positions of the atoms of the PPP(A
ranked by size where atoms of mass k are counted k times. By condition (3.a

such a decreasing arrangement is always possible. The main consequence of
the conditions (3.a). (3.b) and (3.c) is

Lemma 1.1: If V] > V, > V;... are the sizes of atoms of a PPP(A)
process arranged in decreasing order then

P(0.< io:V,-<oo)=1. (4)

=1
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Proof: That the sum is almost surely bigger than 0 is a trivial conse-
quence of (3.b). To prove that the sum is, with probability 1, finite, observe
that the number of V;’s bigger than 1 is finite with probability 1. The ex-
pectation of the sum of the V;’s that are smaller than 1 is computed by

EZV,-:/I.SA(ds)<oo.

V<1 0

Since this last integral is finite by (3.c) the expectation on the left is finite,
and hence the sum is finite with probability 1. =

2. Order statistics.

Let N be a Poisson point process with Lévy mean measure A and let
again V; > V5, > V;... be the positions of the atoms of N ranked by size.
By Lemma 1.1 we know that T' = 3 {2, V; < oo with probability 1. Define
the infinite vector D = (D,, D,,...) by

D;=V,/T=V;/Y V;,i>1. (2.1)

t=1

The random vector D is taking values in the infinite simplex of sequences
of non-negative numbers adding up to 1.

This section will be concerned with finding finite dimensional distribu-
tions of the vector D. The key observation is the following:

Lemma 2.1: Let V; > V, > ... be the positions of the atoms of a
PPP(A). Conditionally on (V1,V,,...,V,), the remaining (Vi)i>n41 are
distributed as the positions of atoms of a PPP(AY") ranked by size where
AV is the original mean measure A restricted to [0, V,].

Proof: The assertion follows from the definition of a Poisson point
process. Since the number of points in disjoint intervals are independent
Poisson random variables we get for any m > n

P(V; € dn,V; € dv,,...,V,, €dv,,) =
exp{—A(vy, 00)}A(dv;) exp{A(vz, v1)}A(dv2). ..
.. . eXp{—A(Vpn, ¥y —1) }A(dvy,)-

From this the proof follows easily. =
In the sequel we will assume that the mean measure A has a density.

Theorem 2.2: Let the vector D be defined as D; = V; /T where (V;);>;
are the positions of the atoms of a PPP(A) and T = Y 2, V;. Assume
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further that the Lévy mean measure A has the density h with respect to the
Lebesgue measure.

Then the vector (T, Dy, D,,...,D,) has a density Pn foralln > 1. The
density p, satisfies the integral equatzon

l/\—L

pit,) = thits) [ py(t(1 - ), ) (2:20)

wheret > 0 and 0 < y < 1. For n > 2 the density p, saiisﬁes the identity

t" " 1h(ty,)...h(ty, - _ Yn
pn(taylv"-’yn)z ( 1)_ ( r 1) l(t Yn, n (22b)

' : Yn Un
where §, = 1 —y1—...—yYpr1andt >0,y 2y 2> ... 2y, > 0 and

Yy <1l

Proof: In order to prove that the random variable vectors have a density
it must be shown that the random variable T' has a density. It is known
that if the Lévy mean measure is absolutely continuous with respect to the
Lebesgue measure then T has a density. For a proof see for example Brockett
and Hudson (1980).

Denote the density of T' by ¢. If we restrict the Lévy measure A to
the interval (0, s] and define the random variable T° to be the sum of the
positions of atoms of the resulting PP P(A°®) where A® is the restricted Lévy
measure then by the same argument as in the previous paragraph T° will
also have a density. Denote this density by ¢°.

By Lemma 2.1 the conditional density of T, given (V},V3,...,V,), is

just ¢¥=. In formulae this means

P(T € dt,V; € dvy,...,V, € dv,) = (2.3a)
¢ (t—vy —...—v,)dtP(V} €dvy,...,V, € dvn) by Lemma 2.1
@' (t — vy — ... — vy)dth(vy)dv; ... k(v,)dv, exp{—A(v,, )}.
fort > vy +v,+...+v,. By a change of variables to ty; = v;,dv; = tdy,, 1<
1 < n from (2. 3a) one gets the formula for the density of (T, D,,D ..., D,)
as
P(T €dt,D, € dy,,..., D, € dyn) = (23b)

t" '~ (t)dt h(ty;)h(ty2) ... h(ty,)dy, ...dy,
fort>0,y;>2y,> ...y, >0and y ;- y; <1. For n =1 (2.3b) reads as
P(T € dt, D, € dy;) = t¢'"¥* (t(1 — y,))dth(ty, )dy, (2.3¢)

for t > 0 and 0 < y; < 1. Substituting tg, for t and y,, /§, for y, in this last
density and comparing the result to (2.3b) yields (2.2b).
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To derive the integral equation (2.2a) observe that the density of (T, D)
is a marginal density of (T, D, D;). Using the identity (2.2b) one gets by
integration that

1-y 1-un
n(ty)= /0 P2t y1, y2)dy2 = /0 th(ty1)p1(8(1-v1), y2/(1-91))dy2 -
The equation (2.2a) follows by a simple change of variable in the integral on
the right. =
Lemma 2.3: The equation (2.2a) determines the density p; uniquely.

Proof: For y; > 1/2 the integration on the right is over the interval
(0,1) which simply gives the density ¢ of T. So fory; > 1/2and t > 0

p1(t, y1) = th(ty:)d(t(1 — y1)).

Suppose we know the density for £ > 0 and y; > 1/n. The integral on the
right of (2.2a) for y; € (1/(n+1),1/n) only involves p; in the domain where
we suppose it is known. So p, is determined in the domain ¢ > 0 and y; >
> 1/(n + 1). The proof follows by induction. =

3. An application to permutations.

Any permutation can be uniquely decomposed into a product of _cy,cles,‘
for example

123456
( soaer 6) = (134)(25)(6).
The cycles of a permutation o of n objects are the subsets {i;,%3,...,4}

of {1,2,...,n} such that o(i;) = 4,4, for 1 < j < k-1 and o(ix) = 4.
The permutation given above has cycle lengths 3, 2 and 1. If we choose
permutations of n objects at random, each with probability 1/n!, the length
of the longest cycle becomes a random variable. More generally, the lengths
of cycles arranged in decreasing order are random variables. Consider these
random variables as the beginning of an infinite random vector, padding it
with zeros when running out of cycle lengths. Denote this vector by D™ =
= (D}, D3,...). The random vector

1 —(Dn Dn )

takes values in the infinite simplex

An = {(z1,22,...):2; >0,i> l,zz; =1}.
)

In this section it will be shown that the random vector (1/n)D" of relative
cycle lengths has a limiting distribution as n — oo and formulae for finite
dimensional distributions will be given.
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Fristedt (1986) has an elegant treatment of this problem which will be
adapted in the sequel. The question was first treated by Goncharov (1944)
who derived an integral equation for the density of the relative length of
the longest cycle. Shepp and Lloyd (1965) derived moment transforms of
- the limiting distribution of the relative length of the »‘! longest cycle in a
random permutation. Vershik and Schmidt (1977) gave formulae for the joint
limiting distribution for the first » longest cycles in a random permutation.
All their formulae can be rederived from Theorem 2.2.

Fristedt (1986) constructs the sequence (D"™) on the same probability
space in such a way that (1/n)D} converges almost surely to a random
variable D,, say. It will be shown that the limiting vector D = (D, D,,...)
has the same distribution as the order statistics introduced in (2.1) for some
PPP(A). Once the Lévy measure A is identified, Theorem 2.2 will be used
to find equations for the densities of the limiting distributions.

