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Abstract
We consider a nonlinear Robin problem driven by a nonhomogeneous differential
operator, with reaction which exhibits the competition of two Carathéodory terms.
One is parametric, (p − 1)-sublinear with a partially concave nonlinearity near zero.
The other is (p−1)-superlinear and has almost critical growth. Exploiting the special
geometry of the problem, we prove a bifurcation-type result, describing the changes
in the set of positive solutions as the parameter λ > 0 varies.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following parametric Robin problem

⎧
⎨

⎩

−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λ f (z, u(z)) + g(z, u(z)) in �,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂�, u > 0.

(Pλ)

In this problem, a : R
N → R

N is a continuous, strictly monotone (hence also
maximalmonotone)mapwhich satisfies certain other regularity and growth conditions
listed in hypotheses H(a) below. These conditions are not restrictive and incorporate in
our frameworkmany differential operators of interest.We point out that the differential
operator u → div a(∇u) is not homogeneous and this is a source of difficulties in the
analysis of problem (Pλ). The potential function is ξ ∈ L∞(�), ξ ≥ 0. In the reaction
(the right hand side of the equation), λ > 0 is a parameter and f (z, x), g(z, x) are
Carathéodory functions (that is, for all x ∈ R, z → f (z, x), g(z, x) are measurable,
while for a.a. z ∈ �, x → f (z, x), g(z, x) are continuous). We assume that f (z, ·)
is (p − 1)-superlinear near 0+ partially in z ∈ �. So, near zero we have a partially
concave nonlinearity and this complicates the geometry of the problem near the origin.
Near +∞, for a.a. z ∈ �, f (z, ·) is strictly (p − 1)-sublinear, while for a.a. z ∈ �,
g(z, ·) exhibits almost critical growth, a fact that further complicates the geometry of
the problem, since the embedding ofW 1,p(�) into L p∗

(�) is not compact (recall that
p∗ denotes the critical Sobolev exponent corresponding to 1 < p < +∞, defined by

p∗ =
⎧
⎨

⎩

Np

n − p
if p < N ,

+∞ if p ≥ N .

In the boundary condition,
∂u

∂na
denotes the conormal derivative corresponding to

the map a(·) and defined by extension on W 1,p(�) of the map

C1(�) 
 u → (a(∇u), n)RN ,

with n(·) being the outward unit normal on ∂�. The boundary coefficient is β ∈
C0,α(∂�) with α ∈ (0, 1) and β ≥ 0. When β ≡ 0, we recover the usual Neumann
problem.

We study the nonexistence, existence and multiplicity of positive solutions as the
parameter λ > 0 varies. Our main result is a “bifurcation-type” theorem, which pro-
duces a critical parameter λ∗ > 0 such that

• for all λ ∈ (0, λ∗), problem (Pλ) has at least two positive smooth solutions;
• for all λ = λ∗, problem (Pλ) has at least one positive solution;
• for all λ > λ∗, problem (Pλ) has no positive solutions.
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1776 N. S. Papageorgiou et al.

Moreover, we show that we can have positive solutions uλ ∈ C1(�) such that

‖uλ‖C1(�) → 0 as λ → 0+.

Our approach uses critical point theory combined with suitable truncation and
comparison techniques to exploit the particular geometry of the problem.

The study of problems in which in the reaction we have competition phenomena
between nonlinearities of different nature (“concave–convex” problems), was initiated
by the seminal paper of Ambrosetti et al. [2] for semilinear equations driven by the
Dirichlet Laplacian. Their work was extended to equations driven by the Dirichlet
p-Laplacian by García-Azorero et al. [5] and Guo-Zhang [9]. In the aforementioned
works, the reaction has the following special form

λxq−1 + xr−1 for all x ≥ 0 with 1 < q < p < r < p∗.

More general reactionswere assumed by de Figueiredo et al. [4], Gasiński and Papa-
georgiou [7], Hu and Papageorgiou [10], and Papageorgiou and Vetro [26] (Dirichlet
problems). For nonlinear Neumann and Robin problems we mention related works of
Molica Bisci and Rǎdulescu [13,14], Molica Bisci and Repovš [15,16], Papageorgiou
and Rǎdulescu [20,23], and Papageorgiou et al. [25].

2 Mathematical Background—Hypotheses

Let X be a Banach space. By X∗ we denote the topological dual of X and by 〈·, ·〉
we denote the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X ,R), we say
that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if the following
property holds:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and (1 +
‖un‖X )ϕ′(un) → 0 in X∗ as n → +∞, admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ and it leads to a deforma-
tion theorem from which one can derive the minimax theory of the critical values of
ϕ. One of the main results in this theory is the so-called “Mountain Pass Theorem”
which we recall below.

Theorem 1 If X is a Banach space, ϕ ∈ C1(X ,R) satisfies the C-condition, u0, u1 ∈
X, ‖u1 − u0‖X > ρ, max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖X = ρ} = mρ, and
c = infγ∈� max0≤t≤1 ϕ(γ (t)) with � = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1},
then c ≥ mρ and c is a critical value of ϕ (that is, there exists û ∈ X such that
ϕ′(̂u) = 0, ϕ(̂u) = c ≥ mρ).

Consider a function ϑ ∈ C1(0,∞), ϑ(t) > 0 for all t > 0, which satisfies

0 < ĉ ≤ ϑ ′(t)t
ϑ(t)

≤ c0 and c1t
p−1 ≤ ϑ(t) ≤ c2(t

τ−1 + t p−1) for all t > 0, (1)

with 0 < c1, c2 and 1 ≤ τ < p < +∞.
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Then the hypotheses on the map y → a(y) involved in the differential operator of
problem (Pλ) are the following:
H(a): a(y) = a0(|y|)y for all y ∈ R

N with a0(t) > 0 for all t > 0, and

(i) a0 ∈ C1(0,∞), t → a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+ as

t → 0+ and lim
t→0+

a′
0(t)t

a0(t)
> −1;

(i i) there exists c3 > 0 such that |∇a(y)| ≤ c3
ϑ(|y|)

|y| for all y ∈ R
N \ {0};

(i i i) (∇a(y)ξ, ξ)RN ≥ ϑ(|y|)
|y| |ξ |2 for all y ∈ R

N \ {0}, ξ ∈ R
N ;

(iv) if Ĝ0(t) = ∫ t
0 a0(s)sds for all t > 0, then there exists q ∈ (1, p) such that

lim sup
t→0+

Ĝ0(t)

tq
≤ c∗ with c∗ > 0,

p Ĝ0(t) − a0(t)t
2 ≥ 0 for all t ≥ 0.

Remark 1 Conditions H(a) (i), (i i), (i i i) are dictated by the nonlinear regularity the-
ory of Lieberman [12] (p. 320) and the nonlinear maximum principle of Pucci and
Serrin [27] (pp. 111, 120). These conditions were first used by Papageorgiou and
Rǎdulescu [21,22]. Condition H(a) (iv) serves the needs of our problem, but it is
mild and it is satisfied in all cases of interest (see the examples below).

These conditions imply that t → Ĝ0(t) = ∫ t
0 a0(s)sds is strictly convex and

strictly increasing. We set Ĝ(y) = Ĝ0(|y|) for all y ∈ R
N . We have that G(·) is

convex, Ĝ(0) = 0, and

∇Ĝ(0) = 0, ∇Ĝ(y) = Ĝ ′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N \ {0}.

So, Ĝ(·) is the primitive of the map a(·) and on account of the convexity of Ĝ(·) and
since Ĝ(0) = 0, we have

Ĝ(y) ≤ (a(y), y)RN for all y ∈ R
N . (2)

The next lemma summarizes the main properties of the map a(·) and is a straightfor-
ward consequence of (1) and hypotheses H(a) (i), (i i), (i i i).

Lemma 1 If hypotheses H(a) (i), (i i), (i i i) hold, then

(a) y → a(y) is strictly monotone and continuous (thus also maximal monotone);
(b) |a(y)| ≤ c4(|y|τ−1 + |y|p−1) for all y ∈ R

N and some c4 > 0; and

(c) (a(y), y)RN ≥ c1
p − 1

|y|p for all y ∈ R
N .

