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Resolutions of 2-Polyhedra by Fake
Surfaces and Embeddings into R*

Alexander Onischenko, Dusan Repovs and Arkady Skopenkov

ABSTRACT. We present several corollaries (concerning embeddings of 2-polyhedra
into R*) of the following result due to the second and the third author: for ev-
ery 2-polyhedron P there exists a fake surface Q and an onto map f: Q — P
with contractible preimages. We show that the class of fake surface in this the-
orem cannot be replaced by a certain interesting smaller class of 2-polyhedra.
We announce (with indication of proof) that any non-locally flat PL sphere
S2 C R?* has a reqular neighborhood, non-homeomorphic to S? x D2,

A finite 2-polyhedron @ is called a fake surface if each of its points has a
neighbourhood homeomorphic to one of the following: D?, (triod)xI or the cone
over the complete graph with four vertices (see the figure below). We shall refer
to these points as points of type 1, 2 and 3, respectively. Soap films in R? exhibit
singularities precisely of type 2 and 3. This notion of a soap film from differential
geometry has proven to be an important tool and object of investigation in algebraic
and geometric topology.
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By @’ we shall denote the intrinsic I1-skeleton of a fake surface ), i.e. the set
of points of type 2 or 3. Obviously, @’ is a graph whose vertices have degree 1, 2 or
4. By Q" we shall denote the finite set of points of ), which have type 3. A fake
surface @ is called a special 2-polyhedron, if both Q — Q" and Q' — Q" are trivial,
i.e. they are a disjoint union of open 2- and 1- disks, respectively.
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The concept of fake surfaces and special polyhedra as ’general position’ 2-
polyhedra is formalized by the following result:

Theorem 0. a) Every 3-manifold has a spine which is a special polyhedron
[HAMS93; Theorem 1.3.1.a].

b) If two 3-manifolds have the same special spine, then they are homeomorphic
[Cas65).

¢) Every finite 2-polyhedron is homotopy equivalent to a special polyhedron
[Wri77; Proposition 1].

d) For every 2-polyhedron P there exists a fake surface (Q and an onto map
f : Q@ — P with contractible preimages (they are actually either points or arcs or
2-disks). Moreover, if P is dimensionally homogeneous and has a trivial manifold
set, then we can make Q to be special [ReSk00; Theorem 1].

A polyhedron P in a 3-manifold M is called a spine of M, if M (or M —intD3, if
M is closed) is a regular neighborhood of P. The manifold set of a 2-polyhedron is
the set of points having a neighborhood homeomorphic to D?. A 2-polyhedron P is
said to be dimensionaly homogeneous if every point of P has an arbitrarily small 2-
dimensional neighbourhood. Theorem 0.c can be derived from [Wri77; Proposition
1] (or from Theorem 0.d) by applying the construction from [HAMS93; p.37].

The purpose of this paper is to announce several new results related to Theorem
0. For most of them we give a complete proof, for some we present only the main
idea of the proof. Our first result was motivated (like Theorem 0.b) by the following
problem [Hor85] [Rep88] [HAMS93; 1.49].

Problem. Find conditions on a compact polyhedron P and a PL manifold
M wunder which reqular neighborhoods in M of each two homotopic PL embeddings
P — M are PL homeomorphic.

This problem can be regarded as a PL version of the Massey problem on unique-
ness of the normal bundle for distinct embeddings of a manifold [Mas59].

Theorem 1. a) There exists a special 2-polyhedron @) and two PL embeddings
Q — R* with non-homeomorphic regular neighborhoods.

b) Any non-locally flat PL sphere S? C R* has a regular neighborhood, non-
homeomorphic to S% x D?.

Theorem 1.b is true even for all k > 2 and any PL embedding S k  Sk+2 having
an isolated singularity S*~! C S**! such that m (S**! — §*~1) 2 Z. Theorem 1 is
sharp in the sense that for m # 4, every special 2-polyhedron (or even fake surface)
Q@ and every two homotopic PL embeddings of 2 into an m-manifold, their regular
neighborhoods are homeomorphic [LiSi69] [RBS99] [ReSk]. Also, every PL sphere
S™ C R™ has a PL standard regular neighborhood if either m —n # 2 or S™ C R™
is locally flat [Wal67] [Zee63].