To prove that the distribution of D can be described in terms of order
statistics introduce for each p = (0,1) a geometrically distributed random
variable L, defined on the same probability as the sequence (D™) but in-
dependent of it. Fristedt’s construction provides for such random variables
and moreover L, — oo with probability 1 as p | 0. Because of a.s. conver-

gence of (1/n)D™ the limit will be the same if we look at (1/L,)DL» and let

p | 0. It will be shown that pD%r is a PPP process and the mean measure
of the limit will be identified using standard convergence theorems from the
theory of Poisson point processes.

More explicitly the random variable L, has the distribution

P(L:k):(l—-p)k , k=0,1,2,...;

To derive the main result of this section the following combinatorial result
will be needed. For fixed n let (%;,42,...,%,) be an n-tuple of non-negative
integers such that }_7_; i; = n, and define a7 to be the number of cycles of
length exactly j in a random permutation of n objects. For the permutation
given at the beginning of this section these random variables have values
ag=1l,a,=1,a3=1,a4 = as = ag = 0. It is known that

n
1

n ; n ; n __ g —
P(al = 4,03 =1g,...,ap =1,) = H -
j=17

g (3.1)
For a proof see for example Riordan (1978). The key result is

Lemma 3.1: Fiz p € (0,1). The discrete random measure N, having

atoms in positions pr”,pD.f’, ... 15 a PPP(A,) process on (0,00) where
the mean measure A, ts discrete and

A(fpiD) = 5= PP, i =12, (3.2)
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Proof: Let aJIf’, 7 > 1, be the number of cycles of length exactly j in
the randomly chosen permutation of L, objects. It suffices to prove that

for any sequence of non-negative integers (1, i3, ...) such that only finitely
many are different from 0 we have

00 e"Ar({Pj}) y J
P(N,({piN) =i5 2 1) =] gf!\p({m})] .

i=1

This identity is proved by conditioning on L, and using formula (3.1). Let
2_j=1Ji; = k. Then

P(pD}" =i;,j > 1) = P(L, = k)P(pD¥ = i;,j > 1)

= (1- p)kpﬁl jiJ‘lij! by (3.1).
00 1-— Jfs i
=p]] [( :{ /J] . (3.2a)

Substituting the elementary identity
p =[] exp{-(1-p)'/j}
=1

into (3.2a) concludes the proof. =

The following lemma adapted from Fristedt (1986) will be used to
identify the mean measures of the limiting PPP as p | 0.

Lemma 3.2: Let VP > VI > ... > be the positions ranked by size of
atoms of a PPP(A,) where atoms of size k are counted k times, i.e. if the

atom with the largest position has mass k then the first k largest VP ’s are
equal to this position. If for all z > 0

lim sAP(ds) = / sA(ds) (3.3)

p—0J(0,z) (0,2)

then the vector (V4,Va,...) converges weakly.

A simple computation gives that

lim sA”(d.s):/ ss” e *ds. (3.4)
p—0J(0,z (0,2)
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Smce for any p € (0,1) the vector (D1 ,DL” ..) is obtained from

(VP V. ) as in (2.1), the limiting distribution will be obtained the same
way from a PPP(A) process where the mean measure A is given by A(ds) =

= s7le¢7%,s > 0. By a well known formula, see for example Rogers and
Wil]iams, pp- VI 2., the Laplace transform of the sum T = Y2, V;: where
V; > V, > ... are the positions of the atoms of the PPP(A) is given by

BT = exp{— /0 T (1- e ) A(ds)}.

An elementary calculation gives that for A(ds) = s~'e™* the Laplace trans-
form is (1 + A)~! which means that T has the exponential distribution with
mean 1.

In this particular case the application of Theorem 2.2 is further simpli-
fied by

Lemma 3.3: Let the mean measure of a Poisson point process A be
given by A(ds) = s~'e™%,s > 0 and let the vector (T,D,,D,,...,D,) be
defined as in Theorem 2.2. Then the random variable T and the vector
(Dy, Dy,...,D,) are independent.

Proof: The mean measure is obviously Lévy so T is well defined. Let
Uy, U,,... be a sequence of independent random variables distributed uni-
formly on (0, 1) and independent of (T, V;, Va, .. .) where the V;’s are the po-
sitions of atoms of the PP P(A) ranked by size. Define a process (Y; :

t<1)by
Y, =) Vil(Ui < ¢).

We get an increasing right continuous process and it is known, see for
example Rogers and Williams (1987), pp.308-313, that (Y;) has independent
increments which are distributed according to gamma laws with the same
shape parameter. An elementary result says that if (Z;, Z,,...,Z,) are
independent gamma random variables with the same shape parameter then,
~ see for example Wilks (1964),

ZZ,' and (Zl/zzi,---’zn/zzi)

=1

are independent. A consequence for the process (Y;) is that the random
variable Y] is independent of the ,renormalised” process (Y;/Y1:0<t<
1). But Y; = T and the vector (Dq,D,,...,D,) is a functional of the
renormalised process (Y;/Y; : 0 <t <1). This concludes the proof of the
lemma. =

Let us denote by ¢; the density of the random variable D,. Equation
(2.2a) simplifies to give an integral equation for ¢;:

1A gt
ya1(y) = /O qi1(s)ds, 0 <y < 1.
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An elementary calculation gives

_[y? for1/2<y<1
aly) = {Z—l(l log((1-9)/4)) for 135y <1/2.

As an example the asymptotic probability that the longest cycle in a random
permutation will contain more than half of the permuted objects is P(D; >

1/2) = [}/, @1(s)ds = log(2) = 0.6931.

For the distribution g¢,, of (Dy, D,,..., D,) the formula (2.2b) simplifies
to

1 Yn
—qQ1 _—)

Vi¥2---Yn-1Yn Yn

where g, =1—-y1—...—Yn-1, 1 > ¥2> ... > Yo > 0and ) 1 ; y; < 1. This

identity was derived by Vershik and Schmidt (1977) by solving a recursive

system of integral equations. They used the results to prove central limit
type theorems for the random variables D; as t — oo.

qn(yliy% s 1yn) =

References

[1] P. Billingsley, Probability and measure, Wiley 1979.
[2] D. Blackwell and J. B. MacQueen, Ferguson distributions via Polya urn schemes,
Annals of Statistics 1 (1973) 353-355.

[3] L. P. Brockett and W. N. Hudson, Zeros of the densities of infinitely divisible measures,
Annals of Probability 8 (1980) 400-403.

[4] T. S. Ferguson, A Bayesian analysis in some non-parametric problems, Annals of
Statistics 1 (1973) 209-230.

[5] R. C. Griffiths, On the distribution of points in a Poisson-Dirichlet process, J. Appl.
Prob. 25 (1988) 336-345.
(6] J. Hoppe, The sampling theory of neutral alleles and an urn model in population
genetics, J. Math. Biology 25 (1987) 123-159.
[7] Z. Ignatov, On a constant arising in the asymptotic theory of symmetric groups. Theory
of Probability and its Applications 27 (1982) 136-147.
[8] J. F. C Kingman, Random discrete distributions, J. Roy. Statist. Soc. 37 (1975) 1-22.
[9] G. P. Patil and C. Taillie, Diversity as a concept and its implications for random
communities, in: Proc. 41st. 1.S.1., New Delhi (1977) 497-515.
[10] M. Perman, Random discrete distributions derived from subordinators, Ph. D. thesis,
Dept. of Statistics, University of California, Berkeley 1990.
[11] M. Perman, Order statistics for jumps of subordinators, Preprint 1991.
[12] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, Vol.
II, Ité Calculus, John Wiley & Sons, New York 1987.

[13] L. A. Shepp and S. P. Lloyd, Ordered cycle length in a random permutation, Trans.
Amer. Math. Soc. 121 (1969) 340-357.

[14] A. M. Vershik and A. A. Schmidt, Limit measures arising in the asymptotic theory of
symetric groups I. Theory of Probability and its Applications 22(1) (1977) 70-85.
[15] A. M. Vershik and A A. Schmidt, Limit measures arising in the asymptotic theory of
symetric groups II, Theory of Probability and its Applications 23(1) (1978) 36-49.
[16] G. A. Watterson, The stationary distribution of the infinitely many neutral alleles

diffusion model, J. Appl. Prob. 13 (1976) 639-651.