This lemma and (2) lead to the following growth estimates for the primitive Ĝ(·).
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1778 N. S. Papageorgiou et al.

Corollary 1 If hypotheses H(a) (i), (i i), (i i i) hold, then
c1

p(p − 1)
|y|p ≤ Ĝ(y) ≤

c5(|y|τ + |y|p) for all y ∈ R
N and some c5 > 0.

Example 1 The following maps satisfy hypotheses H(a) (for details see Papageorgiou
and Rǎdulescu [22]):

(a) a(y) = |y|p−2y, 1 < p < +∞. This map corresponds to the p-Laplace differen-
tial operator defined by �pu = div (|∇u|p−2∇u) for all u ∈ W 1,p(�).

(b) a(y) = |y|p−2y+μ|y|q−2y, 1 < q < p < +∞,μ ≥ 0. This map corresponds to
the (p, q)-Laplacian defined by �pu + �qu for all u ∈ W 1,p(�). Such operators
arise in problems of mathematical physics (see Cherfils and Il′yasov [3]).

(c) a(y) = (1 + |y|2) p−2
2 y, 1 < p < +∞. This map corresponds to the generalized

p-mean curvature differential operator defined by div ((1+ |∇u|2) p−2
2 ∇u) for all

u ∈ W 1,p(�).

(d) a(y) = |y|p−2y

[

1 + 1

1 + |y|p
]

, 1 < p < +∞. This map corresponds to the

following pertubation of the p-Laplacian �pu + div

( |∇u|p−2∇u

1 + |∇u|p
)

for all u ∈
W 1,p(�).

Let A : W 1,p(�) → W 1,p(�)∗ be defined by

〈A(u), h〉 =
∫

�

(a(∇u),∇h)RN dz for all u, h ∈ W 1,p(�). (3)

Using Lemma 1, we obtain the following result concerning the map A(·) (see
Gasiński and Papageorgiou [8], Problem 2.192, p. 279).

Proposition 1 If hypotheses H(a) (i), (i i), (i i i) hold, then the map A : W 1,p(�) →
W 1,p(�)∗ defined by (3) is bounded (that is, it maps bounded sets to bounded sets),
continuous, monotone (hence also maximal monotone), and of type (S)+ (that is,

if un
w−→ u in W 1,p(�) and lim supn→+∞〈A(un), un − u〉 ≤ 0, then un → u in

W 1,p(�)).

The following spaces will play a central role in the study of problem (Pλ): the
Sobolev spaceW 1,p(�), the Banach spaceC1(�) and the “boundary” Lebesgue space
L p(∂�). By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(�) defined by

‖u‖ = [‖u‖p
p + ‖∇u‖p

p
]1/p

for all u ∈ W 1,p(�).

The Banach space C1(�) is ordered with order (positive) cone C+ = {u ∈ C1(�) :
u(z) ≥ 0 for all z ∈ �}. This cone has a nonempty interior given by

D+ = {
u ∈ C+ : u(z) > 0 for all z ∈ �

}
.
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Also, we will consider another open cone in C1(�), namely the cone

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ �,
∂u

∂n

∣
∣
∣
∂�∩u−1(0)

< 0

}

.

On ∂� we consider the (N − 1)-dimensional surface (Hausdorff) measure σ(·).
Using this measure, we can define in the usual way the boundary Lebesgue spaces
Lq(∂�), 1 ≤ q ≤ +∞. There exists a unique continuous linear map γ0 : W 1,p(�) →
L p(∂�), known as the “trace map”, such that γ0(u) = u

∣
∣
∂�

for all u ∈ W 1,p(�) ∩
C(�).So, the tracemap extends the notion of boundary values to all Sobolev functions.

The trace map γ0(·) is compact into Lq(∂�) for all q ∈
[

1,
(N − 1)p

N − p

)

if p < N

and into Lq(∂�) for all 1 ≤ q < +∞ if N ≤ p. Also, we have

im γ0 = W
1
p′ ,p(∂�)

(
1

p
+ 1

p′ = 1

)

, ker γ0 = W 1,p
0 (�).

In the sequel, for notational economy, we drop the use of themap γ0(·). All restrictions
of Sobolev functions on ∂� are understood in the sense of traces.

We introduce the following hypotheses on the potential ξ(·) and the boundary
coefficient β(·):
H(ξ): ξ ∈ L∞(�), ξ(z) ≥ 0 for a.a. z ∈ �.
H(β): β ∈ C0,η(∂�) for some η ∈ (0, 1), β(z) ≥ 0 for all z ∈ ∂�.

H0: ξ �≡ 0 or β �≡ 0.

Remark 2 If β ≡ 0, then we have the usual Neumann problem.

The next two lemmas can be found in Papageorgiou et al. [24].

Lemma 2 If ξ̂ ∈ L∞(�), ξ̂ (z) ≥ 0 for a.a. z ∈ �, ξ̂ �≡ 0, then there exists c6 > 0
such that ‖∇u‖p

p + ∫

�
ξ̂(z)|u|pdz ≥ c6‖u‖p for all u ∈ W 1,p(�).

Lemma 3 If β̂ ∈ L∞(∂�), β̂(z) ≥ 0 for a.a. z ∈ ∂�, β̂ �≡ 0, then there exists c7 > 0
such that ‖∇u‖p

p + ∫

∂�
β̂(z)|u|pdσ ≥ c7‖u‖p for all u ∈ W 1,p(�).

Now consider a Carathéodory function f0 : � × R → R which satisfies

| f0(z, x)| ≤ a0(z)
(
1 + |x |r−1

)
for a.a. z ∈ � and all x ∈ R,

with a0 ∈ L∞(�), 1 < r ≤ p∗. We set F0(z, x) = ∫ x
0 f0(z, s)ds and consider the

C1-functional ϕ0 : W 1,p(�) → R defined by

ϕ0(u) =
∫

�

Ĝ(∇u)dz + 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

F0(z, u)dz for all u ∈ W 1,p(�).

The next result is an outgrowth of the nonlinear regularity theory and can be found
in Papageorgiou and Rǎdulescu [21].
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1780 N. S. Papageorgiou et al.

Proposition 2 If hypotheses H(a), H(β) hold and u0 ∈ W 1,p(�) is a local C1(�)-
minimizer of ϕ0(·), that is, there exists ρ1 > 0 such that ϕ0(u0) ≤ ϕ0(u0 + h) for
all h ∈ C1(�), ‖h‖C1(�) ≤ ρ1, then u0 ∈ C1,α(�) for some α ∈ (0, 1) and it

is also a local W 1,p(�)-minimizer of ϕ0(·), that is, there exists ρ2 > 0 such that
ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(�), ‖h‖ ≤ ρ2.

This result is a powerful tool in the study of elliptic problems, when it is combined
with the following strong comparison principle due to Papageorgiou et al. [24].

Proposition 3 If hypotheses H(a) hold, ξ̂ ∈ L∞(�), ξ̂ (z) ≥ 0 for a.a. z ∈ �,
h1, h2 ∈ L∞(�) such that 0 < c8 ≤ h2(z)− h1(z) for a.a. z ∈ �, u, v ∈ C1(�) \ {0}
satisfy u ≤ v and

− div a(∇u(z)) + ξ̂ (z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ �,

− div a(∇v(z)) + ξ̂ (z)|v(z)|p−2v(z) = h2(z) for a.a. z ∈ �,

then v − u ∈ int Ĉ+.

Next, let us fix some basic notation which we will use in the sequel. So, for x ∈ R,
we set x± = max{±x, 0}. Then for u ∈ W 1,p(�), we define u±(·) = u(·)± and we
know that

u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u−.

If k : �×R → R is a measurable function (for example, a Carathéodory function),
then we set Nk(u)(·) = k(·, u(·)) for all u ∈ W 1,p(�) (the Nemytskii operator
corresponding to k(·, ·)). Also, by | · |N we denote the Lebesgue measure on R

N .
Given u, v ∈ W 1,p(�) with u ≤ v, we can define the order interval [u, v] by setting

[u, v] = {y ∈ W 1,p(�) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ �}.

