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Summary. We investigate when are regular neighbourhoods of
homotopically PL embedded compacta in a given 3-manifold homeomorphic.
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In this paper we shall investigate the following problem concerning
regular neighbourhoods of compacta in 3-manifolds: consider any
two shomotopic PL embeddings f1, £ : K= int M of a compact
polyhedron K into the interior of a 3-manifold with boundary M. Let
Nj € int M be a regular neighbourhood of fj(K) in M, i =1, 2. In
general, N| and Nj need not be homeomorphic as the following
example shows:

(DThis paper is in its final form and no version of it will be submitted
for publication elsewhere.
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Example 1. Let M=S3,K=SlvS2v Sl andlet fj: K— M,i=
1, 2, be the obvious different embeddings: in f;(K) both circles are
attached to the same side of f1(S2) = S2cS3 while in f5(K) one circle
is on each of the two sides of f,(S2) = f1(S2). Although fy is clearly
homotopic to fy , Ny is different from N, because dN; = S2 Il T,
while dNp =Ty LL Ty where Tg denotes the closed orientable surface
of genus g =2 0 and Ll stands for the disjoint union. '
However, it is nevertheless true in this example that N
and N7 have the same number of boundary components and the same

Euler characteristics. Our first theorem below shows that this is
always the case:

Theorem 1. Let K be a compact polyhedron and let f;, f : K— int
M be PL embeddings of K into a 3-manifold with boundary M.
Suppose that (fj)x = (f2)x :Hx(K; Z7) = Hx(M; Z3) and let N; C
int M be a regular neighbourhood of fj (K) in M, i = 1, 2. Then for
every n, Bn(dN1; Z3) = Bp(dN3; Z7), where By, is the n-th Betti
number (mod 2).

Proof. We shall suppress the Z; coefficients from the notation

- throughout the proof. The argument is based on two assertions which
we procede to state and prove below.

Assertion 1. The boundaries of N; and N, have the same Euler
characteristic (mod 2), x(dNy; Z3) = x(dN»; Z3).

Proof. Let DNj be the double of Nj (obtained by taking two copies
of Nj and identifying them along the boundary). Then x(DNj) =0
since Nj is odd dimensional. On the other hand, x(DNj) =2 x(Nj) -
X(ONj). Therefore x(dN1) = 2 x(Ny) =2 x(N2) = x(dNp).

Assertion 2. Nj and N, have the same number of boundary
components.
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Proof. We shall show that 35 (dN1) = B, (dN»). To this end we first
note that

(%) By (IN7) =dimkerp + 1

where p =pj +pp 1is from the Mayer-Vietoris homology
sequence of the triple (M, N;, M - int Ny) :

0— H3(M) — Hy(dN) = Ha(N) © Hy(M - int N) —P— Ho(M) —

and the homomorphisms p1 : Hy(N1) = Hp(M) and py : Hp(M - int
N1) = Hy(M) are induced by inclusions [6; (IV.6)]. We wish to find
another representation for ker p which will depend (up to homology)
only on K. We shall then conclude that B, (dN3) = dim ker p + 1 as
well, and the assertion will follow.

Let - : Hy(M) X HI(M) = Z, be the (mod 2) intersection

number and let y: Hi(f{(K)) = H;(M) be the inclusion-induced
homomorphism. Define

Z=1{&e HyM) |&+y () =0, forevery {e Hy(f1(K)))

and consider the following commutative diagram:

0—H3(M)—A -H3(M,M-f] (K))—S—H)(M-f1 (K))—H—Hy (M)—A—H, (M, M-f (K))
d i 1 kil Lo

0—HOM) ———— HO(f{ (K)) —— HOM, f1(K)) —— HI(M) ——HL(f|(K))
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where the horizontal line is the homology (resp. Cech cohomology)
sequence of the pair (M, M - f1(K)) (resp. (M, f1(K))) and the vertical
arrows are the duality isomorphisms [6; (VL.2.17)].

Since A' is the one-to-one it follows that it is an
isomorphism, hence ker § = im A' = H3(M, M - f(K)) so ker o = im
= (. Therefore W is an inclusion of Hp(M-f;(K)) into Ho(M) and so
Ho(M-f{(K) = im p =ker A = ker ¢A. Note that Z=ker ¢A hence
Ha(M-f1(K)) =Z via the natural identification 1, and observe that
M -int Ny = M - f{(K) so im p =im p», p2 can be considered as a
homomorphism onto Z, py : Hy (M - int Np) — Z, and it is injective.