[17]S S. Wilks, Mathematical Statistics, Wiley, New York, 1964.




86

Proc. Grad. Workshop Math. Appl

M. Perman

Institute for Mathematics,
Physics and Mechanics,
University of Ljubljana,
Ljubljana, Slovenia

. Soc. Sci., Ljubljana 1991



87

Graduate Workshop in Mathematics
and Its Applications,
Ljubljana, 23.-27. 9. 19961

FRACTALS FROM COUNTEREXAMPLES TO
APPLICATIONS

P. PETEK

Math. Subj. Class. (1991) 58F13

Key words: fractal, Cantor set, Koch snowflake, Julia set, iteration

Abstract. Some classical counterexamples are recognized as fractals. Iteration theory
provides analogous objects in a more natural setting. One aspect of applications is
mentioned, the IFS of Barnsley.

Fractals have lived for almost a century in the mathematical conscience.
But in the first years they were made up examples and counterexamples
that defied mathematical common sense and advertised caution in jumping
to hasty conclusions. Later, to no small surprise, variations of those very
fractals popped up quite naturally in simple mathematical operations. It is
not surprising that the explosion of interest in fractals coincides with the
era of computers. To draw and see a fractal the computer screen is the most
useful tool.

As geometric objects, fractals live in Euclidean spaces, but they really
live as the geometry of one aspect of nonlinear dynamics, chaos. A most
common situation represents dynamics in an open subset of Euclidean space;
however dynamics is chaotic on a subspace and this subspace is fractal.

We shall consider three examples, the Cantor set, the Koch snowflake
and the Weierstrass function.

The construction of Cantor is well known, as are the properties of the
resulting set. It has zero Lebesgue measure, but continuum many points,
it is totally disconnected and perfect. The construction of Cantor seems
somewhat artificial and the result was at his time regarded as a pathological
object, such that never appears in nature. However in the theory of iterations
there is a very natural way to encounter the Cantor set. Suppose we iterate
the function f(z) = pz(l — z), 4 > 4 . The set of points

A={z| f(=)€[0, 1] for all n> 0}

is homeomorphic to the original Cantor middle third set.

Instead of the above quadratic function any unimodal function would
do. And this is essentially the reason that the Cantor set appears as part of
the structure in many ,strange attractors”. One such interesting example
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is the ring os Saturn. The Cassini gap has been known well over 200 years,
but the photos the Voyager brought back from its mission showed a very
good matching of gaps with the gaps in Cantor set,

The Koch snowflake is a geometrical object in the plane, having finite
area and infinite perimeter, i.e. its boundary is a curve of infinite length.
Moreover, as is the habit of most fractals, the Koch curve is self-similar: any
smallest part of it, when sufficiently magnified, looks as the whole curve.

The Koch snowflake and curve were constructed to give a counterex-
ample to the ,common sense” belief that finite area should also be finitely
bounded. And as with Cantor set, again the very same function, namely the
quadratic one purchases through 1terat10n an analogous example a.lbelt in
the complex plane. The Julia set of the quadratic map f(z) = 22 — } is an
honest Jordan curve, homeomorphic to the circle, but of infinite lengtil self-

similar, fractal. The interior, the basin of attraction of 1%3@ corresponds as
a counterexample to the Koch snowflake.

Kar]l Weierstrass constructed a function

W(t) Z w”e 2mwib™t

n-O

where b is an odd integer, w = =¥, 0 < H < 1. The function is well de-
fined by the Fourier series and has peculiar properties. Most functions that
appear in ,natural” problems are continous and differentiable, noncontinu-
ity and nondifferentiability is more of an exception. But the real and imag-
inary components of Weierstrass’ function are continous, yet nowhere dif-
ferentiable functions. It is this last regirement that made the construction
difficult. Namely Riemann also gave his example

o0

R(t) = Z %cos n’t

n=1

which proved to be continous, but there were some points of differentiability.

In the iteration theory exa.mples hke Welerstrass are plenty. Just take
the above mentioned function f(z) = z° — § and the corresponding iteration
sequence

g 1
Zn4l1 = %n — 5 .

Terms cs can be expressed as
zZ, = <§(2"§'1(z0))
where ® is the solution of the functional equation

B(2w) = (B(w)) - 5
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defined for Re(w) > 0 as a series
$(w) = e + Bre™™ + Bye > + ...

whose coefficients can be determined recurrently.

For purely imaginary w = it both the real and imaginary part of ®(it) =
z(t)+iy(t) furnish an example like the one of Weierstrass, and geometrically
give a parametrization of the Julia set.

All the mentioned examples, the classical constructions as well as their
iteration counterparts, are fractals. What is a good definition of a fractal is
not yet resolved. Mandelbrot, the father and advocate of fractals, started
with the reqirement that the Hausdorff dimension of an object X be nonin-
teger (Dy(X) ¢ Z) to be declared a fractal. Later however some prominent
examples appeared with all the properties of the known fractals and yet in-
teger dimension. Maybe one should wait a few years for the theory to settle
down before fixing a definition.

And while doing so let’s see how Barnsley applied fractals. His defi-
nition is so generous to encompass all nonempty compact subsets of a Eu-
clidean space, say the plane. A fractal then represents a black and white
picture. Barnsley then shows that any picture can be with a desired accu-
racy reproduced if we know an IFS (iterated function system).

What is an IFS? We are given a set of mappings

w;:R*>R? 1<i<r

where each w; is an affine contraction. Starting with any point zy in the
plane, we choose at each step an index j(n) at random and plot the sequence
of points by the rule

Tyl = Wim)(zn).

With probability 1 the picture that appears is the attractor — a fractal —
determined by the choice of the set of contractions.

This proves to be a very effective way of storing information on images,
certainly much better than pixel by pixel storing. And not only can black
and white pictures be coded that way, colours can be brought into picture
with invariant measure.

Apart from the affine transformations w; probabilities can be attached
to each index p; = P(j(n) = i) and density of points on the attractor can be
influenced this way. Density intervals then can be assigned different colours.

However there is still the problem of encoding a given picture. The
theory gives the existence of an IFS that would with the required accuracy
reproduce the picture. But there is not yet known any general algorithm
that would work for all kinds of pictures. Some very specific types have
so far been succesfully dealt with and nice pictures of flowers, ferns, trees
appeared, yet there is still much work to be done.
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Abstract. In the paper we present some applications of symbolic computing to graph
theory.

Mathematica [2] is a sophisticated, powerful system for symbolic com-
putation developed and distributed by Wolfram Research, Inc. Its power
can be used in various branches of mathematical research. The lecture was
intended to give an overview of Mathematica and some hints of possible ap-
plications.

Although powerful, Mathematica can be easily used by novices as well
as by expert programmers. One of the main advantages of Mathematica is
its extendibility. Mathematica has a great number of built-in operations and
functions. New operations and functions can be readily added to this list
if they are programmed and stored on files as packages and loaded when
needed. In this way the programmed operations become indistinguishable
from the built-in operations. Such extensions make Mathematica so useful.

One of the packages that comes with Mathematica version 2 is called

Combinatorica. This package covers many areas of combinatorics and graph
theory. It was written by Steve Skiena and is described in [1]. There are
other packages available when purchasing Mathematica. One of them that
we used in our lecture is called Polyhedra and gives some operations on
polyhedra.

The lecture was composed of two parts. In the first part we presented
some of the features of Mathematica. The major components of the Math-
ematica system are its symbolic, numerical, graphics, and programming ca-
pabilities.

As an illustration of symbolic computation, consider the problem of
finding the order of local convergence for some numerical method for finding
roots of equations, such as Newton’s method.

Mathematica 2.0 for MS-D0OS 386/7 (June 21, 1991)
Copyright 1988-91 Wolfram Research, Inc.