By intC1(�)[u, v], we denote the interior in C1(�) of [u, v] ∩ C1(�). Also, if

u ∈ W 1,p(�), then

[u) =
{
y ∈ W 1,p(�) : u(z) ≤ y(z) for a.a. z ∈ �

}
.

If X is a Banach space and ϕ ∈ C1(X ,R), then by Kϕ we denote the critical set of
ϕ, that is, Kϕ = {u ∈ X : ϕ′(u) = 0}.

Finally, we introduce the hypotheses on the two competing functions in the reaction
of problem (Pλ).
H( f ): f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ � and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that f (z, x) ≤ aρ(z) for a.a.
z ∈ � and all 0 ≤ x ≤ ρ;
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(ii) f (z, x) ≥ ηs > 0 for a.a. z ∈ �, all x ≥ s > 0, and lim
x→+∞

f (z, x)

x p−1 = 0

uniformly for a.a. z ∈ �;
(iii) there exist U ⊆ � open and δ0 ∈ (0, 1] such that U ⊆ � and c9xq−1 ≤ f (z, x)

for a.a. z ∈ U , all 0 ≤ x ≤ δ0 with c9 > 0, and q ∈ (1, p) as in H(a) (iv).

Remark 3 Since we are looking for positive solutions and all the above hypotheses
concern the positive semiaxis, we may assume without any loss of generality, that
f (z, x) = 0 for a.a. z ∈ � and all x ≤ 0. Hypothesis H( f ) (i i) implies that for a.a.,
z ∈ �, f (z, ·) is strictly (p − 1)-sublinear near +∞. Hypothesis H( f ) (i i i) implies
that there is a partially concave nonlinearity near zero.

H(g): g : �×R → R+ = [0,+∞) is a Carathéodory function such that g(z, 0) = 0
for a.a. z ∈ � and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that g(z, x) ≤ aρ(z) for a.a.
z ∈ � and all 0 ≤ x ≤ ρ;

(ii) lim
x→+∞

g(z, x)

x p∗−1 = 0 and lim
x→+∞

g(z, x)

x p−1 = +∞ uniformly for a.a. z ∈ �;

(iii) lim
x→0+

g(z, x)

x p−1 = 0 uniformly for a.a. z ∈ �.

Remark 4 Again, we may assume that g(z, x) = 0 for a.a. z ∈ � and all x ≤ 0.
Hypothesis H(g) (i i) implies that for a.a. z ∈ �, g(z, ·) is (p − 1)-superlinear and
has almost critical growth. Hypothesis H(g) (i i i) says that for a.a., z ∈ �, g(z, ·) is
(p − 1)-sublinear near zero, in contrast to f (z, ·) which exhibits a partially concave
nonlinearity.

Usually, superlinear problems are treatedusing the so-calledAmbrosetti–Rabinowitz
condition (see, for example, Motreanu et al. [17], p. 341). This condition, although
useful in checking the compactness condition for the energy (Euler) functional of
the problem, is rather restrictive. For this reason we employ a weaker condition (see
hypothesis Ĥ0 (i) below), which incorporates in our framework also superlinear terms
which have “slower” growth near +∞ and fail to satisfy the Ambrosetti–Rabinowitz
condition.

We introduce F(z, x) = ∫ x
0 f (z, s)ds andG(z, x) = ∫ x

0 g(z, s)ds. For everyλ > 0
we define

eλ(z, x) = [λ f (z, x) + g(z, x)]x − p[λF(z, x) + G(z, x)].

Ĥ0: for all λ in a bounded set B ⊆ (0,+∞), we have:

(i) there exists ηB ∈ L1(�) such that eλ(z, x) ≤ eλ(z, v) + ηB(z) for a.a. z ∈ � and
all 0 ≤ x ≤ v, λ ∈ B;

(ii) for every ρ > 0, we can find ξ̂ B
ρ > 0 such that for a.a. z ∈ � and all λ ∈ B,

x → λ f (z, x) + g(z, x) + ξ̂ B
ρ x p−1

is nondecreasing on [0, ρ].
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1782 N. S. Papageorgiou et al.

Remark 5 Hypothesis Ĥ0 (i) replaces the Ambrosetti–Rabinowitz condition. It is a
slight generalization of a condition used by Li and Yang [11] (see also Mugnai and
Papageorgiou [18]). Hypothesis Ĥ0 (i i) is satisfied, if, for example, for a.a. z ∈ �, the
functions f (z, ·), g(z, ·) are differentiable and for every ρ > 0, there exists ξ̂ B

ρ > 0
such that

[λ f ′
x (z, x) + g′

x (z, x)]x2 ≥ −ξ̂ B
ρ |x |p for a.a. z ∈ � and all 0 ≤ x ≤ ρ, λ ∈ B.

Example 2 The following pair of functions f (z, x), g(z, x) satisfies hypotheses H( f ),
H(g), Ĥ0 above:

f (z, x) = â(z)xq−1 + c10x
τ−1

with â ∈ L∞(�)+ ∩ int L∞(U)+ with U ⊆ � open, U ⊆ �, c10 > 0, τ < p, and

g(z, x) = μ(z)x p−1 ln(1 + x)

with μ ∈ L∞(�), μ(z) ≥ γ > 0 for a.a. z ∈ �. The function g(z, ·) does not satisfy
the Ambrosetti–Rabinowitz condition.

In what follows, for the sake of simplicity, the collection of all hypotheses on the
data of (Pλ), namely the hypotheses H(a), H(ξ), H(β), H0, H( f ), H(g), Ĥ0 will be
denoted by H̃ .

3 Bifurcation-Type Theorem

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution},
S(λ) = set of positive solutions of (Pλ) (λ > 0).

Proposition 4 If hypotheses H̃ hold, then S(λ) ⊆ D+ for all λ > 0.

Proof Of course, the result is trivially true if S(λ) = ∅.
So, suppose that S(λ) �= ∅ and let u ∈ S(λ). Then

⎧
⎨

⎩

−div a(∇u(z)) + ξ(z)u(z)p−1 = λ f (z, u(z)) + g(z, u(z)) for a.a. z ∈ �,
∂u

∂na
+ β(z)u p−1 = 0 on ∂�,

(4)

(see Papageorgiou and Rǎdulescu [19]).
From (4) and Proposition 7 of Papageorgiou and Rǎdulescu [21], we have u ∈

L∞(�).

Apply the regularity theory of Lieberman [12] (p. 320), to obtain

u ∈ C1,γ (�) for some γ ∈ (0, 1).
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Let ρ = ‖u‖C1(�), B = {λ} and let ξ̂ B
ρ > 0 be as postulated by hypothesis Ĥ0(i i).

We have

− div a(∇u(z)) + [ξ(z) + ξ̂ B
ρ ]u(z)p−1 ≥ 0 for a.a. z ∈ �,

⇒ div a(∇u(z)) ≤ [‖ξ‖∞ + ξ̂ B
ρ ]u(z)p−1 for a.a. z ∈ �.

Using the nonlinear maximum principle of Pucci and Serrin [27] (Theorem 5.4.1,
p. 111), we have

u(z) > 0 for all z ∈ �.

Finally, invoking the Boundary Point Lemma of Pucci and Serrin [27] (Theorem
5.5.1, p. 120), we conclude that u ∈ D+.

Therefore for every λ > 0, S(λ) ⊆ D+. ��
Next, we show the nonemptiness of L.

Proposition 5 If hypotheses H̃ hold, then L �= ∅.
Proof Let η > 0 and consider the following auxiliary Robin problem

⎧
⎨

⎩

−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = η in �,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂�.

