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Surgery of Closed Manifolds Wi th  Dihedral Fundamental  G r o u p  
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ABSTRACT. In the paper the obstruction groups to obtaining simple homotopy equivalence by surgery from 
normal degree 1 maps of closed manifolds with dihedral fundamental group are computed. The cases of trivial 
orientation for the dihedral group and nontrivial orientation for the order 2 cyclic subgroup are considered. New 
results concerning the Browder-Livesey groups and natural maps of L-groups arising in index 2 inclusions of 
the cyclic group into the dihedral group are obtained. 
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w I n t r o d u c t i o n  

The Wall groups L~(G, w) are the obstruction groups for m o d ~ n g  a degree I map f :  ( M ,  a M )  --* 
(Y, OY) of smooth (or piecewise linear or topological) closed manifolds with b o u n d a r y  by surgery into a 
simple homotopy equivalence. Further we shall use the notation Ln(G, w) for these  groups. Here n is 
the dimension of the manifold Y,  G -- ah(Y) and w: G --~ {4-1} is the orientat ion homomorphlsm. If 
the boundary of the manifold Y is nonempty, then we assume that the restr ict ion of the map f to the 
boundary of the manifold M is a simple homotopy equivalence f]oM : aM --~ a Y .  gaz.h element of the 
group LT,(G, ~) is realized by a normal map of manifolds with boundary (see [1]). However, in the case 
of a finite fundamental group G,  there usually exist very few dements of the group Ln(G, ~a) that  can be 
reallzCd by normal maps of closed manifolds. The subgroup generated by such e lements  will be  denoted 
by O,~(G, w) (see {21). 

There exists a natural  map of the Wall group L,,(G, w) into the projective Novikov-WM! groups 
LPa(G, w) ,  which are much simpler. In the paper [2] a complete list of invariants describing the image of 
the group Ca(G, w) in the group LPn(G, u~) for any finite 2-group G is obtained.  In the  case of trivial 
orientation, deep results in the realization problem were obtained in the paper [3], while in the case of 
nontrivial orientation complete results have been obtained only for finite Abelima 2-groups (see [3, 4]). 
The technique developed by Hambleton in the paper [2] for the projective case is ba sed  on results due to 
Browder and Livesay [5], and to Caper  and Shaneson [6]. There the main role is p layed  by  the Browder- 
Livesay groups LN,~-I(~r --~ G), where ~r is an index 2 subgroup of the group G,  a n d b y  the natural  maps 
between these groups and the Wall groups. Thus the paper [6] describes a map, k n o w n  as the Browder- 
Livesay invaxiant, of the group Ln(G) into the Browder-Livesay groups, which is trivial on elements of 
the Wall group that  are realized by normal maps of dosed manifolds. The Browder-Livesay groups are 
obstruction groups to splitting a simple homotopy equirdlence f :  M --* Y along a one-sided submanifold 
X C Y when the homomorphism of fundamental groups ~rl(X) ~ ~h (Y) induced by the  inclusion is an 
isomorphism. The natural maps (transfer, twisted transfer, induced map) between the Wall groups and 
the Browder-Livesay groups required for studying the realization problem by closed manifolds appear in 
the Levine braid (see [7, 8]) 
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For the geometric applications, the maps appearing in the upper and lower row of diagram (1) are the 
most important  ones (see [2, 6]). Diagrams in which we consider only the upper  and lower rows will be 
called two.row diagrams. Note that  the upper and lower row of diagram (1) are chain complexes with 
isomorphic homology in the corresponding terms. This fact yields a rather efficient m e t h o d  for comput ing 
groups and maps. The  sign " - "  means that  the orientation homomorphism has been changed on the 
generator t fi G \ z'. Here i., is the map induced by the inclusion i,  while i ! is the transfer map  in the 
Wall groups. If t is an arbitrary element of G \ ~r, then the scaling isomorphism of the  Wall groups for 
rings with antistructures (see w is defined [7, 8]: 

t: L,CG, w) --* L,(ZG, 8, w(t)t~), 

where •(z) = ta(z)t -~ . Note, in particular, that  the map i"t-' in the diagram (1) specifies the Browder-  
Livesay invariant. 

A diagram similar to (1) beggining with the map  i.,: L,(~r) --, L, (G- )  also exists. In order  to distinguish 
them, diagram (1) will be denoted by (D), while (D) will denote the other one. 

