REGULAR NEIGHBOURHOODS OF HOMOTOPICALLY PL EMBEDDED COMPACTA IN 3-MANIFOLDS (1)

Dušan Repovš (2)

Summary. We investigate when are regular neighbourhoods of homotopically PL embedded compacta in a given 3-manifold homeomorphic.

AMS (MOS) Subject Classification (1980): Primary 57Q40,57N10. Secondary 57M05,57M25.

Key words and phrases: regular neighbourhood, PL embedding, compact polyhedron.

In this paper we shall investigate the following problem concerning regular neighbourhoods of compacta in 3-manifolds: consider any two homotopic PL embeddings $f_1, f_2 : K \to \text{int } M$ of a compact polyhedron K into the interior of a 3-manifold with boundary M. Let $N_i \subset \text{int } M$ be a regular neighbourhood of $f_i(K)$ in M, i=1,2. In general, N_1 and N_2 need not be homeomorphic as the following example shows:

⁽¹⁾This paper is in its final form and no version of it will be submitted for publication elsewhere.

⁽²⁾ Supported in part by the Research Council of Slovenia.

Example 1. Let $M = S^3$, $K = S^1 \vee S^2 \vee S^1$, and let $f_i : K \to M$, i = 1, 2, be the obvious different embeddings: in $f_1(K)$ both circles are attached to the same side of $f_1(S^2) = S^2 \subset S^3$ while in $f_2(K)$ one circle is on each of the two sides of $f_2(S^2) = f_1(S^2)$. Although f_1 is clearly homotopic to f_2 , N_1 is different from N_2 because $\partial N_1 = S^2 \coprod T_2$ while $\partial N_2 = T_1 \coprod T_1$ where T_g denotes the closed orientable surface of genus $g \ge 0$ and \coprod stands for the disjoint union.

However, it is nevertheless true in this example that N_1 and N_2 have the same number of boundary components and the same Euler characteristics. Our first theorem below shows that this is always the case:

Theorem 1. Let K be a compact polyhedron and let $f_1, f_2 : K \to \text{int}$ M be PL embeddings of K into a 3-manifold with boundary M. Suppose that $(f_1)_* = (f_2)_* : H_*(K; \mathbb{Z}_2) \to H_*(M; \mathbb{Z}_2)$ and let $N_i \subset \mathbb{Z}_2$ int M be a regular neighbourhood of $f_i(K)$ in M, i = 1, 2. Then for every n, $\beta_n(\partial N_1; \mathbb{Z}_2) = \beta_n(\partial N_2; \mathbb{Z}_2)$, where β_n is the n-th Betti number (mod 2).

Proof. We shall suppress the \mathbb{Z}_2 coefficients from the notation throughout the proof. The argument is based on two assertions which we procede to state and prove below.

Assertion 1. The boundaries of N_1 and N_2 have the same Euler characteristic (mod 2), $\chi(\partial N_1; \mathbb{Z}_2) = \chi(\partial N_2; \mathbb{Z}_2)$.

Proof. Let DN_i be the double of N_i (obtained by taking two copies of N_i and identifying them along the boundary). Then $\chi(DN_i) = 0$ since N_i is odd dimensional. On the other hand, $\chi(DN_i) = 2 \chi(N_i) - \chi(\partial N_i)$. Therefore $\chi(\partial N_1) = 2 \chi(N_1) = 2 \chi(N_2) = \chi(\partial N_2)$.

Assertion 2. N_1 and N_2 have the same number of boundary components.

Proof. We shall show that β_2 (∂N_1) = β_2 (∂N_2). To this end we first note that

(*)
$$\beta_2 (\partial N_1) = \dim \ker \rho + 1$$

where $\rho = \rho_1 + \rho_2$ is from the Mayer-Vietoris homology sequence of the triple $(M, N_1, M - int N_1)$:

$$0 \to H_3(M) \to H_2(\partial N_1) \to H_2(N_1) \oplus H_2(M \text{ - int } N_1) - P \to H_2(M) \to \dots$$

and the homomorphisms $\rho_1: H_2(N_1) \to H_2(M)$ and $\rho_2: H_2(M - int N_1) \to H_2(M)$ are induced by inclusions [6; (IV.6)]. We wish to find another representation for ker ρ which will depend (up to homology) only on K. We shall then conclude that β_2 (∂N_2) = dim ker $\rho + 1$ as well, and the assertion will follow.