Theorem 1.a is a corollary of the ambient version of Theorem 0.d - for details
see below. We shall illustrate the idea of proof of Theorem 1.b by proving the same
result for some sphere S2 C S*, which already gives a counterexample to the above
PL analogue of the Massey problem (for the complete proof see [ReSk]).

Proof of Theorem 1.a. Let P be the Dunce hat, i.e. the quotient space of the
2-dimensional triangle ABC obtained by the identification AB = AC = BC (in
this direction). By [Zee63] [Hor85] there are two PL embeddings f,g : P — R*
with distinct regular neighborhoods M; and M,. Let () be the special resolution of
P given by Theorem 2.a below. Since @) is a spine of both M; and M, these two
embeddings @ C M; C R* are as desired.
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Proof of Theorem 1.b (for some sphere S? C S%). Take the suspension of a
non-trivial knot S* C S2 such that 7m1(S3 — S!) # Z (in fact, any non-trivial knot
satisfies this assumption). For a polyhedron P C M we denote by Rps(P) the
regular neighborhood of P in M. Consider the decomposition S* = D% U D?
such that D4 N D* = 9D4 = S3. Let B2 = D4 N S? be the cone over S'. Let
Bi = RDi(Bi) so that B NOD1 = Rgs(SY).

Denote C;. = 0B1 ~Int(Ryp4 (S')). Then Rg4(S?) = B{UB? and 0Rs:4(S?) =
C,UC_. Since B? is a cone it follows that D4 \, B%, therefore D1 is also a regu-
lar neighborhood of B2 in D4. Hence by the uniqueness of regular neighborhoods,
(0B4,S') = (S53,8') and so m1(Cy) = m (83 — SY).

The composition C; — C, UC_ 5 C, of the inclusion and the ’symmetric’
retraction is a homeomorphism. So the induced composition 7 (S3—S1) — m(C, U
C_) 55 m(S® — S81) is an isomorphism, hence r, is an epimorphism. Therefore
m1(0Rg4(S?)) % Z and we are done. O

Our second result (already used in the proof of Theorem 1.a) concerns the
ambient version of Theorem 0.d.

Theorem 2. a) For each m > 4 and every 2-polyhedron P there is an onto
map f : ) — P with contractible preimages such that Q) is a fake surface and any
m-manifold M having P as the spine, also possesses a spine homeomorphic to Q).

b) There is a 2-polyhedron P such that for each contractible resolution f :
@ — P by a fake surface QQ there is a 3-manifold M which has P as the spine, but
possesses no spine homeomorphic to Q).

Theorem 2.a is proved analogously as Theorem 0.d, by using general position.
Theorem 2.b follows by taking P to be a common spine of non-homeomorphic
manifolds M; and M, (see examples in [Rep88] [HAMS93] [MPR89] [CLRIT]).
Since M; and M, are not homeomorphic, it follows by [RBS99] that they cannot
have the same spine, which would be a fake surface.

Our third result is motivated by the well-known fact that every 2-manifold
embeds into R*.

Theorem 3. There exists a fake surface (even a special 2-polyhedron) Q which
does not embed into R*.

Proof. Let @@ be a resolution, given by Theorem 0.d, of the 2-skeleton P of
the standard 6-simplex. Suppose that @ embedded into R*. It is clear from the
proof of Theorem 0.d that the non-trivial preimages of the resolution are those of
the points of the 1-skeleton of P. Hence by contracting in R* the preimages of
the resolution we would obtain R* (cf. [BDVW; the 1-LCC shrinking theorems for
ANR’s and the remark at the bottom of p.2], in which P is embedded. The latter
is well-known to be impossible. Contradiction. O

Our fourth result shows that in Theorem 0.c-d the class of fake surfaces cannot
be replaced by a certain smaller class of 2-polyhedra. Clearly, there exists a 2-
polyhedron P which is not homotopy equivalent to any surface. Indeed, we can
take any polyhedron P with m; (P) & Z3, because Z3 is not the fundamental group
of any surface.