First we tell the system that f(z) has a zero at z = a.
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In{1]:= f[a] := 0

Now we let the system do the tedious Taylor-series expansion for us.
We expand the error of the next iterate as a function of the previous one, z,
around z = a, through terms of order 3.

In[2]:= Series[(x - f[x1/f'[x]) - a, {x, a, 3}]

2 2 (3)
£f’7[a] (-a + x) -£7’[a] f [al 3 4
Out[2)= --———---—---—- + (----mm-- + - ) (ca + x) + 0[-a + x]

From this we conclude that Newton’s method has (at least) quadratic
convergence, provided that f'(a) which appears in the denominators is non-
zero. If furthermore f”(a) = 0 then convergence is at least cubic. Obviously,
we can get as many terms of the error as we like.

But what if f'(a) = 07 Let’s see: .

In[3):= £’[a] := O
In[4):= Series[(x - £[x]/f’[x]) - a, {x, a, 2}]

(3) 2
~a+x £ [a] (-a + x) 3
Out[4]= ---—-—-- + —mmmmmm oo + 0[-a + x]
2 12 £ [al

Now convergence is only linear, and the error approximately halves at
each step provided that f”’(a) # 0. We can go on and set higher derivatives
to zero as well:

In[5]):= f’’[a] := 0

In[6]:= Series[(x - f[x1/£f’[x]) - a, {x, a, 2}]

(4) 2
2 (~a+x) £ [a] (-a + x) 3

In the second part of the lecture we presented our original programming
contributions. The implementations of some of these functions are listed in
the Appendix. First we showed some new functions that we were using in
combining the above-mentioned two packages. For example, we showed how
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one can take a polyhedron and then form its one-skeleton that can be later

processed as any other graph.
In the following example we use the function OneSkeleton to convert

the dodecahedron to its skeletal graph; see Figures 1 and 2.
In[1]:= gd = OneSkeleton[Dodecahedron];
In[2] := Show[Polyhedron[Dodecahedron]];

In[3] := ShowGraph([gd];

Figure 1. The dodecahedron.
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Next we showed that for computation intensive calculations it is often
better to write a programme in another programming language and then
interface it with Mathematica. As an example we used the well-known
Brendan McKay’s Nauty. This is an excellent programme for calculating
the automorphism group of a graph. For large graphs it was then evident
that the straightforward algorithm from the package Combinatoricais much
slower than Nauty, even though on one side the user cannot tell the difference
between the two functions and on the other side the interface to Nauty
spends some time as it stores intermediate data and results on disk.

Figure 2. The one-skeleton of dodecahedron

{

Our version of the function which computes the automorphism group of
a graph using Nauty is called AutomorphismGroup. The following example
shows that the automorphism group of the one-skeleton of the dodecahedron
has 120 elements. .

In[4] := AutomorphismGroup[gd];
In[S]:= Length[%]
Out[5]= 120

The one-skeleton of the tetrahedron is the complete graph K,. Its
automorphism group is listed below. It contains the 24 permutations on
four letters.

In[6]:= AutomorphismGroup[OneSkeleton[Tetrahedron]]

0ut[6]= {{1, 2, 3, 4}, {1, 2, 4. 3}’ {ly 39 29 4}’ {2’ 1) 3’ 4}9
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v

{1, 3, 4, 2}, {2, 1, 4, 3}, {1, 4, 2, 3}, {2, 3, 1, 4}, {3, 1, 2, 4},

v

{1’ 4’ 3’ 2}’ {2’ 3’ 4’ 1}’ {3’ 1’ 4’ 2}’ {2’ 4’ 1’ 3}’ {3’ 2’ 1’ 4}’

> {4’ 1’ 2’ 3}’ {2’ 4! 39 1}’ {3) 2’ 40 1}’ {4’ 1’ 3’ 2}' {3’ 4’ 1’ 2}’

v

{49 2, 1, 3}v {3) 4, 2, 1}’ {49 2, 3, 1}:‘{49 3, 1, 2}, {49 3, 2, 1}}

As a final series of examples we showed a programme in Mathematica
that calculates the index of the automorphism group of a polyhedron in
the automorphism group of its one-skeleton. We also showed a programme
for calculating the dual polyhedron of an arbitrary polyhedron. We were
discussing stellation and truncation of polyhedra.

Let A(P) denote the group of automorphisms of the one-skeleton of P.
We have written a programme which selects those elements of A(P) that
preserve the faces of P. The selected automorphisms form a subgroup S(P)
of A(P). The function SymmetryIndex computes the index of S(P)in A(P).
For example, the symmetry index of the dodecahedron is 1.

In[7] := SymmetryIndex[Dodecahedron]

Out(7])= 1

For the polyhedron ProjPlane depicted in Figure 3, the one-skeleton is
the octahedral graph K , ; (see Figure 4).

In[8] := Show[Polyhedron[ProjPlane]];

In(9]:= ShowGraph[ShakeGraph[OneSkeleton[ProjPlane],0.4]];

The polyhedron ProjPlane is self-intersecting. Topologically, it repre-
sents a map on the projective plane that is composed of three squares and
four equilateral triangles. The symmetry index of ProjPlane is 2.

In[10]:= SymmetryIndex[ProjPlane]

Out[10]= 2
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Appendix

The programmes in Mathematica.

Figure 3. The polyhedron called ProjPlane.

SymmetryIndex: :usage = "SymmetryIndex[poly_] returns the index of the
symmetry group of a polyhedron in the full automorphism group of its
one-skeleton."

SymmetryIndex/:
SymmetryIndex([p_] :=
Block[{autg = AutomorphismGroup[OneSkeleton[p]]},
Lengthlautg]/Length[Select[autg, AutoQ[Faces([p], #1] & 11]

SymmetryGroup: :usage = "SymmetryGroup[poly] calculates the symmetry group
of a polyhedron poly."
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SymmetryGroup/:
SymmetryGroup{p_.] :=
Select [AutomorphismGroup [OneSkeleton[pl], AutoQ[Faces[p]l, #1] & ]

AutoQ::usage = "AutoQ[list,permutation] returns True if permutation
represents an automorphism of the list.”

AutoQ/: AutoQ[1l_, p_] := ekvl[l, transform[l, pl]
transform: :usage = "transform[l,p] applies permutation p on a list 1."

transform/: transform[l_, p_] := 1 /. Thread[Sort([p] -> pl

Figure 4. The one-skeleton of ProjPlane.

ekvl::usage = "ekvl[11,12] returns True if the two lists of polygons are
equivalent (not necessarily oriented)."

ekvl/: ekvl[{}, {}] = True
ekvl/: ekvl{l1i_, 12_] := _
Block[{e = Scan([If[Ekv[#1, 11[[1]1]], Return{#1]] & , 12], pos},
If[e == Null, Return[Falsell; pos = Position[12, e][[1,1]];
Return[ekvl[Rest[11], Drop[l2, {pos, pos}]]]l]

Ekv::usage = "Ekv[p,q] returns True if the two polygons p and q are
equivalent (not necessarily oriented)."

Ekv/: Ekvlp_, q_] := ekvlp, q] || ekvlp, Reverselql]

ekv::usage = "ekv[p,q] returns True if the two oriented polygons p and q




98 Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991

are equivalent."

ekv/: ekvlp_., q_] :=
Block[{pposq = Position[p, q[[1]11]},
If[pposq == {}, Return[Falsell; pposq = pposql[1,1]];
Return{Join[Drop[p, pposq - 1], Take[p, pposq - 1]] == ql]

AutomorphismGroup: :usage = "AutomorphismGroup[g] finds the automorphism
group of a graph g. The graph may reside on
a file."
AutomorphismGroup[g.] := .
Block[{gener = Generators[g], order},
(* Generators uses Nauty =)
order := Lengthlgener[[1]1];
(* Does not work for rigid graphs =)
Group[gener, {Range[order]},PP]
(* PP is permutation multiplication *)

]

Group::usage = "Grouplg,h,op] multiplies elements of a list g with
elements of a list h (multiplication is given by operation op) and
recursively appends results to the list h."