Let 7r = Z /2  r C D ~ I  be an inclusion of index 2 of the cyclic group with trivial or ientat ion in the 
dihedral 2-group Dr+, = {z 2" = y2 = I, y-*zy = z-*}. For r = 2 the groups L.(Dr+,,w) and 
Lr~(D~, ,  w) are isomorphic for any choice of the orientation homomorphism w. Therefore, the results 
of [2] give a complete description of the groups C,,(Da, w) for any n = 0, 1 ,2 ,  3 rood4 .  For r _> 3 such 
a homomorphism no longer exists, so that  in this case the results of [2] yield only a lower bound  for the 
groups C.(Dr+I, w). 

In the present paper,  the groups C,(D~+,, w) are computed for the cases in which the orientation 
homomorphism w is trivial on the generator z of the group D,.+,. The Wall groups of the  dihedral group 
in these cases are computed in [8], while the Browder-Livesay groups are calculated in [9]. The  main 
difficulty is in the calculation of the natural  maps in the diagram (1). In w for the embeddings under  
consideration, the maps in diagram (1) are computed,  as well as the group 

LN,(~ -~ D +'+~ ~- LNa(~ -~ D~+,+'-), rOr l ] 

obtained in [9], but  only up to an extension. For the computations, the spectral sequence of surgery 
theory from the paper  [10] is used. Note that  in the case of trivial orientation on the group Dr+,  
(w(y) = w(z) = 1), the groups C,(D,+1, w) can also be calculated (see [31). The  main  results of the 
present paper  are Theorems 3-5. 

An intermediate step in the calculation of surgery obstruction groups and of the Browder-Livesay 
groups (see [8]) consists in computing the groups where Z2 is the ring of 2-adic numbers,  
Y = ker(K,(Z~r) --. K,(QTr)) U {+a-}. These groups apppear in the Rothenberg exact sequence (see [8]) 

, L~CT.2~r) , L~CZ21r) , H"CKIY) , ,  (2) 

where H " ( K I Y )  is the "rate cohomology of the group K / Y ,  K = K1(Z2~'), and the involution on the 
group K / Y  is induced from the s tandard involution on the group ring Z2z" given by the  formula 

Ymgg ~ Ymgw(g)g -1 , n~ 6 52, g 6 ~, 

in which w: ~" --* {+1} is the orientation homomorphism. For a finite 2-group 7r, the group L~(Z2z') 
is isomorphic to Z /2 .  The  groups L.r(Z2~r) and similar groups for the antistructures corresponding to 
the Browder-Livesay groups are calculated in [8, 9]. The natural  maps between these groups may be 
calculated by using the natural  maps of the 'rate cohomology (see [11-13]). 

For any group 7r we have the relative long exact sequence (see [8]) 

, , , ( 3 )  
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in which L : (Z~r )  is the group L~(7.2~r) for n = 2k and can be identified wi th  the kernel of the map 
L~(7.~r) ---* L~(7.27r) for n = 2k + 1. Note that for the dihedral group or for t h e  cyclic 2-group a- the 
group 

SK1(Zr )  = k e r ( g l ( z r )  --* K, (Qlr)) 

is trivial (see [8]). Therefore, in the case under consideration, we have the isomorphism L ~ ~ L ~ . In the 
sequel all the L*-groups will be denoted by L. 

Thus, to compute the natural  maps in the diagram (1) for the inclusion i: r ---* G of index 2, we can 
use the two-row diagrams for the quadratic extension Z~r ---* 7..2G (see [7]) and t h e  two-row diagrams for 
the relative groups (see [11]). 

w N a t u r a l  m a p s  for  Ta te  c o h o m o l o g y  

This section contains certain necessary preliminary facts about Wall groups for r ings  with antistructures 
and spectral sequences in surgery theory for quadratic extensions of antistructures (see [7-14]). 

An anti~tructure is a triple (R, ~,  u) ,  where R is a ring with unit, u E R* i s  an invertible dement  
of the ring, a :  R --* R is an antiautomorphism of the ring R such that a (u)  = u -a , a2(z) = uzu  -1 
for any x E R.  A structure on a ring R is a pair (p, a), where p: R ~ R is a n  automorphiam of the 
ring R,  while a is an invertible element such that p(a) = a, p2(z) = axa -1 for a n y  z E R (see [7]). Let 
S - R[t]/(t 2 - a) be a quadratic extension of the ring R,  where t is an e lement ,  independent over R, 
such that p(z) = txt  -1 for any z E R.  Assume also that the automorphism a c a n  be extended to S so 
that a(t)t  E R C S ,  a2(t) -- u tu  -1 E S.  In this case the antistructure (S, a ,  u) i s  said to be a quadratic 
ezten~ion of the antistructuere (R, a ,  u).  The automorphism p can be extended t o  the ring S by means 
of the formula p(z + yt) = t (z  + yt)t -1 , z ,  y E R .  One can also define the au tomorphism 7 of the ring S 
by setting 7(x + yt) = (z - yt) ,  z ,  y E R .  From the given quadratic extension o f  antistructures we can 
construct another quadratic extension (R, ~, ~) --* (S, ~, ~), where ~ = pTa and ~ --- - t a ( t  -~)u (see [7]). 
Since the squares of the antiautomorphisms a ,  ~ are inner automorphisms, they i n d u c e  involutions on the 
groups K j ( R ) ,  K j ( S )  for j = 0, 1. Denote these involutions by T and T respectively. 