(5)

We introduce the operator V : W 1,p(�) → W 1,p(�)∗ defined by

〈V (u), h〉 = 〈A(u), h〉 +
∫

�

ξ(z)|u|p−2uh dz

+
∫

∂�

β(z)|u|p−2uh dσ for all u, h ∈ W 1,p(�),

which is continuous, monotone (see Proposition 1), hence also maximal monotone.
Also, we have

〈V (u), h〉 ≥ c1
p − 1

‖∇u‖p
p +

∫

�

ξ(z)|u|pdz +
∫

∂�

β(z)|u|pdσ (see Lemma 1)

≥ c11‖u‖p for some c11 > 0 (see Lemmas 2 and 3),

⇒ V (·) is coercive.
A maximal monotone coercive operator is surjective (see Gasiński and Papageor-

giou [6], Corollary 3.2.31, p. 319). So, we can find u ∈ W 1,p(�), u �= 0 such that

V (u) = η

⇒ 〈A(u), h〉 +
∫

�

ξ(z)|u|p−2uh dz +
∫

∂�

β(z)|u|p−2uh dσ = η

∫

�

h dz

for all h ∈ W 1,p(�). (6)
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In (6) we choose h = −u− ∈ W 1,p(�). Then using Lemma 1, we obtain

c1
p − 1

‖∇u−‖p
p +

∫

�

ξ(z)(u−)p dz +
∫

∂�

β(z)(u−)p dσ ≤ 0,

⇒ c12‖u‖p ≤ 0 for some c12 > 0 (see Lemmas 2 and 3)

⇒ u ≥ 0, u �= 0.

From (6) we obtain

⎧
⎨

⎩

−div a(∇u(z)) + ξ(z)u(z)p−1 = η for a.a. z ∈ �,

∂u

∂na
+ β(z)u p−1 = 0 on ∂�

(see Papageorgiou and Rǎdulescu [19]).
As before (see the proof of Proposition 4), using the nonlinear regularity theory,

we infer that u ∈ C+ \ {0}.
In fact, we have

div a(∇u(z)) ≤ ‖ξ‖∞u(z)p−1 for a.a. z ∈ �(see hypothesis H(ξ))

⇒ u ∈ D+ (see Pucci and Serrin [27], pp. 111, 120).

Since V (·) is strictly monotone (see hypothesis H0), the solution u ∈ C+ \ {0} is
unique. Using Proposition 7 of Papageorgiou and Rǎdulescu [21], we have

‖u‖∞ ≤ c13η
1

p−1 for some c13 > 0. (7)

Hypotheses H(g) imply that given ε > 0, we can find c14 = c14(ε) > 0 such that

g(z, x) ≤ εx p−1 + c14x
p∗−1 for a.a. z ∈ � and all x ≥ 0. (8)

Combining (7) and (8) we have

g(z, u(z)) ≤ εu(z)p−1 + c14u(z)p
∗−1 ≤ εc13η + c14c13η

p∗−1
p−1 .

Since p < p∗, choosing η ∈ (0, 1) and ε > 0 small, we can have

g(z, u(z)) <
η

2
for a.a. z ∈ �. (9)

Notice that 0 ≤ f (z, u(z)) ≤ c15 for a.a. z ∈ � and some c15 > 0 (see hypothesis
H( f ) (i)). So, choosing λ > 0 small we can have that

λ f (z, u(z)) <
η

2
for a.a. z ∈ �. (10)
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It follows from (9) and (10) that

−div a(∇u(z))+ξ(z)u(z)p−1 = η > λ f (z, u(z))+g(z, u(z)) for a.a. z ∈ �. (11)

We introduce the following truncation of the reaction in problem (Pλ)

kλ(z, x) =
{

λ f (z, x+) + g(z, x+) if x ≤ u(z),

λ f (z, u(z)) + g(z, u(z)) if u(z) < x .
(12)

This is a Carathéodory function. We set Kλ(z, x) = ∫ x
0 kλ(z, s)ds and consider the

C1-functional ψλ : W 1,p(�) → R defined by

ψλ(u) =
∫

�

Ĝ(∇u) dz + 1

p

∫

�

ξ(z)|u|p dz + 1

p

∫

∂�

β(z)|u|p dσ −
∫

�

Kλ(z, u) dz

for all u ∈ W 1,p(�).

We have

ψλ(u) ≥ 1

p

[
c1

p − 1
‖∇u‖p

p +
∫

�

ξ(z)|u|p dz +
∫

∂�

β(z)|u|p dσ
]

−
∫

�

Kλ(z, u) dz

≥ c15
p

‖u‖p − c16 for some c15, c16 > 0 (see Lemmas 2 and 3),

⇒ ψλ(·) is coercive.

Also, by the Sobolev embedding theorem and the compactness of the trace map, we
see that ψλ(·) is sequentially weakly lower semicontinuous. So, by the Weierstrass–
Tonelli theorem, we can find uλ ∈ W 1,p(�) such that

ψλ(uλ) = inf{ψλ(u) : u ∈ W 1,p(�)}. (13)

Let V ⊆ � be open with C1-boundary such that U ⊆ V ⊆ V ⊆ �. If δ > 0, we
define

Vδ = {z ∈ V : d(z, ∂V ) < δ}.

We can always choose δ > 0 small such that

U ⊆ V \ Vδ. (14)

We consider a function ĥ ∈ C1(�) such that

0 ≤ ĥ(z) ≤ 1 for all z ∈ � and ĥ
∣
∣
∣
V \Vδ

= 1, ĥ
∣
∣
∣
�\V = 0. (15)
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Hypothesis H(a) (iv) implies that we can find c17 ≥ c∗ and δ ∈ (0, δ0) (see
hypothesis H( f ) (i i i)) such that

Ĝ(y) ≤ c17|y|q for all |y| ≤ δ.

Since u ∈ D+, we can find t ∈ (0, 1) small such that

t ĥ ∈ (0, u] and 0 ≤ t ĥ(z) ≤ δ for all z ∈ V . (16)

We have

ψλ(t ĥ) =
∫

Vδ

Ĝ(t∇ĥ) dz + t p

p

∫

�

ξ(z)̂h p dz

+ t p

p

∫

∂�

β(z)̂h p dσ −
∫

�

Kλ(z, t ĥ) dz (see (15))

≤ tqc17

∫

Vδ

|∇ĥ|q dz + t p

p

∫

�

ξ(z)̂h p dz

+ t p

p

∫

∂�

β(z)̂h p dσ − λc9tq

q

∫

U
ĥqdz

(see (14), (16) and hypothesis H( f ) (i i i))

= tq
[

c17

∫

Vδ

|∇ĥ|q dz − λc9
q

∫

U
ĥq dz

]

+ t p

p

[∫

�

ξ(z)̂h p dz +
∫

∂�

β(z)̂h p dσ

]

.

We see that if we choose δ > 0 small (so that |Vδ|N is small) and t ∈ (0, 1) small,
too, since q < p, we will have

ψλ(t ĥ) < 0

⇒ ψλ(uλ) < 0 = ψλ(0) (see (13))

⇒ uλ �= 0.

From (13) we have

ψ ′
λ(uλ) = 0,

⇒ 〈A(uλ), h〉 +
∫

�

ξ(z)|uλ|p−2uλhdz

+
∫

∂�

β(z)|uλ|p−2uλhdσ =
∫

�

kλ(z, uλ)hdz

for all h ∈ W 1,p(�). (17)
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In (17) we choose h = −u−
λ ∈ W 1,p(�). Then

c1
p − 1

‖∇u−
λ ‖p

p +
∫

�

ξ(z)(u−
λ )p dz +

∫

∂�

β(z)(u−
λ )p dσ = 0

⇒ c18‖u−
λ ‖p ≤ 0 for some c18 > 0 (see Lemmas 2 and 3)

⇒ uλ ≥ 0, uλ �= 0.

Also, if in (17) we choose h = (uλ − u)+ ∈ W 1,p(�), then

〈A(uλ), (uλ − u)+〉 +
∫

�

ξ(z)u p−1
λ (uλ − u)+dz +

∫

∂�

β(z)u p−1
λ (uλ − u)+dσ

=
∫

�

[λ f (z, u) + g(z, u)](uλ − u)+dz

≤ η

∫

�

(uλ − u)+dz (see (11))

= 〈A(u), (uλ − u)+〉 +
∫

�

ξ(z)u p−1(uλ − u)+dz +
∫

∂�

β(z)u p−1(uλ − u)+dσ

⇒ 〈A(uλ) − A(u), (uλ − u)+〉 +
∫

�

ξ(z)(u p−1
λ − u p−1)(uλ − u)+dz

+
∫

∂�

β(z)(u p−1
λ − u p−1)(uλ − u)+dσ ≤ 0

⇒ uλ ≤ u (see Lemmas 2, 3).