Let \cdot : $H_2(M) \times H^1(M) \to \mathbb{Z}_2$ be the (mod 2) intersection number and let γ : $H_1(f_1(K)) \to H_1(M)$ be the inclusion-induced homomorphism. Define

$$Z = \{ \xi \in H_2(M) \mid \xi \cdot \gamma(\zeta) = 0, \text{ for every } \zeta \in H_1(f_1(K)) \}$$

and consider the following commutative diagram:

where the horizontal line is the homology (resp. Čech cohomology) sequence of the pair $(M, M - f_1(K))$ (resp. $(M, f_1(K))$) and the vertical arrows are the duality isomorphisms [6; (VI.2.17)].

Since λ' is the one-to-one it follows that it is an isomorphism, hence $\ker \delta = \operatorname{im} \lambda' = H_3(M, M - f_1(K))$ so $\ker \mu = \operatorname{im} \delta = 0$. Therefore μ is an inclusion of $H_2(M - f_1(K))$ into $H_2(M)$ and so $H_2(M - f_1(K)) \cong \operatorname{im} \mu = \ker \lambda = \ker \phi \lambda$. Note that $Z = \ker \phi \lambda$ hence $H_2(M - f_1(K)) \cong Z$ via the natural identification μ , and observe that $M - \operatorname{int} N_1 \approx M - f_1(K)$ so $\operatorname{im} \mu = \operatorname{im} \rho_2, \rho_2$ can be considered as a homomorphism onto $Z, \rho_2 : H_2(M - \operatorname{int} N_1) \to Z$, and it is injective.

Next, we want to compute the dimension of ker $\rho.$ To this end let $W=\rho^{-1}_1(Z)$ and define a homomorphism $\omega:\ker\rho\to W$

by $\omega(u_1+u_2)=u_1$, for all $u_1+u_2\in\ker\rho\subset H_2(N_1)\oplus H_2(M\text{-int }N_1)$. We shall verify that ω is a bijective correspondence. Indeed, if for some $u_1+u_2\in\ker\rho$ we have that $\omega(u_1+u_2)=0$ it follows that $u_1=0$ thus $0=\rho_1(u_1)=\rho_2(u_2)$. Since ρ_2 was shown earlier to be one-to-one, u_2 must be 0, too. Thus ω is injective. To check the surjectivity, choose any $u_1\in W\subset H_2(N_1)$. It follows that $\rho_1(u_1)\in Z$ hence $\rho_1(u_1)\in \mathrm{im}\,\rho_2$ so we can find $u_2\in H_2$ (M - int N_1) such that $\rho_2(u_2)=\rho_1(u_1)$ hence $\rho(u_1+u_2)=\rho_1(u_1)+\rho_2(u_2)=2\rho_1(u_1)=0$ (recall we are over \mathbb{Z}_2). Consequently, $u_1+u_2\in\ker\rho$.

It follows that the vector spaces (over \mathbb{Z}_2) ker ρ and W have the same dimension, hence by (*) above,

$$\beta_2(\partial N_1) = \dim W + 1.$$

Note that W depends only on the homology class of embedding of K into M hence, in particular, the same argument would yield that

$$\beta_2(\partial N_2) = \dim W + 1.$$

The assertion now follows.

We now complete the proof of the theorem. Let $B(i,k) = \beta_i(\partial N_k)$, $0 \le i \le 2$, k = 1, 2. By Assertion 2, B(2, 1) = B(2, 2). By duality, B(0,1) = B(0,2). By Assertion 1, $B(0,1) - B(1,1) + B(2,1) = \chi(\partial N_1) = \chi(\partial N_2) = B(0,2) - B(1,2) + B(2,2)$. Consequently, B(1,1) = B(1,2), too.

We now return to the original question and we prove that under certain additional conditions on K, the regular neighbourhoods N_1 and N_2 are homemorphic.