For any subgroup X C K j ( R )  invariant with respect to the involution T,  the  decorated Wall groups 
LX(R ,  a ,  u) are defined so that  for any two invariant subgroups X C X r C K j ( R )  w e  have the Rothenherg 
exact sequence for ex ple IS, 14]) 

, L x ( R )  ~ LX' (R)  ~ H ' * ( x r / x )  - - - - ,  , 

where H* is the Tate cohomology. Let i: (R, a ,  u) --* (S, a ,  u) be a quadratic ex tens ion  of antistructures. 
Then for j -- 0, 1 the induced homomorphism i . :  Kj(R)  ---* K j ( S  ) and the t r ans fe r  homomorphism 
i*: K j ( S )  -.-* K j ( R )  are defined. The maps i*, i .  commute with the involutions T ,  T and therefore 
induce maps of the ' rate cohomology, which we shall denote by i*" and i! respectively. 

Similarly, let X C X '  C Kj(R)  and Y C Y' C Kj (S )  be T-, T-invariant subgroups  for j = 0, 1. 
Assume that i . ( X )  C Y ,  i*(Y)  C X ,  i . (X ' )  C Y ' ,  i*(Y') C X ' ,  and denote A -- X ' / X ,  B = Y ' / Y .  In 
this case we also obtain maps of the Tate cohomology groups A and B induced b y  i*, z.," which we still 
denote by i t and i., respectively. 

Under these assumptions, there exists a Levine braid consisting of relative e x a c t  sequencces of "rate 
cohomology (see [11, 12]): 

* H " ( B ,  T) , Hn(A, T) ~. H " ( B ,  T)  , 
/ ",~ / ",~ / \ 

H ~ i* H,~-,(i+) ( _ )  (4) 
',~ / \ / ",~ /" 

H n - ' ( B , T )  : H " - ' ( A , T )  , H ' ~ - I ( B , T )  ' 

This diagram contains relative exact sequences for the induced maps 

i . :  (A, T) - ,  (B, T),  i . :  (A, T) ~ (B, T) 

204 



and for the transfer maps 

i*: (B,  T) ---, (A, T),  i*: (B,  T) --* (A, T). 

Denote this diagram by (D).  The other diagram, ( / ) ) ,  is obtained for the induced maps  

i . :  (A, T) --* (B,  T),  i , :  ( A, T) --* (B, T) 

and the transfer maps 
i*: (B,  T) --, (A, T),  i*: (B,  T) --* (A, T). 

The  diagram (1) can be realized on the spectral level (see [10]). Using this fact, the spectral sequence 
of surgery theory is constructed in the paper [10]; in it E [  'q = LNq+2(r ---, G),  and the first differential 
coincides with the composition 

LNn(r  ---* G +) , L,,(G ~) , LN,,_2(G~), 

where one map  comes from diagram (D),  and the other from ( 5 ) .  Here the first differential coincides with 
the map  1 =l= ~ ,  where ~ is the involution on the Browder-Livesay groups (see [2, 10]). The  diagram (4) can 
be realized on the spectr~lm level (see [11, 13]) similarly to diagram (1). Thus the me thod  of Hambleton 
and Kharshilaclze [10], who constructed the spectral sequence of surgery theory from diagram (1), yields 
the spectral sequence of "rate cohomology in the case under consideration. A detailed construct ion of this 
spectral sequence for this case appears in the paper [13]. The first differential d~l 'g for even p and q = 0, 1 
coincides with the composition 

H ' ( A , T )  i,. , H ' ( B , T )  i, , H ' (A ,2 ' ) ,  

where the map  i.t comes from diagram (D) ,  while the map  i "w comes from the diagram (D) .  For odd p 
and q = 0, 1 the first differential ~ ' q  coincides with the composition 

H' (A ,  ~') " * H ' ( B ,  T) " , H ' (A ,  T),  

where the map  i, comes from diagram (D) ,  while the map i: comes from (D).  Denote by p the  involution 
on the group Hq(A, T) ,  induced by the involution p on the ring R.  