So, we have proved that
uλ ∈ [0, u], uλ �= 0. (18)

On account of (12) and (18), Eq. (17) becomes

〈A(uλ), h〉 +
∫

�

ξ(z)u p−1
λ h dz +

∫

∂�

β(z)u p−1
λ h dσ

=
∫

�

[λ f (z, uλ) + g(z, uλ)]h dz for all h ∈ W 1,p(�),

⇒ uλ ∈ S(λ) ⊆ D+ (see Proposition 4) and so λ ∈ L �= ∅.

��
In the next proposition, we prove a structural property of L, namely we show that

L is an interval.

Proposition 6 If hypotheses H̃ hold, λ ∈ L and 0 < μ < λ, then μ ∈ L.
Proof Since λ ∈ L, there is uλ ∈ S(λ) ⊆ D+ (see Proposition 4). We consider the
following truncation of the reaction in problem (Pμ)

kμ(z, x) =
{

μ f (z, x+) + g(z, x+) if x ≤ uλ(z),

μ f (z, uλ(z)) + g(z, uλ(z)) if uλ(z) < x .
(19)
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This is a Carathéodory function. We set Kμ(z, x) = ∫ x
0 kμ(z, s)ds and consider

the C1-functional ϕ̂μ : W 1,p(�) → R defined by

ϕ̂μ(u) =
∫

�

Ĝ(∇u) dz + 1

p

∫

�

ξ(z)|u|p dz + 1

p

∫

∂�

β(z)|u|p dσ −
∫

�

Kμ(z, u) dz

for all u ∈ W 1,p(�).

As before we have that

ϕ̂μ(·) is coercive (see (19)),
ϕ̂μ(·) is sequentially weakly lower semicontinuous.

So, we can find uμ ∈ W 1,p(�) such that

ϕ̂μ(uμ) = inf{ϕ̂μ(u) : u ∈ W 1,p(�)}. (20)

Reasoning as in the proof of Proposition 5, using the cut-off function ĥ, we show
that

ϕ̂μ(uμ) < 0 = ϕ̂μ(0)

⇒ uμ �= 0.

From (20) we have

ϕ̂′
μ(uμ) = 0

⇒ 〈A(uμ), h〉
+

∫

�

ξ(z)|uμ|p−2uμh dz +
∫

∂�

β(z)|uμ|p−2uμh dσ =
∫

�

kμ(z, uμ)h dz

for all h ∈ W 1,p(�). (21)

In (21) we first choose h = −u−
μ ∈ W 1,p(�) and infer that

uμ ≥ 0, uμ �= 0.

Next, in (21) we choose h = (uμ − uλ)
+ ∈ W 1,p(�). We have

〈A(uμ), (uμ − uλ)
+〉 +

∫

�

ξ(z)u p−1
μ (uμ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
μ (uμ − uλ)

+ dσ

=
∫

�

[μ f (z, uλ) + g(z, uλ)](uμ − uλ)
+ dz (see (19))
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≤
∫

�

[λ f (z, uλ) + g(z, uλ)](uμ − uλ)
+ dz (since λ > μ)

= 〈A(uλ), (uμ − uλ)
+〉 +

∫

�

ξ(z)u p−1
λ (uμ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
λ (uμ − uλ)

+ dσ

(since uλ ∈ S(λ))

⇒ uμ ≤ uλ.

So, we have proved that

uμ ∈ [0, uλ], uμ �= 0

⇒ uμ ∈ S(μ) ⊆ D+ (see (19), (21) and Proposition 4),

⇒ μ ∈ L.

��
This proposition shows that L is an interval. An interesting byproduct of the above

proof is the following corollary.

Corollary 2 If hypotheses H̃ hold, λ ∈ L, uλ ∈ S(λ) ⊆ D+ and 0 < μ < λ, then
μ ∈ L and we can find uμ ∈ S(μ) ⊆ D+ such that uλ − uμ ∈ C+ \ {0}.

We can improve the conclusion of this corollary.

Proposition 7 If hypotheses H̃ hold, λ ∈ L, uλ ∈ S(λ) ⊆ D+ and 0 < μ < λ, then
μ ∈ L and we can find uμ ∈ S(μ) ⊆ D+ such that uλ − uμ ∈ int Ĉ+.

Proof From Corollary 2, we already know that μ ∈ L and we can find uμ ∈ S(μ) ⊆
D+ such that

uλ − uμ ∈ C+ \ {0}. (22)

Let ρ = ‖uλ‖∞, B = [μ, λ] and let ξ̂ B
ρ > 0 as postulated by hypothesis Ĥ0 (i i).

We have

− div a(∇uμ(z)) + [ξ(z) + ξ̂ B
ρ ]uμ(z)p−1

= μ f (z, uμ(z)) + g(z, uμ(z)) + ξ̂ B
ρ uμ(z)p−1

≤ μ f (z, uλ(z)) + g(z, uλ(z)) + ξ̂ B
ρ uλ(z)

p−1 (see (22) and hypothesis Ĥ0 (i i))

= λ f (z, uλ(z)) + g(z, uλ(z)) + ξ̂ B
ρ uλ(z)

p−1

+ [μ − λ] f (z, uλ(z)) for a.a. z ∈ �. (23)

Recall that uλ ∈ D+. Therefore sλ = min� uλ > 0. Then using hypothesis
H( f ) (i i i), we have

f (z, uλ(z)) ≥ ηsλ > 0 for a.a. z ∈ �. (24)
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Using (24) in (23) and recalling that μ < λ, we obtain

− div a(∇uμ(z)) + [ξ(z) + ξ̂ B
ρ ]uμ(z)p−1

≤ λ f (z, uλ(z)) + g(z, uλ(z)) + ξ̂ B
ρ uλ(z)

p−1 + [μ − λ]ηsλ
< −div a(∇uλ(z)) + [ξ(z) + ξ̂ B

ρ ]uλ(z)
p−1 for a.a. z ∈ �,

⇒ uλ − uμ ∈ int Ĉ+ (see Proposition 3).

��
We set λ∗ = supL.

Proposition 8 If hypotheses H̃ hold, then λ∗ < +∞.

Proof Let μ > ‖ξ‖∞ (see hypothesis H(ξ)). We claim that we can find λ̂ > 0 such
that

λ̂ f (z, x) + g(z, x) ≥ μx p−1 for a.a. z ∈ U and all x ≥ 0. (25)

To this end, notice that for any λ > 0 on account of hypothesis H( f ) (i i i), we have

λ f (z, x) ≥ μx p−1 for a.a. z ∈ U , all 0 ≤ x ≤ δ̂ ≤ δ0 (recall q < p and δ0 ≤ 1).
(26)

Also, hypothesis H(g) (i i) implies that we can find M1 > 0 such that

g(z, x) ≥ μx p−1 for a.a. z ∈ � and all x ≥ M1. (27)

According to hypothesis H( f ) (i i), we have

λ f (z, x) ≥ ληδ̂ for a.a. z ∈ � and all x ≥ δ̂. (28)

Choose λ̂ > 0 such that
ληδ̂ ≥ μMp−1

1 . (29)

Then from (26), (27), (28), (29) and since f , g ≥ 0, we conclude that (25) is true.
Now let λ > λ̂ and assume that λ ∈ L. Then we can find uλ ∈ S(λ) ⊆ D+. We set

mλ = minU uλ > 0. For δ > 0 let mδ
λ = mλ + δ. We set ρ = ‖uλ‖∞, B = {λ} and

consider ξ̂ B
ρ > 0 as postulated by hypothesis Ĥ0 (i i). We have

− div a(∇mδ
λ) + [ξ(z) + ξ̂ B

ρ ](mδ
λ)

p−1

= [ξ(z) + ξ̂ B
ρ ](mδ

λ)
p−1

≤ [ξ(z) + ξ̂ B
ρ ]mp−1

λ + χ(δ) with χ(δ) → 0+ as δ → 0+

< [μ + ξ̂ B
ρ ]mp−1

λ + χ(δ) (recall that μ > ‖ξ‖∞)

≤ λ̂ f (z,mλ) + g(z,mλ) + ξ̂ B
ρ mp−1

λ + χ(δ) (see (25))

= λ f (z,mλ) + g(z,mλ) + ξ̂ B
ρ mp−1

λ + [̂λ − λ] f (z,mλ) + χ(δ)
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≤ λ f (z,mλ) + g(z,mλ) + ξ̂ B
ρ mp−1

λ + [̂λ − λ]ηmλ + χ(δ)

(see hypothesis H( f ) (i i) and recall that λ̂ < λ). (30)

Since χ(δ) → 0+ as δ → 0+, for δ > 0 small we have

χ(δ) < [λ − λ̂]ηmλ (recall that λ̂ < λ). (31)

Using (31) in (30), we see that for δ > 0 small, we have

− div a(∇mδ
λ) + [ξ(z) + ξ̂ B

ρ ](mδ
λ)

p−1

< λ f (z, uλ(z)) + g(z, uλ(z)) + ξ̂ B
ρ uλ(z)

p−1

(see hypothesis Ĥ0 (i i) and recall that mλ = min
U

uλ)

= −div a(∇uλ(z)) + [ξ(z) + ξ̂ B
ρ ]uλ(z)

p−1 for a.a. z ∈ U
⇒ uλ − mδ

λ ∈ int Ĉ+(U) for δ > 0 small (see Proposition 3).

