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ON CONTINUOUS APPROXIMATIONS

D. REPOVS! and P. V. SEMENOV

1. INTRODUCTION

Sufficient conditions for the existence of singlevalued .caxtimuous selections
of multivalued maps usually assume convexity condition (in the infinite-
dimensional case) or high connectivity conditions (in the finite-dimensional
case) on the point inverses of the mappings or on the values of the multival-
ued mappings. Well-known theorems of E. Michael {1}, 2], [3] illustrate the
point. In [4] we investigated the problem of existence of such selections for
multivalued maps without the convexity condition for arbitrary (not finite-
dimensional) paracompacta (see also [5]). In particular, one of the results
proved in [4] states that selections exist for any lower semicontinuous map-
ping F from a paracompactum P into the Euclidean pla.ne if the values
F(p), p € P, are graphs of polynomials

g(z) =anz™ + ... +va11: + ap, Yout <l|a;| < C.

Here, the domains of definitions of the polynomials are arbitrary convex
subsets of the 2-axis, the systems of (orthonormal) coordinates depend on
the element p € P and the constant C doesn’t depend on p- But is the
condition

C'<lul<C
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of uniform boundedness of the coefficients of the polynomials and of their
reciprocals in fact necessary for a positive solution of the selection problem?
The well-known example of E. Michael [1], which used the parts of the graph
of the sinusoid y = sin(1/z), shows that for graphs of arbitrary continuous
functions, the selection problem has (in general) a negative answer.

If we approximate every continuous function in E. Michael’s example
by some polynomials (Weierstrass’ theorem) and if we can choose these
approximations, then we will obtain the example which shows that the
condition C~! < |a;| < C is essential in our result from [4].

So, we reduce our problem to the following very natural question. Is
it possible to choose in Weierstrass’ theorem (or in the Stone-Weierstrass’
theorem the polynomial v (or element v of a given algebra of functions V)
so that:

(i) v is an e-approximation of a given continuous function f; and
(ii) v continuously depends on f and ¢; v = v(f,¢)?
The positive answer to this question can be obtained in abstract terms.

Theorem 1. Let (X, ||-}|) be a normed space and V C X a convex subset.
Then the following assertions are equivalent:

(a) V is a dense subset of X;

(b) For every € > 0 there exists a continuous map v : X — V such that
“a: - 've(x)” <eg, foranyz € X;

(c) For every lower semicontinuous multivalued map F : P — X of a para-
compactum P into the space X with convex (possibly nonclosed) val-
ues F(p), p € P, and for every non-decreasing function v : (0, +00) —
(0, +00) there exists a continuous mapping f : P x (0,+00) — V such
that dist ( f(p,€); F(p)) < v(¢) for any (p,e) € P x (0, +00);

(d) For every continuous mapping g : P — X from a paracompactum P
into the space X, for every continuous function ¢ : P — (0, +00) and
for every non-decreasing function v : (0,+00) — (0, 4+00) there exists
a continuous mapping h : P — V such that “ h(p) — g(p)“ < v(e(p)),
for any p € P.

Recall that a multivalued mapping F' : X — Y is said to be lower
semicontinuous if for any open subset G of the space Y the set

FYG)={ze X|F()nG # 0}

is an open subset of the space X. Next, a singlevalued mapping f : X . Y
is said to be a selection of a multivalued mapping F : X — Y if f(z) €
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F(x), for any x € X. For the classical facts about the existence of continuous
selections of lower semicontinuous mappings, see (1, 2, 3].

Remarks. (1) As it was pointed out by the referee, assertion (d) of
Theorem 1 can be strengthened by replacing the singlevalued mapping ¢
with a multivalued mapping, as in assertion (c). However, for our applica-
tion of Theorem 1 in Chapter 3, we shall need assertion (d) in the form in
which it is stated above.

(2) Clearly, Theorem 1 makes sense only for dim X = oo.

2. PROOF OF THE THEOREM

(a) = (b).

For a fixed £ > 0 we consider the covering w of the whole space X by
the open balls B(v,e) with radius € > 0, centered at the points v € V,
where V is a convex dense subset. of the normed space ( X, || - ||). Let {ea},
a € A, be a locally finite continuous partition of unity, inscribed into the
covering w. For any index a € A, we pick an element v, € V such that
supp eq C B(vqa,€), where suppe, is the support of the continuous function
ea : X — [0,1]. Next, we define the mapping v, : X — V by the equality

ve(z) = Zea(x)vaa a € A.

In a sufficiently small neighbourhood of a point 2 € X the mapping v, is the
sum of a finite number of continuous mappings. Hence, v, is a continuous
mapping from X into V.

Now, for a given point z € X, let €a(1)s- - - €a(n) De all elements from
{ea}, a € A, such that €q(i)(z) > 0. Then

T € suppeg(;) C B(va(,-),s)

ie. ||z - Va(i)|| < €. Hence

|2 = ve@)l| = |3 e @) = va) [| € 3 ca(@|z = vago < c.
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(b) = (c).