Theorem 1 [13]. The  differential d~l": E[ 'q --* E~ +I ' '  does not  depend on p and  q and  co/ncides 
with the homomorphism 1 + p. 

Let ~r = Z /2  r C Dr+l = G be the index 2 inclusion of the cyclic group with trivial orientat ion into 
the dihedral group also supplied with the trivial orientation, w = 1. By i -  we shall denote  the inclusion 
~r --, G -  of the oriented groups. If the orientation is clear from the context, we shall not  indicate it 
in our  notat ion for groups and maps. The  inclusion i induces a quadratic extension of rings with the 
s tandard involutions 7,2~r --* 7~aG. In this casee the involution p for any d e m e n t  z q 7c is given by the 
formula p(z) = , - 1 .  Let us denote A = KI(Z2~r]Y), B = KI(Z2G]Y) .  Then  H1(A, T)  = H ' ( A ,  T) = 
H I ( B , T )  = H i ( B ,  T) = 0, H~ T) = (Z/2) 2, H~ T) = (Z/2) ~' ,  H ~  T) = (Z/2)  ' ' - ' + s ,  
H~ = (Z/2) 2"-'-1 (see [8, 9]). 

Theorem 2 [11, 13]. 1) In the two-row diagram for Tare cohomology for the inclusion i ,  on/y the 
even-dimensional row is nontrivial and th/s row is the exact sequence 

, H ~  i, ~' i: , H ~  , HO(A ,~)  i: , HO(B ,~ )  , , 

in which the leR-most m a p / s  a monomorphism. 
2 ) / n  the two-row diagram for the inclusion i -  only the even-dimensional row is nontrivial and this row 

is the exact sequence 

, H ~  i, , HO(B , ~ )  " , H ~  ~" , H ~  i' , , 

in which the left-most map  is trivial. 
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~3. N a t u r a l  m a p s  of  L-groups  

In this section we compute the natural maps in the diagram (1) for the inclusion i : ~r -- Z /2  ~ C D~+I - 
{x2" = y2 = 1, y- lxy  -- z -1 } = G and calculate certain Browder-Livesay groups. 

Recall that we only consider the case of a trivial orientation for the cyclic subgroup. Let us introduce the 
following notation: R -- Z~r, T • --- ZG• R2 = Z21r, T~ = Z2G + , A = Kl(Z27r)/Y, B = KI(Z~_G)/Y. 
The sign '~ +" means that the orientation homomorphism w is trivial on the generator  y ,  while the symbol 
" - "  means that w(y) - - 1 .  Whenever we consider the Tare cohomology with respect  to the involution 
induced by the standard involution in the group ring (it corresponds to the involution T from w we 
shall write H"(A) and Ha(B). The Tate cohomology with respect to the identity involution correspond- 
ing to the antistructure of the Browder-Livesay groups will be denoted by H"(A, *) and H"(B,  . )  (it 

corresponds to the involution T from w Recall that the antistructure L,,(Z2~r, Id,  1) correponds to 
the antistructure of the Browder-Livesay groups in the case under consideration via the isomorphism 
LN,,+2(zr ~ D++,) ~- LNnOr ~ D~+I) ~ L,,(Z~r, Id, 1). 

All the groups appearing in the diagrams (1) for the quadratic extensions Z2~r --* Z2G + and Z2~r --* 
Z2G- ,  are known from the papers [8, 9]. We have the following isomorphisms: 

0 for n = 0mod4,  

L,(R~) -~ (Z/2) ~ for n = l m o d 4 ,  

7./2 for n -- 2, 3mod4 ,  

I Z/2  for n =- 0, 2mod4 ,  

Ln(T~-)~ (Z/2)~,_~_1 f o r n -  1 , 3 m o d 4 ,  

0 for n = 0mod4 ,  

(Z/2)  2"-I+3 for n = l m o d 4 ,  

Ln(~'~ ) ~ 7./2 for n --- 2rood4, 

(Z/2) 2"-~+2 for n = 3mod4 ,  

0 for n = 0rood4, 

L.(7.2~r, Id, 1) ~ (Z12)2" for n - I rood 4, 
Z/2  for n = 2mod4 ,  

(Z/2) 2"-1 for n = 3mod4.  