This contradicts the fact that mλ = minU uλ. It follows that λ /∈ L and so we
conclude that λ∗ ≤ λ̂ < +∞. ��

Proposition 9 If hypotheses H̃ hold and 0 < λ < λ∗, then problem (Pλ) has at least
two positive solutions u0, û ∈ D+, u0 �= û.

Proof Let 0 < λ1 < λ < λ2 < λ∗.Weknow thatλ1, λ2 ∈ L.According toProposition
7, we can find uλ2 ∈ S(λ2) ⊆ D+ and uλ1 ∈ S(λ1) ⊆ D+ such that

uλ2 − uλ1 ∈ intC+.

We consider the following truncation of the reaction in problem (Pλ)

ĵλ(z, x) =

⎧
⎪⎨

⎪⎩

λ f (z, uλ1(z)) + g(z, uλ1(z)) if x < uλ1(z),

λ f (z, x) + g(z, x) if uλ1(z) ≤ x ≤ uλ2(z),

λ f (z, uλ2(z)) + g(z, uλ2(z)) if uλ2(z) < x .

(32)

This is a Carathéodory function. We set Ĵλ(z, x) = ∫ x
0 ĵλ(z, s) ds and consider the

C1-functional τ̂λ : W 1,p(�) → R defined by

τ̂λ(u) =
∫

�

Ĝ(∇u) dz + 1

p

∫

�

ξ(z)|u|p dz + 1

p

∫

∂�

β(z)|u|p dσ −
∫

�

Ĵλ(z, u) dz
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for all u ∈ W 1,p(�). Evidently, τ̂λ(·) is coercive (see (32) and Lemmata 2 and 3) and
sequentially weakly lower semicontinuous. So, we can find u0 ∈ W 1,p(�) such that

τ̂λ(u0) = inf {̂τλ(u) : u ∈ W 1,p(�)}
⇒ τ̂ ′

λ(u0) = 0

⇒ 〈A(u0), h〉 +
∫

�

ξ(z)|u0|p−2u0h dz +
∫

∂�

β(z)|u0|p−2u0h dσ

=
∫

�

ĵλ(z, u0)h dz for all h ∈ W 1,p(�). (33)

Choosing h = (uλ1 − u0)+ ∈ W 1,p(�) and h = (u0 − uλ2)
+ ∈ W 1,p(�) and

reasoning as before, we obtain that

u0 ∈ [uλ1 , uλ2 ]
⇒ u0 ∈ S(λ) ⊆ D+ (see (32)).

In fact, using Proposition 3 (the strong comparison principle) as in the proof of Propo-
sition 7, we obtain

u0 ∈ intC1(�)[uλ1 , uλ2 ]. (34)

Consider the following Carathéodory function

jλ(z, x) =
{

λ f (z, uλ1(z)) + g(z, uλ1(z)) if x ≤ uλ1(z),

λ f (z, x) + g(z, x) if uλ1(z) < x .
(35)

We set Jλ(z, x) = ∫ x
0 jλ(z, s) ds and consider the C1-functional τλ : W 1,p(�) → R

defined by

τλ(u) =
∫

�

Ĝ(∇u) dz + 1

p

∫

�

ξ(z)|u|p dz + 1

p

∫

∂�

β(z)|u|p dσ −
∫

�

Jλ(z, u) dz

for all u ∈ W 1,p(�).
From (32) and (35) it is clear that

τ̂λ

∣
∣
∣[uλ1 ,uλ2 ] = τλ

∣
∣
∣[uλ1 ,uλ2 ].

From (33) and (34) we infer that

u0 is a local C
1(�)-minimizer of τλ

⇒ u0 is a local W
1,p(�)-minimizer of τλ (see Proposition 2). (36)
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Using (35), we can easily check that

Kτλ ⊆ [uλ1) ∩ D+. (37)

So, we may assume that Kτλ is finite (otherwise we already have an infinity of positive
solutions in D+, see (35)). Then this property of Kτλ and (36) imply that we can find
ρ ∈ (0, 1) small such that

τλ(u0) < inf{τλ(u) : ‖u − u0‖ = ρ} = mλ
ρ (38)

(see Aizicovici et al. [1], proof of Proposition 29).
Given u ∈ D+, on account of hypothesis H(g) (i i), we have

τλ(tu) → −∞ as t → +∞. (39)

Claim: τλ satisfies the C-condition.
Let {un}n∈N ⊆ W 1,p(�) be a sequence such that

|τλ(un)| ≤ M2 for some M2 > 0 and all n ∈ N, (40)

(1 + ‖un‖)τ ′
λ(un) → 0 in W 1,p(�)∗ as n → +∞. (41)

From (41) we have

|〈τ ′
λ(un), h〉| ≤ εn‖h‖

1 + ‖un‖ for all h ∈ W 1,p(�), with εn → 0+,

⇒
∣
∣
∣〈A(un), h〉 +

∫

�

ξ(z)|un|p−2unh dz

+
∫

∂�

β(z)|un|p−2unh dσ −
∫

�

jλ(z, un)h dz
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖ , for all h ∈ W 1,p(�), n ∈ N. (42)

In (42) we choose h = −u−
n ∈ W 1,p(�). Using Lemma 1, we have

c1
p − 1

‖∇u−
n ‖p

p +
∫

�

ξ(z)(u−
n )p dz +

∫

∂�

β(z)(u−
n )pdσ ≤ c19‖u−

n ‖
for some c19 > 0 and all n ∈ N (see (35))

⇒ ‖u−
n ‖p−1 ≤ c20 for some c20 > 0 and all n ∈ N (see Lemmas 2 and 3),

⇒ {u−
n }n∈N ⊆ W 1,p(�) is bounded. (43)
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Using (43) in (40), we obtain

∫

�

pĜ(∇un) dz +
∫

�

ξ(z)(u+
n )p dz +

∫

∂�

β(z)(u+
n )p dσ

−
∫

�

p[λF(z, u+
n ) + G(z, u+

n )] dz ≤ M3, (44)

for some M3 > 0 and all n ∈ N (see (35)).
On the other hand, if in (42) we choose h = u+

n ∈ W 1,p(�), then

−
∫

�

(a(∇u+
n ),∇u+

n )RN dz −
∫

�

ξ(z)(u+
n )p dz −

∫

∂�

β(z)(u+
n )p dσ

+
∫

�

[λ f (z, u+
n ) + g(z, u+

n )]u+
n dz ≤ c21,

for some c21 > 0 and all n ∈ N (see (35)). (45)

We add (44) and (45) and using hypothesis H(a) (iv), we obtain

∫

�

eλ(z, u
+
n ) dz ≤ M4 for some M4 > 0 and all n ∈ N. (46)

We will show that {u+
n }n∈N ⊆ W 1,p(�) is bounded. Arguing by contradiction,

suppose that ‖u+
n ‖ → +∞ as n → +∞.