Also, there exists a 2-polyhedron P which is not homotopy equivalent to any
fake surface without points of type 3. Indeed, we can take as P any 2-dimensional
spine of any homology 3-sphere, because [La00; Proposition 1.1] proved that the
fundamental group of any fake surface without points of type 3 can never be a
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non-trivial perfect group. All homology groups used in this paper are assumed to
have Z-coefficients.

Theorem 4. a) For each k there exists a connected 2-polyhedron P which is
not homotopy equivalent to any fake surface with at most k vertices of type 3.

b) If Q is a fake surface such that H1(Q) = 0 (e.g. a fake surface spine of a
homology 3-sphere), then rkm(Q) < 20|Q"|.

Proof. Take P =K1V K3V ---V Koog+1, where K; is a 2-spine of a non-trivial
homology 3-sphere. By [LySh77; Chapter 4, Corolary 1.9],

71'1(P) & 71'1(K1) *71'1(K2) L SEICECEE 3 7T1(K20k+1)

has at least 20k + 1 generators, so (a) follows from (b).

Our proof of (b) is a reduction to the case |Q"”| = 0 proved in [La00; Proposition
1.1]. For a space X consisting of connected components Xi,..., X, we denote
m(X) := &m(X;). The following inequality holds for finite polyhedra X and Y
(neither X nor Y nor X NY are assumed to be connected):

(%) rkm (X UY) <rkm(X)+rkm(Y)+2rk Hy(X NY).

The inequality is proved by adding to both X and Y a point and the union of arcs
joining this point to each connected component of X NY, and then applying the
van Kampen theorem to the modified X, Y and (now connected) X NY.

Let G be the subgraph of Q' obtained by deleting isolated circles. Then Q' — G
does not contain any points of type 3. Let N be a regular neighbourhood of G in
Q. Then ON = N N Cl(Q — N) is homeomorphic to a disjoint union of n circles.
Denote v = |Q”|. By (*), it suffices to prove that:

(1) tkm (V) =tk m1 (G) < 2v;

(2) n =rk Hy(ON) < 6v; and

(3) tkmi (CI(Q — N)) < .

In order to prove (1), observe that all vertices of G have degree 4, hence G has
2v edges. Since G does not have any isolated circles, it follows that the number of
connected components of G is at most v. Therefore rkm; (G) < 2v — v +v = 2wv.

In order to prove (2), observe that n does not exceed the number of pairs (e, )
where e is an edge of G and s is a boundary circle of N, going close to e. Since
for each of 2v edges e of G there are at most three circles s close to it, there are 6v
such pairs, and (3) follows.

In order to prove (3), let D = D; U --- U D,, identify 0D and ON and let
X = Cl(Q — N)UD. Since QU D is obtained from @ by attaching disks and
H;(Q) =0, it follows that H;(Q U D) = 0. Then the Mayer-Vietoris sequence for
QUD = (NUD)UX with (NUD)NX = D implies that H;(X) = 0. Since the fake
surface X does not contain any points of type 3, it follows by [La00; Proposition
1.1] that m1(X) = 0. Hence rkm (Cl(Q — N)) <n. O

Note that the estimate in Theorem 4.b can be improved to rkm;(Q) < 8|Q”|.

We conclude this paper by a conjecture on a higher-dimensional generalization
of Theorem 0.d. Note that the class of 'resolving’ polyhedra from our conjecture
does not coincide with the class of higher-dimensional special polyhedra [Mat73].
Let ©F be the union of S* with k + 1 disks D* attached to S* along the main
equator S*~1 c S,
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Conjecture. For every n-polyhedron P there is an onto map f : () — P with
contractible preimages and such that every point x € () has a regular neighbourhood
homeomorphic to the product I"~*~1 x Con ©%.
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