Group/: Groupl[g_, h_:{1}, op_:NonCommutativeMultiply] :=
Block[{hh = h, Xk = 0, ii, t},
While[kk < Length[hh],
Increment[kk];
Do[
1f['MemberQf{hh, t = op[ gl[ii]l], hh([[xk]] 1],
AppendTo[hh, t]

{ii: Length[gl}1];
hh)
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Abstract: We study the following problem: to find conditions, “checkable from within”
an open 3-manifold M, which guarantee that the endpoint compactification M of M is
a generalized 3-manifold. Our main result is: The endpoint compactification M of a 3-
manifold M with one end is a generalized 3-manifold if and only if M satisfies the property
that (1) given a neighbourhood U of oo there exists a neighbourhood V C U of oo such
that for every k = 2,3 and for every mapping f : dB* — V and every neighbourhood
W C V of oo, there exist pairwise disjoint k-cells Dy,...,D; C int B* and a mapping
F:D — U such that D = B* — (D, U...uD,), F|3B* = f, and F(dD;) C W for every
J €{1,...,t}; (2) H2(5 Z) is stable at the end ¢; and (3) Ha(e; Z) = Z.

Assume throughout this paper that M is a topological 3-manifold with
the following properties: (i) M is noncompact; (ii) 8 M is either compact or
empty; (iii) M has one end; and (iv) M contains no fake 3-cells.

Recall the definition of an end of a locally compact space X: this is a
collection E of open subsets of X satisfying the following properties: (1)
Each element of E is open, connected, and nonempty; (2) Each element of
E has compact frontier; (3) If e;,e; € E then there is e3 € E such that
e3 CeyNey; (4) N{é | e € E} = ®; and (5) E is maximal with respect to
properties (1)-(4).

A prime example is W = N — C, where N is a compact topological
manifold with boundary and C C 8N is a boundary component. Then W
has exactly one end [8] [9] [14].

_ Denote by M the endpoint (Freudenthal) compactification of M and let
M -~ M = {o0}. The following theorem was first proved by C. H. Edwards,
Jr. [7] and, independently, by C. T. C. Wall [16]:

Theorem 1. (C. H. Edwards and C. T. C. Wall) M is a 3-manifold if
and only if M is simply connected at co.
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A neighbourhood of infinity in a locally compact space X is an open
set U C X such that X — U is compact. A locally compact space X is
simply connected at oo if for every neighbourhood U C X of co there exists
a neighbourhood V' C U of oo such that every loop in V is null-hemotopic

in U. Thus M is simply connected at oo if and only if {oo} is 1-LCC in M.

Note the distinction between these properties and assertxon that M is
1-LC at oo: {oo} is 1-LCC in M if for every open set U in M there exists
an open set V C U such that the inclusion-induced homomorphism I, (V -
— {o0}) — My(U — {o0}) is zero. On the other hand, M is 1-LC at oo if
and only if for every open set U C M there is an open set V C U such that
I, (V) — O, (0) is zero.

The question which we wish to address here is: Are there conditions

“checkable from within M" that are collectively equivalent to M being a
generalized 3-manifold, i.e. a locally compact, finite-dimensional, separable
metrizable ANR which is also a Z-homology 3-manifold (i.e. for every z €

M, H.(M,M-{z};Z)= H,(R3,R®-{0};Z))?

- One approach to this problem is to break the statement “M is a gen-
era.hzed 3-manifold” into simpler properties and search for solutions to the
problem using these more basic properties. For example, M is clearly finite-
dimensional, so M is an ANR if and only if M is locally contractible at oo

[2]. Now, M is clearly 0-locally connected (0-LC) at co. Since M deforms to
the one-point compactification of a locally finite 2-dimensional polyhedron
(a.n unpublished result of G. Kozlowsh), LC? implies LC*® [11]. Therefore,

M is an ANR if and only if M is 1-LC and 2-LC at oo. (RecallthatXls
k-LC at z € X if for every neighbourhood U C X of z there is a neighbour-

hood V C U of z such that (V') — II;(U) is zero, and LC* means n-LC
for all n < k.)

Furthermore, using the local version of the Hurewicz theorem [11], the
property 2-LC may be substituted by its homological equivalent, 2-1c, if it
is desirable. Similarly, it can be shown that M is a Z-homology 3-manifold
if and only if H,(M,M;Z) = H,(R3 R3 - {0};Z) for 1 < ¢ < 3. Can each
of these more basic conditions be recognized from within M?

First, we consider such a criterion for the local k-connectedness of M,
due to J. Dydak [5] (see also [6]). It will be called the PS*CI property (for
“Pushing k-Spheres Close to Infinity”): M has the PS*CI property if, given
a neighbourhood U C M of co there exists a neighbourhood V' C U of oo
such that for every mapping f : #8B*+! — V and every neighbourhood W C
V of oo there exist pairwise disjoint (k + 1)-cells Dy, ..., D; C int B**! and
a mapping F : D — U such that D = B¥+1 - (D, u...u D,), F | 8B**! =
= f,and F(8D;) C W for every j = 1,...,¢t. For example, M has the PS*CI

property if and only if for every neighbourhood U of infinity there exists a
neighbourhood of infinity V' C U such that for every neighbourhood W C V'
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of infinity, loops in V are freely homotopic within U to a product of loops
in W.

Theorem 2. Let M be a noncompact 3-manifold with 3M either empty
or compact with one end and let k € {1,2}. Then the endpoint compactifi-
cation M of M is k-LC at oo if and only if M has the property PS*CIL.

Proof of Theorem 2. Theorem 2 follows immediately by [5; Lemma
(3.2)]. Nevertheless, for the sake of exposition we present here a detailed
proof of the £ = 1 case. Suppose first that M is 1-LC at co. Given a
neighbourhood U of infinity let ¥ = U U {oo0}. Since M is 1-LC at oo,
there exists a neighbourhood V of 0o in M such that any loop in V is null-
homotopic in U. Let V = V — {o0}.

Let f : 8B? — V be a mapping and W a neighbourhood of co. Let F :
B? = U be an extension of f. Choose a polyhedral manifold neighbourhood
N of F~(o0) in B?, small enough so that N C F~!(W). Let D be the
component of B2 — N containing 8B and define G = F | D. D is a disk-
with-holes as in the definition of PS!CI and G(8D — 8B%) C W. Therefore
M has the PS!CI property.

Suppose now that M has the PS!CI property and let U be a neighbour-
hood of 0o in M. Let U = I — {0}, and let V C U be a neighbourhood of
oo as in the definition of PS'CI. Finally, let V = V U {o0}. Clearly, V is a
neighbourhood of oo in M, and it remains to be shown that any mapping
f:08B% = V can be extended to a mapping F : B2 — U.

As a special case, assume f(6B?) C V. Let Uy = U, U; = V, and in
general, let U, +; be a neighbourhood of oo such that the pair (U, 41, U,)
satisfies the requirements for (U, V) in the definition of PS! CI. Furthermore,
construct the U;’s so that {fIJ} ieN is a neighbourhood basis for M at oo.
Extend f to a mapping f; : 151 — U, where D, is a disk-with-holes in
B? and f,(8D, — 8B%) C U,. Inductively, extend f, to a mapping f,;; :
Dy41 — Uy, where D, 4, is a disk-with-holes in B?, (D,, —8B?) C int D,,,,
fn+1(Dn+l - Dn) cU, -1 and fn+1(8Dn+1 - 832) C Un+1. The disk-with-
holes D,,;; should be constructed so that the components of B — D, ,

have diameters < 17, so that D, = |J D, is the complement of a 0-
n>1

dimensional compactum in int B?. Define f., : Doo — U by foo | Dp = fa,
n € N. Then f,, is a proper mapping of D, into U, with the ends of D, all
going to the end of U at co. Therefore F | D, = f and F(B? - D) = oo,

defines a mapping of B? into U that extends f.