We set yn = u+
n

‖u+
n ‖ , n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We may assume

that

yn
w−→ y in W 1,p(�) and yn → y in L p(�), and in L p(∂�), y ≥ 0. (47)

First, assume that y �= 0 and let �+ = {z ∈ � : y(z) > 0}. We have |�+|N > 0
(recall that y ≥ 0, see (47)). Then

u+
n (z) → +∞ for all z ∈ �+. (48)

Hypotheses H( f ) (i i) and H(g) (i i) imply that

lim
x→+∞

F(z, x)

x p
= 0 and → lim

x→+∞
G(z, x)

x p
= +∞ uniformly for a.a. z ∈ �.

(49)
Then (48), (49) imply that

F(z, u+
n (z))

‖u+
n ‖p

→ 0 for a.a. z ∈ �+,

G(z, u+
n (z))

‖u+
n ‖p

→ +∞ for a.a. z ∈ �+.
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Using Fatou’s lemma, we have

∫

�+

λF(z, u+
n ) + G(z, u+

n )

‖u+
n ‖p

dz → +∞ as n → +∞

⇒
∫

�

λF(z, u+
n ) + G(z, u+

n )

‖u+
n ‖p

dz → +∞ as n → +∞ (recall F,G ≥ 0).

(50)

Recall that from (40) and (43), we have

∣
∣
∣
∣

∫

�

pĜ(∇u+
n ) dz +

∫

�

ξ(z)(u+
n )p dz +

∫

∂�

β(z)(u+
n )p dσ

−
∫

�

p[λF(z, u+
n ) + G(z, u+

n )] dz
∣
∣
∣
∣ ≤ M5, for some M5 > 0 and all n ∈ N

⇒
∫

�

p[λF(z, u+
n ) + G(z, u+

n )] dz ≤
∫

�

pĜ(∇u+
n ) dz +

∫

�

ξ(z)(u+
n )p dz

+
∫

∂�

β(z)(u+
n )p dσ + M4 for all n ∈ N

⇒
∫

�

p[λF(z, u+
n ) + G(z, u+

n )]
‖u+

n ‖p
dz ≤ 1

‖u+
n ‖p

∫

�

pĜ(∇u+
n ) dz +

∫

�

ξ(z)y pn dz

+
∫

∂�

β(z)y pn dσ + M4

‖u+
n ‖p

for all n ∈ N. (51)

Corollary 1 and hypothesis H(a) (iv) imply that

Ĝ(y) ≤ c22(|y|q + |y|p) for some c22 > 0 and all y ∈ R
N .

Therefore we have

1

‖u+
n ‖p

∫

�

pĜ(∇u+
n ) dz ≤ p c22

‖u+
n ‖p−q

‖∇ yn‖qq + p c22‖∇ yn‖p
p ≤ M6 (52)

for some M6 > 0, all n ∈ N (recall p > q). Returning to (51) and using (52), we
obtain

∫

�

p[λF(z, u+
n ) + G(z, u+

n )]
‖u+

n ‖p
dz ≤ M7 for some M7 > 0 and all n ∈ N. (53)

Comparing (50) and (53), we have a contradiction.
Next, we assume that y = 0. We introduce the C1-functional τ ∗

λ : W 1,p(�) → R

defined by

τ ∗
λ (u) = c1

p(p − 1)
‖∇u‖p

p + 1

p

∫

�

ξ(z)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

Jλ(z, u)dz
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for all u ∈ W 1,p(�).
Let k > 0 and define

vn = (kp)1/p yn ∈ W 1,p(�) for all n ∈ N.

We have

vn
w−→ 0 in W 1,p(�) and vn → 0 in L p(�) and in L p(∂�),

(see (47) and recall that y = 0). (54)

Hypotheses H( f ) (i), (i i) imply that

0 ≤ F(z, x) ≤ c23(1 + x p−1) for a.a. z ∈ �, all x ≥ 0, and some c23 > 0,

⇒
∫

�

F(z, vn)dz → 0 (see (54)).

Let c24 = supn∈N ‖vn‖p∗
p∗ (see (54)). Hypotheses H(g) (i), (i i) imply that given

ε > 0, we can find c25 = c25(ε) > 0 such that

0 ≤ G(z, x) ≤ ε

2c24
x p∗ + c25 for a.a. z ∈ � and all x ≥ 0. (55)

Let E ⊆ � be a measurable set with |E |N ≤ ε

2c25
. Then we have

∫

E
G(z, vn)dz ≤ ε

2c24
‖vn‖p∗

p∗ + c25|�|N ≤ ε for all n ∈ N (see (55)).

Also, from (53) we see that

{NG(vn)}n∈N ⊆ L1(�) is bounded.

It follows that

{NG(vn)}n∈N ⊆ L1(�) is uniformly integrable (56)

(see Gasiński and Papageorgiou [8], Problem 1.6, p. 36).
From (54) and by passing to a subsequence if necessary, we can say that

vn(z) → 0 for a.a. z ∈ �

⇒ G(z, vn(z)) → 0 for a.a. z ∈ �,

⇒
∫

�

G(z, vn) dz → 0 as n → +∞,
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using Vitali’s Theorem (see Gasiński-Papageorgiou [8], p. 5), we have

∫

�

[λF(x, vn) + G(z, vn)] dz → 0 as n → +∞.

Recall that ‖u+
n ‖ → +∞. So, we can find n0 ∈ N such that

0 <
(kp)1/p

‖u+
n ‖ ≤ 1 for all n ≥ n0. (57)

Let tn ∈ [0, 1] be such that

τ ∗
λ (tnun) = max{τ ∗

λ (tun) : 0 ≤ t ≤ 1}. (58)

It follows from (57) and (58) that

τ ∗
λ (tnun) ≥ τ ∗

λ (vn)

= c1k

p − 1
‖∇ yn‖p

p + k

[∫

�

ξ(z)|yn|pdz +
∫

∂�

β(z)|yn|pdσ
]

−
∫

�

Jλ(z, vn) dz

≥ kc26 − c27 for some c26, c27 > 0 and all n ≥ n0 (see Lemmas 2 and 3).

Since k > 0 is arbitrary, we infer that

τ ∗
λ (tnun) → +∞ as n → +∞. (59)

From the definition of τ ∗
λ (·) and Corollary 1, we have

τ ∗
λ (u) ≤ τλ(u) for all u ∈ W 1,p(�).

Therefore from (40) we have

τ ∗
λ (un) ≤ M2 for all n ∈ N. (60)

Also, notice that
τ ∗
λ (0) = 0. (61)

Then (59), (60), (61) imply that we can find n1 ∈ N such that

tn ∈ (0, 1) for all n ≥ n1. (62)
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It follows from (58) and (62) that

d

dt
τ ∗
λ (tun)

∣
∣
∣
t=tn

= 0,

⇒ 〈(τ ∗
λ )′(tnun), tnun〉 = 0 (by the Chain rule),

⇒ c1
p − 1

‖∇(tnun)‖p
p +

∫

�

ξ(z)|tnun|pdz +
∫

∂�

β(z)|tnun|pdσ

=
∫

�

jλ(z, tnun)(tnun) dz

≤ c28 +
∫

�

[λ f (z, tnu
+
n ) + g(z, tnu

+
n )](tnu+

n ) dz

for some c28 > 0 and all n ≥ n1 (recall f , g
∣
∣
∣
�×(−∞,0] = 0). (63)

By hypothesis Ĥ0 (i) and (62), we have for B = {λ}
∫

�

eλ(z, tnu
+
n )dz ≤

∫

�

eλ(z, u
+
n )dz + ‖ηB‖1

≤ M4 + ‖ηB‖1 for all n ≥ n1 (see (46))

⇒
∫

�

[λ f (z, tnu
+
n ) + g(z, tnu

+
n )](tnu+

n )dz

≤ M8 +
∫

�

p[λF(z, tnu
+
n ) + G(z, tnu

+
n )]dz for some M8 > 0 and all n ≥ n1.