L e m n ~  1. 1) The map i,: ~ . (~2)  -" L . ( ~ ) ,  ; -d .~d  by i, i~ ~ i ~ o m o n , ~  to~ ~ r  " - 
0, 1, 2, 3rood4.  

2) The map it: L.(R2) --~ L,~CT~') is an isomorphism for even n and is trivial/'or odd n, while the 
map i'~: L2.+I(~+~ ) --~ L2.+I(R~) is an epimorphism t'or n = 0, 1rood2. 

P r o o f .  In even dimensions, the statements of the lemma are t i ther trivial or follow from the preser- 
vation of the Aff-invariant by the map i!. The latter, in its turn, follows from the obvious isomorphisms 

L ~ ( ~ )  -', L ~ ( ~ ) - - -  Z/2. 
Consider the commutative diagram 

( z / 2 ) 2  ~= 

( z / 2 ) 2  ~ = 

1 
H 0 ( A )  ~' , H0(B) = ~ (Z/2)2"-'+3 

l L 
L ~ ( ~ )  --~i'  L~(~+) =~ (Z/2) 2"-'+3 
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The fight column is the Rothenberg exact sequence (2). The upper map in it is trivial, since the Arf- 
invariant is realized in the group L2(T + ) .  The upper horizontal map is a monomorphism by Theorem 2, 
hence so is the lower horizontal one. 
consider the commutative diagram 

(z/2)~'-'+~ 

(Z/2)2"-t+s 

In dimension 3 in case 1) the argument is similar. In case 2), we 

,~= HO(B ) i: , H~ ~ (Z/2) 2 

1 ! 
(~) ~' (~) (z /2)  _'" L, * L1 2 ~ 2 

The upper horizontal map is an epimorphism by Theorem 2. It follows from the previous diagram that 
the right-most vertical map is an isomorphism. This implies the statement of the lemm& in dimension 1. 
The case of dimension 3 is studied similarly. Note also that the map L2(Z27r, Id, 1) --~ L2(~r~'2 ),  appearing 
in one of the diagrams considered, is an isomorphism. It preserves the Arf-invariant. Now the remaining 
statements of the Lemma are obtained by diagram chasing in two-row diagrams. The lemma is proved. [] 

It should be noted that the results established in Lemma 1 specify all the maps in diagrams of type (1) 
for quadratic extensions R2 --* T f .  

The relative Wan groups appe~ng in the ~quence (3) are also k ~ o ~  (see [S, 9]). We have the fono~ng 
isomorphisms: 

f 
k 

L.(T+ -, ~) u { 

f 

L, . (R --* k~,Id, 1) ~ { 

In the diagrams of the next lemma, we 
lower row. 

L e m m a  2. 1 ) / n  the two-row diaKram 

L,(R-4 R2) i ,  LI(T + ~ C~'2 ) 

the map i! is a monomorphism with 

0 for n = 0, 2mod4 ,  

Z 2"-t+1 $ ( Z / 2 )  2 for n = l m o d 4 ,  

Z 2r- t -1 for n = 3rood 4, 

0 for n = 0, 2, 3rood4,  

Z 2,- '+a $ ( Z / 2 )  r+a for n = l m o d 4 ,  

0 for n = 0, 1, 2 m o d 4 ,  

(Z/2)  ~-a $ Z 2"-t-1 for n = 3mod4 ,  

(Z/2)  r-1 for n = Omod4, 

Z 2 $ (g/2)  2,-t+~ for n = 1 mod4,  

0 for n = 2, 3mod4.  
write out only the nontrivial relative groups in the upper and 

(D) for the relative groups 

i:t-~* Ll(R --* R2,  Id, 1) "5 LaCT- "--* T ~ )  

i: 
, L~(R - ,  ~ )  

I 
L0(R --* R2, Id, 1) 

the cokerne/ Z ~ ~ (Z/2)~ ' - t+ ' ;  the cokernel of  the map i!t - I  
is (Z/2) r-1 and lies in the torsion subgroup; the map ti! is an epi.morphiam onto the torsion subgroup; 
the cokernd of  the map i t is (7./2) "-I  . 