Now let f: 8B? — V be an arbitrary mapping K = f~1(0). Let V; O
V2 D ... be connected neighbourhoods of oo, chosen so that {V;};cN is a
basis for M at oo and so that any loop in V}4; is null-homotopic in f’j, as

in the Special case. Recall that any loop in V is null-homotopic in U, so we
mayset Vi=Vand V; =U.
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The complement of K in B? may be written as the union of 2-cells B; C
B? C ..., where (B; n dB?) U f~1(V;) = 8B%. Using connectivity of V;, f
may be extended over 8B; — 8B? so that f(8B; — 8B?) C V;. Let C; =
= Bj;1 — B; and Cy = By. Then C; is a union of 2-cells and f(3C;) C V;
for each j. Applying the Special case to f | 9C;, we extend f to a mapping
of C; into Vj-l for each j, resulting in an extension of f to a mapping F :
B? > Vo. ]

Figure 1

Before we continue we need to introduce a new concept — stability
of homology groups at an end, and following that, homology groups of
an end. So let X be a locally compact space with one end ¢. Following
[14], we shall define H,(e;Z) to be the inverse limit of the inverse system
{H.(U;; Z); a; i+1}ieN, associated to a system of open neighbourhoods

x),2 2,3 Q3.4
Ul ¢ U2 € U3 ¢ ooe

of the end ¢, which is stable, i.e. for some subsequence
{H.(Ui;; Z); &, i, +1}jeN, the induced maps are isomorphisms:

. ima,-h,-, a%.-zlima,'z,,’s a(.—zia' oo
It can be shown, using the same ideas as in [14] that H,(¢; Z) is well-defined.
We define two more properties. Let X be any space. Then X is said
to satisfy the Kneser finiteness if no compact subset of X intersects more
than a finite number of pairwise disjoint fake 3-cells. Next, X is said to
have the map separation property if for every collection fi, ..., f, : B? = X

of Dehn disks such that if i # j then f;(B?)n f;(int B?) = @ and for every
neighbourhood U C X of the set U, f;(B?) there exist maps g;,..., gy :
B? — U such that (i) for every ¢, f; | 8B = g¢; | B?; and (ii) for every
i # 7, 9i(B?) N g;(B?) = 0. Recall that a disk f : B — X is said to be Dehn
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if the closure of the set {z € B% | f~!(f(z)) # z} misses 3B2. For more on
these properties see [13].

We now come to the main result of the paper — an interior characteri-
zation of generalized 3-manifolds:

‘ Theorem 3. Let M be an open 3-manifold with one end . Then M is
a generalized 3-manifold if and only if the following conditions hold:

(i) for every neighbourhood U C M of oo there is a neighbourhood V C
U of oo such that for every map f : 8B* — V, k = 2,3, and every
neighbourhood W C M of oo there ezist k-cells Bf, ..., BX, ¢ B* and an
eztension

f:(B*-|JintBf) - U
=1
of f, such that (int B¥) N (int B¥) = 0 for all i # j and f(8Bf) C W

for alli <m; and
(ii) Hy(< Z) is stable at € and Hy(e; Z) =2 Z.

Proof. We only need to prove the sufficiency. Clearly, M is always finite-
dimensional since such is already M, so M is an ENR if and only if M is

LC*® at oo [2]. Now, M is always LC° at oo and since M deforms onto a
one-point compactification of some locally finite 2-dimensional polyhedron

(as observed by G. Kozlowski) it suffices to prove that M is LC? at co. The
latter is by Theorem 2 precisely the condition (i) above.

Next, by the Hurewicz theorem, M is 1-lc (Z) at ¢. Let {U;} be a
neighbourhood base at co. Consider the long exact sequence for the Borel-
Moore homology [1] with compact supports for the pair (U;, U; — {00}):

-+ = HY(0) — HY(O:, 0 = {00}) = By (Ui = {o0}) = By (0) — -
Then by the Skljarenko theorem [15)], lim{— H¢(U;) = 0 = lim{— *H{(T;).

Now, by excision, H ,ﬁ(f],-, U, - {o0}) doesn’t depend on the choice of U;. It
therefore follows by the condition (ii) of the theorem that

H§(M, M — {o0}) = H(T;, U; - {0}) H:;lec(ﬁi —{oo}) 2 Hi(e) = Z.
Similarly, for k < 2, H{(M, M — {co}) belongs to the short exact sequence
0 — lim" fg_, (U - {oo}) — HE(M, M - {o}) —

—s lim H§(0; ~ {00}) — 0

and the condition (i) implies that {H¢(U; — {c0})} vanishes.
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It follows that: H(M, M — {w};Z) = H;(R3,R®-{0};Z), i=1,2,3.
Thus M is also a Z-homology 3-manifold hence a generalized 3-manifold. =

Remark. If the Poincaré conjecture is true then the one-point compact-
ification of an open 3-manifold M with one end need not be a generalized
3-manifold even if M is contractible. Let M be Kister-McMillan’s open 3-
manifold [10]. Then M is contractible and has one end. Suppose M were a

generalized 3-manifold. Then by M. G. Brin [3] M would have a resolution
so by Brin-McMillan [4] M would embed in a compact 3-manifold. However,
the latter is known to be false.

If we add a general position hypothesis to Theorem 3, we get the

following recognition theorem for 3-manifolds, by invoking the main theorem
of [12]:

Theorem 4. Let M be an open 3-manifold with one end e. Then M is
a topologzcal 3-manifold if and only if the following conditions are 3atzsﬁed

(i) M satisfies the Kneser finiteness;

(IT) M possesses the map separation property;
(iii) M satisfies the PS* CI property for k = 1 and 2; and
(iv) Ho(5Z) is stable at € and Hy(6;Z) = Z. =

We shall conclude with the following open problem. Let X be a con-
nected ENR with one end. Let U;W C X be open neighbourhoods of in-
finity such that W is connected and W C U. Let zog € U and z;,z; €
W. Then there are paths 4; from z; to zg, 7 from z; to zg, and 44 from
z; to z3, and 7 lies in W. The inclusions induce isomorphisms (#)4 :
I, (W,z,) - Ij(U,z;) for k = 1,2. The maps 7, induce isomorphisms
() : (U, 2z;) —» (U, z0), § = 1,2 and (70)4 : (W, z1) — II;(W, 2,).
Let ¢ = (72)#(70)#(71);1 : I1(U,20) — M;(U,z0). Then ¢ is an inner
automorphism. Let Hy = ((7k);l(ik)#)H1(W,a:n), k = 1,2 and let N; be
the normal closure of Hy in II;(U, z;). Then N; = N,. Therefore, if we let
Gw be the normal closure of im[Il;(W,z;) — II;(U,z0)], then Gy is well-
defined and we may set II3°(U,z0) = N{Gw | W open, connected U}. We
define thad X has the property PS!I (for “Pushing 1-Spheres to Infinity” ) if
for every open neighbourhood U C X of oo there is an open neighbourhood
V C U of oo such that im[II,(V) — II;(U)] C I{°(U) where we restrict
to those W in the definition of II$°(U) which lie in V. Clearly, the PS'CI
property implies the PS'I property. Does the converse also hold?
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Abstract. A new approach to image coding, based on ordinate-preserving plane home-
omorphism invariants, is presented. A critical point graph bearing full information on
these invariants is outlined. Apropriate noise-smoothing techniques are developed. The
proposed method has been implemented and tested with a new OCR-program CRIPT.

To know the boundary means to know the set. To recognize a symbol,
it is sufficient to see its contour. For most of the English characters their
contours represent a simple closed curve (the characters are realized as
having non zero thickness — the typical thickness of a character produced
by scanning with a resolution of 300 dpi is 4-5 pixels). For example, they

include such characters as “c”,“s”,“v”,“x”,“y”.