Next, we want to compute the dimension of ker p. To

this end let W = p'll(Z) and define a homomorphism ® : kerp > W

by w(uj+uy) = uy, for all uj+us € ker p € Hy(Np) © Ho(M-int Ny).
We shall verify that o is a bijective correspondence.Indeed, if for
some uj +uy € ker p we have that ®(uj + up) = 0 it follows that u; =0
thus 0 =pj(uy) = pa(uy). Since p, was shown earlier to be one-to-
one, up must be 0, too. Thus o is injective. To check the surjectivity,
choose any uje WCH2(N). It follows that pj(uy) € Z hence p1(uy)
€ im p so we can find up € Hp (M - int Ny) such that py(up) = p1(uy)
hence p(uj+up) = p(uy) + pa(uz) =2p1(ug) = 0 (recall we are over
Z7). Consequently, uy + up € ker p.

It follows that the vector spaces (over Z3) ker p and W
have the same dimension, hence by () above,

BoON}) =dim W + 1.

Note that W depends only on the homology class of embedding of K
into M hence, in particular, the same argument would yield that

B2(dN3) =dim W + 1.
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The assertion now follows.

We now complete the proof of the theorem. Let B(ik)
= Bj(dNk), 0 £i<2,k =1, 2. By Assertion 2, B(2, 1) = B(2, 2). By
duality, B(0,1) = B(0, 2). By Assertion 1, B(0,1) - B(1,1) + B(2,1) =
x(ON1) = x(dN2) = B(0,2) - B(1,2) + B(2, 2). Consequently, B(1,1) =
B(1,2), too.

We now return to the original question and we prove that

under certain additional conditions on K, the regular neighbourhoods
N; and N, are homemorphic.

Theorem 2. Let K be a compact and connected polyhedron and
let f;, f : K— int M be homotopic PL embeddings of K into a
3-manifold with boundary M. Suppose, in addition that either

(i) dimK<I; or

(i) K s a surface with nonempty boundary; or

(iii) K=82 or

(iv) K=RPZ
Then any two regular neighbourhoods of f;(K) and f»(K) in M are
PL isomorphic.

Proof. Throughout the proof let Nj ¢ int M be a regular
neighbourhood of fi(K)in M, i=1, 2. .

(i) Assume dim K = 1. Then each Nj is a 3-cell with n;j
(possibly nonorientable) solid 1-handles, nje N,i=1, 2 [2; (IL.4)].
Since f1 and f; are homotopic in M it follows that [T, (N;) = IT.(N»),
so in particular, n; = np. Furthermore, Njand N are either both
orientable or both nonorientable. For, given an orientation reversing
loop o € Nj we can homotope « into fj(K) and then (in M) into
f3_i(K) thus into N3_j, i = 1, 2. It now follows by [2; (II.2)] that
Ni=N,.

(i1) If K is a surface with nonempty boundary then there 1s
a finite bouquet T C K of simple closed curves such that K collapses

onto T. Therefore we can apply the preceding argument by [5;
(I11.29)]. '
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(iti) If K=S2 then fj(K) is two-sided in M. For, Nj is

a product I-bundle (I = [0, 1]) because K is simply connected, hence
no loop on fj(K) can reverse the orientation in M. Therefore

Nj = fj(K) x I and the assertion follows.
(iv) Assume first that M is orientable. Then fj(K) must be
one-sided in M. Therefore Nj is a twisted I-bundle over RP2. Since it

is known that (up to a PL isomorphism) there is just one such, we may
conclude that Ny = Nj.

Finally, suppose that M is nonorientable. If both
embeddings fj(K) are one-sided in M, the preceding argument

applies. If both are two-sided then Nj = fj(K) x I, so the assertion
follows. Assume now that, say, f;(K) were one-sided and f5(K) were
two-sided. Consider the orientable 3-manifold double PL covering p :
M — M of M. Then f;(K) lifts in M to two disjoint (PL isomorphic)
copies while p~1(f5(K)) is connected (and double covers f5(K)). Since
f1 and f, are homotopic in M, the number of connected components
of the lifts p-1(fj(K)) should agree. This contradiction shows that the
last case cannot occur. _
We shall conclude by discussing two conjectures. The first
one suggests that Theorem 2 ought to be true for the more general
"genus zero" case, i.e. when g(dNj) = 0, at least for orientable
3-manifolds:

Conjecture 1. Let K be a compact polyhedron such that Hy(K; Z5)
=0, and let f1,f; : K — int M be homotopic PL embeddings of K into
a orientable 3-manifold with boundary M. Let Nj ¢ int M be a

regular neighbourhood of fj(K) in M and suppose that g(dN) =
Then N7 and N3 are homeomorphic.