(64)

Returning to (63) and using (64), we have

c1
p − 1

‖∇(tnun)‖p
p +

∫

�

ξ(z)|tnun|pdz +
∫

∂�

β(z)|tnun|pdσ

−
∫

�

Jλ(z, tnu
+
n )dz ≤ M9 for some M9 > 0, all n ≥ n1 (see (35))

⇒ pτ ∗
λ (tnun) ≤ M9 for all n ≥ n1. (65)

Comparing (59) and (65) we get a contradiction.
This proves that {u+

n }n∈N ⊆ W 1,p(�) is bounded, therefore

{un}n∈N ⊆ W 1,p(�) is bounded (see (43)).

We may assume that

un
w−→ u in W 1,p(�) and un → u in L p(�) and in L p(∂�). (66)
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Recall that

0 ≤ f (z, x) ≤ c28[1 + |x |p−1] for a.a. z ∈ �, all x ∈ R, and some c28 > 0

⇒
∫

{un≥uλ1 }
f (z, un)(un − u)dz → 0 (see (66)). (67)

As before, let c29 = supn∈N ‖un‖p∗ < +∞ (see (66)). Hypotheses H(g) (i), (i i)
imply that given ε > 0, we can find c30 > 0 such that

g(z, x) ≤ ε

3cp
∗

29

x p∗−1 + c30 for a.a. z ∈ � and all x ≥ 0. (68)

Suppose that E ⊆ � is measurable. We have

∣
∣
∣
∣

∫

E
g(z, u+

n )(un − u) dz

∣
∣
∣
∣

≤
∫

E
|g(z, u+

n )||un − u| dz

≤ ε

3cp
∗

29

∫

�

(u+
n )p

∗−1|un − u|dz + c30

∫

E
|un − u| dz (see (68)). (69)

Notice that (u+
n )p

∗−1 ∈ L(p∗)′(�) (recall
1

p∗ + 1

(p∗)′
= 1) and un − u ∈ L p∗

(�).

Using Hölder’s inequality, we have

ε

3cp
∗

29

∫

�

(u+
n )p

∗−1|un − u|dz ≤ ε

3cp
∗

29

‖u+
n ‖p∗−1

p∗ ‖un − u‖p∗ ≤ 2ε

3
for all n ∈ N.

(70)
Assume that

|E |N ≤
[

ε

6c30c29

](p∗)′

.

Then we have

c30

∫

�

|un − u|dz ≤ ε

3
for all n ∈ N. (71)

Returning to (69) and using (70), (71), we obtain

∣
∣
∣
∣

∫

E
g(z, u+

n )(un − u)dz

∣
∣
∣
∣ ≤ ε for all n ∈ N

⇒ {
g(·, u+

n (·))(un − u)(·)}n∈N ⊆ L1(�) is uniformly integrable

⇒
{
χ{un≥uλ1 }(·)g(·, u+

n (·))(un − u)(·)
}

n∈N ⊆ L1(�) is uniformly integrable.

(72)
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From (66) and by passing to a subsequence if necessary, we can have

χ{un≥uλ1 }(z)g(z, u+
n (z))(un − u)(z) → 0 for a.a. z ∈ �, as n → +∞. (73)

Then (72), (73) and Vitali’s theorem, imply that

∫

{un≥uλ1 }
g(z, u+

n )(un − u)dz → 0

⇒
∫

�

jλ(z, u
+
n )(un − u)dz → 0 (see (35), (43), (67)). (74)

Therefore if in (42)we choose h = un−u ∈ W 1,p(�), pass to the limit as n → +∞
and use (43), (66) and (74), we obtain

lim
n→+∞〈A(un), un − u〉 = 0

⇒ un → u in W 1,p(�) (see Proposition 1)

⇒ τλ satisfies the C-condition.

This proves the claim.
Then (38), (39) and the claim permit the use of Theorem 1 (the mountain pass

theorem). So, we can find û ∈ W 1,p(�) such that

û ∈ Kτλ ⊆ [uλ1) ∩ D+ (see (37)), (75)

mλ
ρ ≤ τλ(̂u) (see (38)). (76)

From (35), (38), (75), (76)we conclude that û is the second positive smooth solution
of (Pλ) (0 < λ < λ∗) distinct from u0. ��

Next, we show that the critical parameter value λ∗ > 0 is admissible. In what
follows, ϕλ : W 1,p(�) → R is the energy (Euler) functional for problem (Pλ) defined
by

ϕλ(u) =
∫

�

Ĝ(∇u) dz + 1

p

∫

�

ξ(z)|u|p dz

+ 1

p

∫

∂�

β(z)|u|p dσ −
∫

�

[λF(z, u) + G(z, u)] dz

for all u ∈ W 1,p(�). Evidently ϕλ ∈ C1(W 1,p(�),R) for all λ > 0.

Proposition 10 If hypotheses H̃ hold, then λ∗ ∈ L and so L = (0, λ∗].
Proof Let {λn}n∈N ⊆ (0, λ∗) such that λn → (λ∗)− as n → +∞. We can find
un ∈ S(λn) ⊆ D+ for all n ∈ N. In fact, from Corollary 2 and the proof of Proposition
6, we see that can have {un}n∈N increasing and

ϕλn (un) < 0 for all n ∈ N.
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Therefore we have
∫

�

pĜ(∇un) dz+
∫

�

ξ(z)u p
n dz+

∫

∂�

β(z)u p
n dσ−p

∫

�

[λF(z, un)+G(z, un)] dz < 0

(77)
for all n ∈ N. Also we have

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n h dz +

∫

∂�

β(z)u p−1
n h dσ

=
∫

�

[λn f (z, un) + g(z, un)]h dz for all h ∈ W 1,p(�), n ∈ N. (78)

Choosing h = un ∈ W 1,p(�) in (78), we obtain

−
∫

�

(a(∇un),∇un)RN dz −
∫

�

ξ(z)u p
n dz −

∫

∂�

β(z)u p
n dσ

+
∫

�

[λn f (z, un) + g(z, un)]un dz = 0 for all n ∈ N. (79)

Adding (77), (79) and using hypothesis H(a) (iv), we have

∫

�

eλn (z, un)dz < 0 for all n ∈ N. (80)

From (80) and reasoning as in the proof of Proposition 9 (see the part of the proof
after (46)), we obtain that

{un}n∈N ⊆ W 1,p(�) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p(�) and un → u∗ in L p(�), and L p(∂�). (81)

In (78) we choose h = un − u∗ ∈ W 1,p(�) and pass to the limit as n → +∞. Then

lim
n→+∞〈A(un), un − u∗〉 = 0 (see the part of the proof of Proposition 6 after (66))

⇒ un → u∗ in W 1,p(�) (see Proposition 1). (82)

In (78) we pass to the limit as n → +∞ and use (82). Then

〈A(u∗), h〉 +
∫

�

ξ(z)(u∗)p−1h dz +
∫

∂�

β(z)(u∗)p−1h dσ

=
∫

�

[λ f (z, u∗) + g(z, u∗)]h dz for all h ∈ W 1,p(�)

⇒ u∗ ∈ S(λ∗) ⊆ D+.
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We conclude that λ∗ ∈ L and so L = (0, λ∗]. ��
Proposition 11 If hypotheses H̃ hold and λ → 0+, then we can find uλ ∈ S(λ) ⊆ D+
such that ‖uλ‖C1(�) → 0 as λ → 0+.

Proof From the proof of Proposition 5, we know that for λ > 0 small we can find
uλ ∈ S(λ) ⊆ D+ such that

uλ ≤ u (see (18), (5)).

If η → 0+ (see (5)), then u = u(η) → 0 in C1(�) and so uλ → 0 in C1(�). ��
Summarizing, we can state the following theorem describing the dependence of the

set of positive solutions on the parameter λ > 0.

Theorem 2 If hypotheses H̃ hold, then there exists λ∗ > 0 such that

(a) if 0 < λ < λ∗, then problem (Pλ) has at least two positive solutions u0, û ∈ D+,
u0 �= û;

(b) if λ = λ∗, then problem (Pλ) has at least one positive solution u∗ ∈ D+;
(c) if λ > λ∗, then problem (Pλ) has no positive solutions;
(d) if λ → 0+, then we can find positive solutions uλ ∈ D+ such that ‖uλ‖C1(�) → 0

as λ → 0+;
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24. Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Positive solutions for nonlinear nonhomogeneous
parametric Robin problems. Forum Math. 30(3), 553–580 (2018)
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