As far as “b”,“p”,“d”,“0”,“1” are concerned, they have two component
contours.

Since all simple closed curves are topologically equivalent, topology
- seems to be of little service in recognizing thick characters. That is why
when applying topology to character recognition, one usually makes use of
a thinning procedure. The latter reduces a thick original to its skeleton,
i.e. subset of one pixel thickness, which globally looks like the original.

A thin set can be interpreted as being 1-dimensional object, i.e. a
graph. Topology of graphs is essentially richer then that of 1-dimensional
manifolds (every contour is a 1-dimensional manifold that is a disjoint union
of simple closed curves). In addition to homotopical invariants (homotopical
type of a connected graph is uniquely defined by its Euler characteristics),
such singular points as branching and ends are topologically invariant. In
particular, thin “c” has two ends, thin “y” has three ends, hence, they are
topologically different.

Different type graphs (e.g. that of neighbourhood, hnes or region adja-
cency) turned out to be useful in character encoding and recognition with-
out thinning (see [1,2] for example).

Searching for topological differences between letters is of crucial impor-
tance in handwrittten character recognition because it is the topological
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properties which are the most stable in infinite-dimensional variations of the
different writtings of the same character.
Topology itself fails to distinguish “p” and “d”, “b” and “d”, since a

simple rotation of the plane translates “p” onto “d”, and a symmetry “b”
onto “d”. Hence, to recognize a general symbol, we should know the plane
orientation. To distinguish “b” and “d” it is necessary to know where “left”
is and where “right” is.

Our main idea is to involve topology of a function to provide an effective
combination of topology and geometry to recognize both handwritten and
typed symbols.

By topological homeomorphism of a function f : A — B we mean a pair
of homeomorphisms g: A —+ A, h: B — B, such that fog = goh.

For our purposes we are mainly interested in functionY : P — R, being
a projection of the plane P onto vertical axis. :

If a pair of orientation-preserving homeomorphisms g (of plane) and h
(of line) produces a homeomorphism of Y, (i.e. Y og = hoY), then g has
the following property of monotonicity.

Definition. A mapping f : A — A s called monotonic with respect to a
function h : A — R or briefly h-monotonic, if for every pair of points a,b €
A the inequality h(a) > h(b) is equivalent to inequality h(f(a)) > h(f(b)).

It should be noted that every Y-monotonic homeomorphism is able to
be coupled with line homeomorphism to compose a homeomorphism of Y.

Now we can distinguish contours. Namely, we say that two contours are
Y -equivalent if there exists an Y-monotonic orientation-preserving homeo-
morphism translating one contour onto another (in this situation the bodies
of symbols, i.e. the regions of the plane bounded by contours also have to
be translated one onto another).

There are three reasons why the group of Y-monotonic homeomorphisms
seems to be a powerful tool in handwritten character recognition.

1. The Y-equivalence is sufficiently fine tool to distinguish most of
the characters. Particularly, all letters of the folowing sequence represent

different classes of Y-equivalence almost in any font:

143 a” , “b” « c” , “e” “f” “g” uh” u ” “J ”» “k” “l” “m” “n” , “ ” upn ,

©Uot  WEP (U, Uy ,) UL
s, "t v, "wh, Tx,

The characters usually being Y-equivalent are “A” and “R”, “B” and

“8”, “V” and “Y”. Depending on font “b” and “d”, “p” and “q” may turn
out to be either equivalent or not.

2. The Y-equivalence is a sufficiently rough tool, since for every hand-
written letter there are only a few different Y-types arising in reasonably
accurate writtings (3-5 character).

3. And the last but not the least: there exists a fast algorithm for
verifying the Y-equivalence.



Proc. Grad. Workshop Math. Appl. Soc. Sci., Ljubljana 1991 109

The topological type of a smooth function is known to be determined by
its critical points, i.e. by points with a vanishing gradient. In particular, for
1-dimensional manifolds every Morse function (in our case this is simply a
function with non-zero second derivates in critical points) has critical point
only of two types, that is, local minima and maxima (see [3]).

But the notion of local extreme is naturally defined in discrete situation.
Thus, for every discrete image of a symbol one effectively defines all critical
points of Y using line adjacency (see [2]).

The number of all critical points as well as that of all maxima (or
minima) are Y-invariants (i.e. they are invariants of Y-equivalence).

The main goal of this paper is to construct a full system of Y-invariants.
To do this we introduce the concept of a critical points graph (CPG).

It is interesting to compare the method of critical points (cript method)
with that of crossing (see [4]). The latter distinguishes characters using the
dynamics and crossings. Namely, for every subset of the plane and every

line the crossing number is defined as being the number of black-to-white
subset transitions in a path through the line.

The vertical crossing number of a plane subset is defined as a sequence of
crossing number of this subset with a variable horizontal lines moving from
top to bottom. (One adds a new member to the sequence only in changing
of crossing numbers thus, the sequence does not contain a pair of equal
and subsequent numbers.) The following theorem clarifies the relationship
between the cript- and crossing-methods.

Theorem 1. Two plane regions have the same vertical crossing sequence
if and only if there exists a bijective (but in general not continuous) Y -
monotonic mapping of the plane translating one of them onto the other.

Hence, Y-equivalence is finer than vertical crossing sequence equivalence
(VCS-equivalence).

The insufficient distinguishing power of VCS-equivalence is usually com-
pensated by coupling it with horisontal crossing sequence equivalence.

Similarly to the Y-equivalence, one is able to define X -equivalence
generated by the projection X : P — R on horizontal axis.

The original OCR-program, based on the cript-method, made use of X-
invariants as well. Having gained some experience, we rejected X -invariants
Y -invariants turned out to be sufficient for our purpose.

In addition, there are theoretical arguments in favor of Y-invariants in
contrast to X-invariants. Namely, incline variations which are rather large
not only in handwritting but also in typed texts (let us recall italic) have a
considerable effect on X-type and do not change Y -type.

There is another way to introducing Y -equivalence based on the lex-
icographical order. Two different lexicographical orders are on the plane:
the first one for which the ordinate (i.e. Y') is more important than abscissa
(i.e. X) and the second (being dual) with opposite priority of the coordi-
nates.
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A mapping F of the plane onto itself is referred to as lez-monotonic if
it preserves the lexicographical order (i.e. F(z) < F(2') «= 2z < 7).
This allows us to state teh following

Theorem 2. Two regions are Y -equivalent iff there exists a continuous
lez-monothonic (with Y being priority) bijection of the plane translating one
of the region onto the other.

Omitting the word “continuous” and substltutmg “VIS” for “Y” we
obtain an alternative form of Theorem 1.

The proofs of both theorems are routine for topologist and needed only
as a motivation of basic definitions and their better understanding.
) The proposed approach based on criticalpoint analysis was implemented

- by the authors into OCR-program CRIPT (CRItical PoinTs). This program

is in Turbo Pascal. It turned out to be a very compact (CRIPT may be used
on PC XT with 300 K free memory) and gives good results in recognition
of English, Russian and Armenian texts as well as for isolated handwritten
letters.

The topological nature of the system implies a high flexibility of the
program. After training, when using any (English or Russian) text, another
text of similar but not identical type may be recognized. This property
implies rapid training of the program with the new texts. As a rule we
achieve good results after training with 5-10 text strings, it takes about 10-
20 min to produce the new reference data base. CRIPT recognizes about 20
symbol/s (IBM PC AT/286, 8 MHz).

As to recognition rate, it is closely related to the text quality. For
example, it achieves 99.5-99.9% in any laser-printed text recognition, is
reduced to 99.0% in recognizing NLQ-printed texts and dramatically falls for
texts with fractured characters or with numerous touching between symbols.
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Abstract The purpose of this survey paper is to present the technique by means of which
one can eliminate the convexity hypothesis from some important topological theorems on
selections of manyvalued maps.

0.

This lecture I begin form two elementary formulated problems about
graphs of continuous functions of one real variable. Then the solutions of
these problems will be given.