2) z~ the two-~w dia~'am (3 )  ~'o," the rdati,,e ~o,ms 

L a i r  ~ .R2) i,. LICT- ---* T~') ,"t-t L , ( R  ~ R2,Id ,1)  
ti: 

d: 

, L,  Cr-" --, ~+)  

, L~CR---,. ~:,) 

I 
LoC R --, ~ ,  Id, 1) 
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the map i, has the cokernel (Z/2)  2"-'-~ ; the image of the map i't -~ is (Z/2) z ' - ' - ~  , and is conta/ned in 
the torsion subgroup; the image of  the map ti! is (Z/2)  "+1 ~ Z ~ , and is a direct summand;  the map i ! is 
an epimorphism onto the torsion group and has the cokernel (Z/2) "-~ . 

P r o o f .  Consider the case 1). According to [15] (also see [11]), for any finite 2-group ~r the group 
L . ( Z r  --, Z~z') is isomorphic to L.S(Z[1/2]~ " ~ Q~r),  where S = 0 C K~. The group L s splits into the 
direct sum in accordance with the decomposition of the ring Z[1/2]r ,  and the t h e  map of group rings 
induced by i can be decomposed into a direct sum similarily (see [11, 151). In the case under consideration, 
the two-row diagram for the relative groups splits into a direct sum of 

a) two two-row diagrams corresponding to the diagonal inclusion 

Z[1/2] ~ Z[1/2] ~ 2511/2], 

b) r - 1 two-row diagrams corresponding to the quadratic extensions 

( r , ,  c, 1) Id, 1), k = 1, 2 , . . . ,  - 1 

(see [11]), where rk  = z[1/2][ok+l], Rk+l = Z[1/2][Sk+2 + 0k+2], c denotes complex conjugation, 
8m is a primitive root of I of degree 2 m . 

The relative group diagram.q for the maps in case b) are isomorphic to the two-row diagrams for the 
inclusions (R t -1 ,  Id, 1) --* ( r~ ,  c, 1) up to a change of notation for the maps (see [15]). Thus all the 
required diagrams from a) and b) are described in [11] (they are the diagram ( / )4 )  for N = 1 and 
diagram (]:)3) for N ---- k). A straightforward calculation establishes statement 1) o f  Lemma 2. Case 2) 
is considered in a similar way. The lemma is proved. [] 

L e m m a  3. Let A be a t~nite Abelian 2-group and let ~ be an involution on the group  A such that the 
hnages of  the homomorphiams d'~ : A ~ A speci~ed by the formnlas d+ ( z ) = xq~C z ) , d -  ( z ) = xCq~(z)) -1 , 
are elementary 2-groups and direct sl]mmands in the group A .  Then A is an elenlentary 2-group. 

P r o o f .  For any x E A consider the subgroup p C A, generated by the elements  x and ~(x) .  If 
p is a cyclic subgroup, then x and q~(z) are its generators since �9 is an involution. Here if p is of 
order 2, then z is of order 2. If p is of order greater than 2, then z, 4~(~:) E Im(4~lp). Therefore, 
z(~(z) = z(q~(z)) -1 = 1 since the only elementary 2-group that can be a direct sumrnand  in the group p 
is the trivial group. Thus ((h(x)) 2 = 1, which contradicts the assumption that the  order  of p is greater 
than 2. If p is not a cyclic group, then it can be represented in the form pl �9 p2, where  pl and p~ are 
cyclic 2-groups interchanged by the involution. These groups are generated by z a n d  ~(x)  respectively. 
Hence the order of the element x~(z)  is equal to the order of the group pl ,  which  coincides with that 
of p~. By assumption, the order of z~(z )  is 2, i.e., the groups pl I p2 and the e lement  x are of order 2. 
The lemma is proved. [] 

T h e o r e m  3. We have the isomorphism 

-4-1- 
L N a ( Z / 2 "  -* Dr+ 1 ) ~ LN1(Z/2"  --* D+'+~r+l s "= (Z/2)2"+r-~. 

P r o o f .  The group LNs  = LNa(Z /2  r --, Dr+ 1 ) is described up to extension in t h e  paper  [9]. Hence it 
suitlces to prove that  this group is elementary. Consider the commutative diagram 

LNs  ti, La(T- )  i:t-' �9 , ~ LNs  

in which the extreme vertical maps come from the relative exact sequence (3) and so are epimorphisms 
according to [9]. The lower left horizontal map is an epimorphism, while the lower r igh t  horizontal map is 

208 



a monomorphism by virtue of Lcmma 1. The middle vertical map is an isomorphism according to [8]. The 
composition of the upper horizontal maps is the first differential of the surgery theory spectral sequence 
d~ = 1 + ~ ,  where (I, is the involution on the group LN3 (see [10]). Since La(T-) is an elementary 
2-group, the image of the map dl in the upper row of the diagram is also an elemenatry 2-group. The 
group L3(R2, Id, 1) is an elementary 2-group. Diagram chasing in the right square of the diagram shows 
that the image of dl is a direct summand. 