Note that Hy(K; Z7) = 0 implies that fj(K) doesn't separate
its connected neighbourhoods: consider the reduced homology
sequence of the pair (M, M-fj(K)) over Z,:

.= H{(M, M - £j(K)) —9— Ho(M - fj(K)) = Ho(M) = 0
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Since we may assume that M is connected, d is onto. By duality,
Hi(M, M -fi(K)) = H2(fj(K)) = H2(K) = Hy(K) = 0, so Hy(M - £;(K))
= 0, too.Thus dN; is necessarily connected hence a 2-sphere.
Therefore we could have replaced the condition "H(K; Z5) = 0 and
g(dNp) =0" by "oNj =S2",

The importance od Conjecture 1 is illustrated by the
following result:

Theorem 3. Modulo Conjecture 1, the following two statements
are equivalent:

(1) (Poincaré Conjecture) Every homotopy 3-cell is
homeomorphic to the standard 3-cell.

(i) Every homotopy 3-cell possesses a spine which PL
embeds in R3.

Proof. Clearly, (i) implies (ii) independently of Conjecture 1, so we
only need to verify the other implication. Let F be a homotopy
3-cell and choose a tame 3-cell C < int F. By hypothesis F has a spine
K < int F which PL embeds in int C via some f : K — int C. Let

N c int C be a regular neighbourhood of the polyhedron f(K) in int C

(hence also in int F). Since F is contractible, f is homotopic to the
inclusion K < F. Also, since F collapses onto X it follows by [5;

(II1.30)] that F is a regular neighbourhood of K (in F). It now
follows, modulo Conjecture 1, that the regular neighbourhoods F and
N (of K and f(K) respectively) are homeomorphic hence N is also a
homotopy 3-cell. Since NC int C = R3, N is a genuine 3-cell [1].
Therefore, F is homeomorphic to the standard 3-cell. _

The second conjecture suggests that the "genus zero" case

may just be the only case when regular neighbourhoods are always
the same:

Conjecture 2. Let N; ¢ S3 be the knot space of the square knot
%1cS3 andlet N; < S3 be the knot space of the granny knot Xyc S3,
ie. Nj=S3-int T (£;) where T (Ij) is a tubular neighbourhood of
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the knot Xj in S3,i=1, 2. Then there exists a compact connected

polyhedron K and PL embeddings fj : K — int Nj such that fj(K) is a
spine of Nj, i = 1, 2. Hence N1 and N; have the same spine (although
N; # Nj, because their signatures are different [4; (VIILE.15)]).

We remark that in higher dimensions one can easily
construct examples of (M, K, fy, f;), where N; # Ny, e.g. there is a
PL embedding of the dunce hat into S# whose regular neighbourhood
has a nonsimply connected boundary [3].

REFERENCES

(1] BROWN M., "A proof of the generalized Schoenflies
theorem"”, Bull. Amer. Math. Soc., 66 (1960), 74-76.

[2] HEMPEL]J., "3-Manifolds", Annals of Mathematics Studies,
Study 86, Princeton University Press, Princeton (1976).

[3] NEUZILJ.P., "Embedding the dunce hat in S4", Topology,
12 (1973), 411-415.

[4] ROLFSEN D., "Knots and Links", Mathematical Series, Vol.
7, Publish or Perish, Berkeley (1976).

[5] ROURKE C.P. and SANDERSON B.J., "Introduction to
piecewise-linear topology", Ergebnisse der Mathematik und
Ihrer Grenzgebiete, Band 69, Springer-Verlag, Berlin (1972).

[6] SPANIER E.H., "Algebraic Topology", McGraw Hill, New
York (1966).

DUSAN REPOVS

INSTITUT ZA MATEMATIKO
FIZIKO IN MEHANIKO

UNIVERZA V LJUBLJANI

61111 LJUBLJANA, P.P. 64
YUGOSLAVIA _
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TEXAS

AUSTIN, TEXAS 78712

US.A.