Theorem 2. Let K be a compact and connected polyhedron and let $f_1, f_2 : K \rightarrow \text{ int } M$ be homotopic PL embeddings of K into a 3-manifold with boundary M. Suppose, in addition that either

- (i) dim $K \le 1$; or
- (ii) K is a surface with nonempty boundary; or
- (iii) $K = S^2$; or
- (iv) $K = \mathbb{RP}^2$.

Then any two regular neighbourhoods of $f_1(K)$ and $f_2(K)$ in M are PL isomorphic.

Proof. Throughout the proof let $N_i \subset \text{int } M$ be a regular neighbourhood of $f_i(K)$ in M, i = 1, 2.

- (i) Assume dim K=1. Then each N_i is a 3-cell with n_i (possibly nonorientable) solid 1-handles, $n_i \in \mathbb{N}$, i=1,2 [2; (II.4)]. Since f_1 and f_2 are homotopic in M it follows that $\Pi_*(N_1) = \Pi_*(N_2)$, so in particular, $n_1 = n_2$. Furthermore, N_1 and N_2 are either both orientable or both nonorientable. For, given an orientation reversing loop $\alpha \subset N_i$ we can homotope α into $f_i(K)$ and then (in M) into $f_{3-i}(K)$ thus into N_{3-i} , i=1,2. It now follows by [2; (II.2)] that $N_1 \cong N_2$.
- (ii) If K is a surface with nonempty boundary then there is a finite bouquet $T \subset K$ of simple closed curves such that K collapses onto T. Therefore we can apply the preceding argument by [5; (III.29)].

- (iii) If $K = S^2$ then $f_i(K)$ is two-sided in M. For, N_i is a product I-bundle (I = [0, 1]) because K is simply connected, hence no loop on $f_i(K)$ can reverse the orientation in M. Therefore $N_i \cong f_i(K) \times I$ and the assertion follows.
- (iv) Assume first that M is orientable. Then $f_i(K)$ must be one-sided in M. Therefore N_i is a twisted I-bundle over \mathbb{RP}^2 . Since it is known that (up to a PL isomorphism) there is just one such, we may conclude that $N_1 \cong N_2$.

Finally, suppose that M is nonorientable. If both embeddings $f_i(K)$ are one-sided in M, the preceding argument applies. If both are two-sided then $N_i \cong f_i(K) \times I$, so the assertion follows. Assume now that, say, $f_1(K)$ were one-sided and $f_2(K)$ were two-sided. Consider the orientable 3-manifold double PL covering p: $M \to M$ of M. Then $f_1(K)$ lifts in M to two disjoint (PL isomorphic) copies while $p^{-1}(f_2(K))$ is connected (and double covers $f_2(K)$). Since f_1 and f_2 are homotopic in M, the number of connected components of the lifts $p^{-1}(f_i(K))$ should agree. This contradiction shows that the last case cannot occur.

We shall conclude by discussing two conjectures. The first one suggests that Theorem 2 ought to be true for the more general "genus zero" case, i.e. when $g(\partial N_i) = 0$, at least for orientable 3-manifolds:

Conjecture 1. Let K be a compact polyhedron such that $H_2(K; \mathbb{Z}_2) = 0$, and let $f_1, f_2 : K \to \text{int } M$ be homotopic PL embeddings of K into a orientable 3-manifold with boundary M. Let $N_i \subset \text{int } M$ be a regular neighbourhood of $f_i(K)$ in M and suppose that $g(\partial N_1) = 0$. Then N_1 and N_2 are homeomorphic.

Note that $H_2(K; \mathbb{Z}_2) = 0$ implies that $f_i(K)$ doesn't separate its connected neighbourhoods: consider the reduced homology sequence of the pair $(M, M-f_i(K))$ over \mathbb{Z}_2 :

...
$$\rightarrow H_1(M, M - f_i(K)) - \partial \rightarrow H_0(M - f_i(K)) \rightarrow H_0(M) \rightarrow 0$$

Since we may assume that M is connected, ∂ is onto. By duality, $H_1(M,\,M\,\text{-}f_i(K))\cong H^2(f_i(K))\cong H^2(K)\cong H_2(K)\cong 0$, so $H_0(M\,\text{-}f_i(K))\cong 0$, too.Thus ∂N_i is necessarily connected hence a 2-sphere. Therefore we could have replaced the condition " $H_2(K;\,\mathbb{Z}_2)\cong 0$ and $g(\partial N_1)=0$ " by " $\partial N_1=S^2$ ".