Similarly, let us consider the commutative diagram 

LN3 | i ,  i '  t - *  ", La(T + ) , LN3 

L3(J~2,Id, 1) , i ,  L3(~+2) i : , - '  L3(R2,Id, 1) 

in it the right-most horizontal maps have isomorphic images (Z/2) 2"-* by virtue of ~ r n a  1. The 
composition of the upper horizontal maps is the first dii[erential 1 - @ in the spectral sequence of surgery 
theory. By diagram chasing in the right square, we see that the image of the map 1 - �9 is an elementary 
2-group and a direct summand in the group LNa. An application of Lemma 3 concludes the proof  of 
Theorem 3. [] 

Now we can compute the natural maps of the Wall groups in the two-row diagram (I) for the inclusions 
= G ~ i: ~r = Z/2  - ,  D,.+I . Further we shall use these results to compute the groups C.(Dr+I, w). 

Let us recall some results concerning Wall groups and Browder-Livesay groups needed for these com- 
putations (see [8, 9]). Let ~ ,  ~ '  be infinite abelian groups of ranlcs 2 ~-~ - 1, 2 r-1 + 3, respectively. We 
have the following isomorphisms: 

{ ~ (9 Z 2 for n = 0 mod 4, 

L,(~r) -~ 0 for n = l m o d 4 ,  

(9 Z/2 for n = 2rood4,  

Z/2 for n = 3rood4,  

{ ~'  for n = Omod4,  

L. (G+)  ~_ ( Z / 2 )  2" - t -~  for n = l m o d 4 ,  

Z/2 for n = 2mod4 ,  

(Z/2)  2"-'+2 for n = 3mod4 ,  

Z/2 for n = 0mod4 ,  

L,(G-)  ~ (Z/2)  2"-'-1 for n = l m o d 4 ,  

~ Z /2  for n = 2rood4,  

(Z/2)  2" - ' - r  for n = 3mod4.  

The groups Ln(Zw, Id, 1) ~ LNn(w ~ G-) ~ LNn+2(~ 
(Z/2)  2"+r-2 by Theorem 3. According to [9], the group 
we have the exact sequence 

--, G +) will be denoted by  LN, .  Then LNa "~ 
LN2 is isomorphic to Z / 2  (Arf-invariant),  and 

o , L N1  , ( Z / 2 )  2"- '+r  $z 2 , L N o  , o. 

Consider the following part  of the two-row diagram (1) 

[ 
LN.+I 

i* i ! t  - l  
�9 , L.(G +) , LN. 

l i ,  i ! 
", Ln-x(G-) , L._,(Tr) 

(5) 
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for the inclusion i: 7r --~ G + and a similar part 

L,,('O " "'-' - - - - - - - - 4  , L , , ( G - )  LN,,_~. 

I I I 
LN,_ ,  ti, i: , L,,_,(G +) , 

(6) 

for the inclusion i: ~ --, G - ~  

T h e o r e m  4. 1)/.n diagram (5) the map i ' t - '  : L . (G +) -* LNn is a monomorphism for n = 1 rood 4, 
is trivia//'or n = 2 mod 4, has the kernel (Z/2) 2 for n = 3 mod 4, and is epimorphic for n = 0 mod 4. 
The map i,: Ln(~) -* L , ( G  +) is trivial/'or n = l m o d 4 ,  monomorpln'c for n = 3 r o o d 4 ,  epimorpblcfor 
n = 2 m o d 4 ,  andmonomorphlc with cokernel Z 2 @ (Z/2) 2 , - ' - r  for n = 0rood4.  

2) In diagram (6) the map i ! t -  ' : Ln (G-)  --* L N ._  2 is monomorphic for n = 1, 3 rood 4, trivial for n = 
Omod4, and epimorphicfor n = 2 m o d 4 .  Themap i:: L.(~) --, Ln(G-)  is tdvial  for n = O, 1 ,3 rood4  
and monomorphic with cokernel Z 2 ~ (Z/2)  ~ ' - ' -~  for n = 2rood4.  