After two theorems will be stated which are accordingly the generaliza-
tions of the above problems for the case of functions of many real variables.
Finally, it will be said about the applications in the so called theory of sin-
glevalued selections of manyvalued maps. Briefly, the principal aim of this
lecture is to demonstrate the technique which allow us to reject the convex-
ity in some important topological theorems I suppose that such controlled
refusal from a convexity may be useful at other domains of mathematics.

1.

Problem 1. Let A and B be points onto a graph G; of a monotone
continuous function f defined on an interval. Let the distance AB be equal
to 2R. Then the middle point O of the segment [A, B] is situated from G

at the distance equal or less than (v/2/2)R: dist(0,Gy) < (V2/2)R.

Problem 2. Let A, B,C be points onto a graph G; of a continuous
function f defined on an interval. Let D be a point in the triangle AABC.
Then the point D lies in some segment [E, F], where:

- EEG_f andFEGf;
- EF < max{AB, BC, AC}.
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Solution of the problem 1. Let
f be an increasing function and let A
the graph G intersect the vertical
line through the point O below this
point (see fig.1).

Then the graph Gy intersects a side OC of the triangle AAOC and
the graphG intersects a side OD of the triangle ABOD. But the triangle
A AOC is congruent to the triangle ABOD and AO = OB = R. Therefore

either OC < (v/2/2)R or OD < (V2/s)R. =
REMARKS.

a) The middlepoint O of the segment [A, B] may be replaced by any
point X of this segment: the inequality

.
X

dist(X, Gy) < (V2/2)R
remains true.

b) The fact analoguous to the problem 1 is true for the functions
satisfying the inequality |f(z) — f(y)| < |z — y| i.e. for the Lipshitz with
constant 1 functions.

c) For graphs of Lipshitz with constants k functions the following in-
equality may be obtained for any point X from segment [A, B], where A €
Gy, B€ Gy and AB = 2R

dist(X, Gy) < sin(arctgk) - R

Solution of the problem 2. Let z(A) < z(DF < 2(B) < z(C). Through
the point D draw the line ! parallel to the side (A, C] (see fig. 2).
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Then the graph G/ intersects this line ! over the segment [2(A), z(B)]
and the graph G intersects this line [ over the segment [z(B), z(C)]. Let E
be a ,minimal” point of intersection Gy N ! over the segment [z(A), z(B)].

a) If z(E) < z(D) (see fig. 2) then the point D lies in some segment ]E, F]
with E € G4 and F € G4 which may be moved in the side [A, C| with
the help of some parallel transfer.

b) If z(E) > z(D) (see fig. 3) then we may draw the line m through the
point D to the side [A, B]. In this case we obtain that the point D lies
in the some segment [E’, F] with E' € G; and F € G; which may be
moved in the side [A, B] with the help of some parallel transfer. =

2.

Now we pass to the case of many variables.

The symbol [A;, Aj, ..., A;,,] denotes the set of all convex combinations of
the points A;, A,, ..., A,,; shortly — the simplex with vertexes A4, A,, .., A,,.

The symbol R[A,, A,, ..., A;,;] denotes the minimum of the set of radii of
all balls containings the simplex [A;, A,, ..., A,]. We denote by Gr(R"+1)
the class of all subsets of Euclidean space R"*! which are graphs of some
continuous functions on n variables with a convex domain of definition at
some coordinate system which depends of that very subset. If we consider
only an orthonormal coordinate system and graphs of only Lipshitz with

constant k functions we obtain the class G Lip,(R"*!):

G Lipi(R™*!) c Gr(R"!).

Theorem 1. For everyn € N and k > 0 there ezists a constant a =
= a(n, k), 0 < a < 1, such that for any P from the class G Lip,(R"*!) for
any m € N and for any points A,, ..., A,, form P the inequality

dist(X, P) < a: R[A,, ..., A,]
holds for any points X lying in the simplez [A,, ..., An)-

Theorem 2. [2] Let P be an element of the class Gr(R"*!) and
A1, ..., Apny2 be points lying on the P. Then for any point D from the simplez
[A1, ..., Any2] there ezist points B, ..., B, 4, from the P such that:

- D € [By, -y Bpa); |
- the simplez [B, ..., B,1] may be moved in some face of the simplez
[A1, ..., Any1] with the help of some parallel transfer.

Remark. If a set P from the class Gr(R"*!) be a graph of some linear
function then the statement of the above theorem 2 coincides with the
classical Caratheodory theorem, which on the Euclidean plane (for example)
confirms that any polygon may be divided in to a union of some triangles:
at this case the vector of parallel transfer is equal to zero.
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3.

The final part of this lecture deals with theorems about an existence of
selections of manyvalued maps.

If for any element z of a set X there is some nonempty subset F(z) of
a set Y then there exists a singlevalued map f: X — Y such that

f(z) € F(=z)

for any z € X. This statement is one of the possible statements of the axiom
of choice. The siglevalued map f in this situation is called a selection of the
manyvalued map F'.

If we pass from the category of sets and maps to the more complicated
category then the question about the exisetence of selections becomes more
complicated, too.

We consider the category of topological spaces and continuous maps.
The question here may be formulated in the following form. What topolog-
ical conditions for spaces X,Y and for a manyvalued map F' : X — Y are
sufficient for the existence of a singlevalued continuous selection f: X — Y
of manyvalued map F'? One of the most important and widely used answers
are given by the following E. Michael theorem [1].

Theorem M. Let X be a paracompact, Y be a Banach space, F : X —
Y be a manyvalued lower semicontinuous map with closed convez values F(z)
for any £ € X. Then F admits a singlevalued continuous selection.

We should be reminded that manyvalued map F : X — Y is called a
lower semicontinuous iff for any open set W C Y the set

FY(W)={zeX:Fz)nW # 0}

is an open set in space X.

There exist two standard and important examples of use of this Michael
theorem.

Ezample 1. Let g : A — Y be a singlevalued continuous map from a
closed subset A of a paracompact X to a Banach space Y. Then g admits
a continuous extension f : X — Y to the whole paracompact X : f |4= g¢.

For the proof it suffices to consider the following manyvalued map from

Xto?.

It’s easy to see that F' is a lower semicontinuous. Therefore the application
of theorem M gives a selection f : X — Y which is an extension of map g.
]

Ezample 2. Let L : Y — X be a linear continuous operator from a
Banach space Y onto a Banach space X. Then L admits a continuous
section, i.e. a map s : X — Y such that

L(s(z)) ==
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for any z € X.
For the proof it suffices to consider the manyvalued map L~! : X —
Y. From the Banach Open Mapping theorem we have that L~! is a lower

semicontinuous and hence L~! admits a selection which is a section for the
L. =

The above theorems 1 and 2 show that the condition of the convexity of
values F(z) in the Michael theorem may be replaced by the the essentially
weaker conditions. Briefly, convexity may be replaced by , Lipshitzivity”.
For example, on the plane we may assume that F(z) is a graph of some
monotone continuous function or F(z) is a sinusoid, etc.

Theorem 3. For every n € N and k > 0, for every paracompact
X and for every lower semicontinuous map F : X — R"™ with closed
values belonging to the class G Lip, (R"), z € X, there ezists a singlevalued
continuous selection.

Finally, I state two open questions. First of them deals with attempts
to pass from the graphs of functions to the graphs of mappings.

Question 1. Let A, B,C, D be points on a graph G; of a continuous
mapping f : R — R2. Let X be a point in the tetrahedron [A, B,C, D).
Then the point X lies in a some triangle /A whose vertezes belong to G4 and

which may be moved in some face of the tetrahedron [A, B,C, D] with help
of some parallel transfer.

The second question deals with a more detailed estimate of teh constants
a(n, k) (see the theorem 1, above) when n — oo.

Question 2. Is theorem 1 true for the graphs of the Lipshitz functions
with the conver domains of definition lying in the Hilbert space?
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