The importance od Conjecture 1 is illustrated by the following result:

Theorem 3. Modulo Conjecture 1, the following two statements are equivalent:

- (i) (Poincaré Conjecture) Every homotopy 3-cell is homeomorphic to the standard 3-cell.
- (ii) Every homotopy 3-cell possesses a spine which PL embeds in \mathbb{R}^3 .

Proof. Clearly, (i) implies (ii) independently of Conjecture 1, so we only need to verify the other implication. Let F be a homotopy 3-cell and choose a tame 3-cell $C \subset \operatorname{int} F$. By hypothesis F has a spine $K \subset \operatorname{int} F$ which PL embeds in int C via some $f: K \to \operatorname{int} C$. Let $N \subset \operatorname{int} C$ be a regular neighbourhood of the polyhedron f(K) in int C (hence also in int F). Since F is contractible, f is homotopic to the inclusion $K \subset F$. Also, since F collapses onto X it follows by [5; (III.30)] that F is a regular neighbourhood of K (in F). It now follows, modulo Conjecture 1, that the regular neighbourhoods F and N (of K and f(K) respectively) are homeomorphic hence N is also a homotopy 3-cell. Since $N \subset \operatorname{int} C \approx \mathbb{R}^3$, N is a genuine 3-cell [1]. Therefore, F is homeomorphic to the standard 3-cell.

The second conjecture suggests that the "genus zero" case may just be the only case when regular neighbourhoods are always the same:

Conjecture 2. Let $N_1 \subset S^3$ be the knot space of the square knot $\Sigma_1 \subset S^3$ and let $N_2 \subset S^3$ be the knot space of the granny knot $\Sigma_2 \subset S^3$, i.e. $N_i = S^3$ - int $T(\Sigma_i)$ where $T(\Sigma_i)$ is a tubular neighbourhood of

the knot Σ_i in S^3 , i=1, 2. Then there exists a compact connected polyhedron K and PL embeddings $f_i: K \to \text{int } N_i$ such that $f_i(K)$ is a spine of N_i , i=1, 2. Hence N_1 and N_2 have the same spine (although $N_1 \not\equiv N_2$, because their signatures are different [4; (VIII.E.15)]).

We remark that in higher dimensions one can easily construct examples of (M, K, f_1, f_2) , where $N_1 \not\equiv N_2$, e.g. there is a PL embedding of the dunce hat into S^4 whose regular neighbourhood has a nonsimply connected boundary [3].

REFERENCES

- [1] BROWN M., "A proof of the generalized Schoenflies theorem", Bull. Amer. Math. Soc., <u>66</u> (1960), 74-76.
- [2] HEMPEL J., "3-Manifolds", Annals of Mathematics Studies, Study 86, Princeton University Press, Princeton (1976).
- [3] NEUZIL J.P., "Embedding the dunce hat in S⁴", Topology, 12 (1973), 411-415.
- [4] ROLFSEN D., "Knots and Links", Mathematical Series, Vol. 7, Publish or Perish, Berkeley (1976).
- [5] ROURKE C.P. and SANDERSON B.J., "Introduction to piecewise-linear topology", Ergebnisse der Mathematik und Ihrer Grenzgebiete, Band 69, Springer-Verlag, Berlin (1972).
- [6] SPANIER E.H., "Algebraic Topology", McGraw Hill, New York (1966).

DUŠAN REPOVŠ
INŠTITUT ZA MATEMATIKO
FIZIKO IN MEHANIKO
UNIVERZA V LJUBLJANI
61111 LJUBLJANA, P.P. 64
YUGOSLAVIA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TEXAS
AUSTIN, TEXAS 78712
U.S.A.