Let Y be the completion of X, Y = X, and let ®(p) = d{F(p)},
p € P. Then ¥ is a lower-semicontinuous mapping from the paracompactum
P into the Banach space Y with convex, closed values. By the classical
E. Michael’s selection theorem [1], there exists a singlevalued continuous
mapping ¢ : P — Y such that ¢(p) € ®(p), for any p € P. Clearly, (b)
implies the density of V in X and hence, the density of V in Y. So, we can
apply statement (b) to the pair (Y, V). Pick a monotone decreasing sequence
€1,€9, - .. of the pesitive: numbers ¢,, which tends to zero and denote by v,
a continuous mapping v, : Y — V such that || y— vn(y)“ < v(e,) for any
ye€Y andneN.

For € > &7 let
flp,e) =v2(e(@), peEP

For every € € [ep41,€n], defined as follows:
=(L—t)ent1 +ten, - t€[0,1].

let: - - ' ' | |
L fpe) = (U — Dvie{o(D)) '*ftvn+1(‘P(P))’ peP

Theni the continuity of the mapping f : P x (0, +o0) — Visa COrbllary of
the eontinuity of the mappings ¢, v1,v2,... and of ‘the con'structior} of the
mapping f. Finally, for y,= ¢(p) and for

e=(li—t)ens1 +ten, tE[0,1]
it follows that

| #p.€) — 9wl = |1 = ) (vnr2(¥) — ¥) + t(vara(®) =) || <
< (1 = t)v(Ens2) +tr(ent1) < v(Ensr) < v(e),

whereas for € > €1, we have that

Ifp,e) — y|| = ||vav) —9|| <Ale
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(d) = (a).

For a given €g > 0 let in (d): P = X; g(p) = g(x) = z; e(p) = e(x) = &o;
and y(t) = ¢, t > 0. Then for any p = z € X, the element v = h(p) = h(x) €
V, where h is a (continuous) mapping from (d), is an eo-approximation of
z. This completes the proof of Theorem 1. =

The proof of the implication (a) = (b) practically coincides with the
first step of induction in the proof of the classical convex-valied selection
theorem [1] in which the existence is established of a continuous e-selection
fe of a given convex-valued lower semicontinuous map F, where e-selection
means that dist (f-(z), F(z)) < <, for all z € X. However, in (1], the proof
started with the covering of the space X by open balls { B(x,e) |z'€ X }.
For our purpose however, it is sufficient to consider only the open balls
B(z,¢) centered at the elements 2 € V of the convex dense subset V of the
space X. Notice also that in our situation Michael’s theorem doesn’t apply
directly because X isn’t a complete space.

3. AN EXAMPLE

We return now to graph—valued' maps.

Example. There exists a lower semicontinuous (in fact, contin’ﬁbué) nﬁap—
ping F from the segment [0, 1] to the Euclidean plane such that:

(i) all values of the mappmg F are graphs of some polynoinials; and

(ii) the mappmg F doesn’t admzt any smglevalued contmuous selection.

Proof Con31der the paracompactum P = {0,1] and for any p € P let
‘ . [p/2,p) — [0 1] be a linear function from the segment [p/ 2 P onto the
segment [0, 1] with £,(p) = 1. For any z € {0, 1] let -

[9(®)] (x) = sin (1/£;(2))-

Then g(p) is an element of the Banach space C|[0,1] of all continuous
functions on [0,1] with the usual sup-norm and g : P — C[0,1] is a
singlevalued continuous mapping. By the statement (d) of Theorem 1, there
:exists a continuous mapping h :-P — C[0,1] such that h(p) is a polynomial,
for any p € P and || h(p) — g(p)“ <p,p€P.
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Now, define the mapping F : [0,1] — R? as follows:

F@0)={(0,t)|-1<t<1} and
F(p) = {t, [n(p)] (&) |p/2<t<p}, pEP

It is clear that the values of the mapping F are graphs of some polynomials
over some segments.

Suppose to the contrary that F' admits a continuous selection f, i.e.
f() = (f1(p), f2(p)) € F(p). From the continuity of f; and from the
condition p/2 < f1(p) < p we obtain that Im(f;) D (0,1/2]. For an arbitrary
a € [-1,1] let: y, € (0,1/2]; yo — 0; and sin(1/y,) = a. Then for some
t, >0, fi(th) =yn, n €N

Hence t, — 0 and fy(t,) = [h(tn)] (€. (ya)), foralln € N
1 [B(ta)] (€ea(n)) = [9(ta)] (La(wm)) | < tn; and [g(ta)] (Lea(m)) =
sin (1/e;n‘(£tn (yn))) =a.

If we pass in the equality f(tn) = (yn,f2(tn)) to the limit, when
n — oo then we obtain that f,(0) = @, i.e. f cannot be singlevalued.
Contradiction. =

To obtain such a contradiction it suffices to consider only 1-approxima-
tions of continuous functions fromn Michael’s example by polynomials. But,
1-approximations aren’t sufficient for the continuity of the above constructed
mapping F. We omit the direct verification of the fact that the continuity
of the multivalued map F is a corollary of the inequality " h(p) — g(p)” < p,
p€ P.
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