P r o o f .  We only consider case 1). The map i: is epimorphic in dimension 2 since it preserves the 
Arf-invariant. In dimension I it is trivial since Ll(~r) = 0. In this case let us consider  the following part 
of diagram (1): 

Z /2  ~ L3(r)  i, , La(G +) i.lt-t, LNs ,i, , L I (G-)  , O" (7) 

The homology in the term L , (G- )  is trivial as we can see by inspecting the lower row. The homology in 
i t 

the term LNa is isomorphic to that in the term , L2(~r) i, ) of the lower row of the  diagram. Consider 
the commutative diagram 

La(T-  - ,  T~) " , La(R --, R~) - ~  La(T + --, ~'r ) 

L2(G-)  i' ~, , L2(,,-) ----,, L,  CC+) 

in which the vertical maps come from the corresponding relative exact sequences (3) .  The homology in the 
term L3(R --* R2) equals (Z/2)  r-1 and is isomorphically mapped into that of the t e r m  L~(,r) of the lower 
row, since the middle vertical map is the inclusion of a direct summand, while t h e  fight vertical map is 
trivial. The homology in the term L3(G +) of diagram (7) is isomorphic to the d i rec t  s, ,mmand Z / 2  of the 
group L2(G-) from the corresponding lower row since the Aff-invariant is not real ized in the group LNo, 

while the map L 2 ( G - )  i , ,  L2(Tr), from the lower row is a monomorphlsm on the  free part  by virtue of 
Lemma 3. Therefore, in diagram (7) we have 

rang(Ira i ' t - ' )  = rangLN3 - r a n g ~ l ( G -  ) - -  ( r  - -  1) = 2" + r - 2 - (2" - '  - 1) - -  (r - 1) = 2"- '~  

This immediately implies both  statements from 1) in dimension 3. The descript ion of the maps i!t -1 in 

dimension 1 and 2 presents no difHculties, since in this case the map Z /2  ~ LN~ ti:  ,,~ , L o ( G - )  = Z / 2  from 
the diagram (D) is an isomorphism. To prove the claims in dimension 0, let us cons ider  the commutative 
diagram 

L , ( R  ^ - " L , (  T +  --*(~+2) 

l .p, 1~162 
L0( ) L0(a+) 
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in which the vertical maps belong to the relative exact sequences. Lemma 2 implies that the upper 
horizontal map is a monomorphism. Here the free part is taken to the free part  with cokernel 7. 2 (9 
(g/2)  2"-~-r . Since the vertical maps are epimorphisms and the lower groups are torsion-free, the lower 
horizontal map has the same cokernel. Thus we have obtained a description of the map i! in dimension 
zero. The map i"t -1 is an epimorphism since the homology in the term LNo is trivial. This follows from 
the fact that the map i!: L3(Tr) ~ L3(G +) from the other row is monomorphic. Case 2) is similar. The 
theorem is proved. [] 

R e m a r k .  The results of Theorem 4 with the help of diagram chasing allow to compute almost all maps 
and homology groups in the two-row diagrams (D) and (/~) for the inclusions g /2  r -~ Dr+~ studied 
in this paper. However, at this point the authors do not know the homology in the term Lo(G +) of 
diagram (D) and the homology in the term L2(G-) of diagram (D).  To answer this question, it would 
suffice to know the maps in the exact sequence relating the groups LNo and LN1. 

w Realizability by closed manifolds 

According to the results of [6] (also see [2, 16]), elements of the group Ln(G +) not lying in the kernel 
of the map ilt -1 from diagram (5) cannot be realized by maps of closed manifolds. Thus i ! t - l (z)  for z E 
L,(G) is the first obstruction to realizing the element z by normal maps of dosed manifolds. Suppose that 
for an element z the first obstruction is trivial, i.e., i! t-l(z) = 0. Using the homology homomorphism r 
from diagram (5), we can specify the coset r ( z )  c L, -1(G-) ,  now containing the  map i!t -~ from 
diagram (6). According to [2], this coset is the second obstruction to realizability; if 0 ~ r ( z ) ,  then the 
element x cannot be realized by a normal map of closed manifolds. These two invariants suffice for the 
study of the realizability problem in its projective version (see [2]). The process may  be continued further, 
yielding iterated Browder-Livesay invariants (see [16]). But for dihedral 2-groups in our case this is not 
necessary. Recall that  D~+z = G is a group with trivial orientation homomorphism, while D~-+I = G -  is 
a group with the orientation homomorphism w for which w(z) = 1, w(y) = - 1 .  

T h e o r e m  5. We have the/'ollowing isomorph/sms: 

0 

= z / 2  

(z/2) 2 

/'or n = l m o d 4 ,  

for n = 2mod4 ,  

/'or n = 3rood4, 

J" Z /2  [orn = 0 m o d 4 ,  
Cn(D~-+I) 

0 forn = 1,3mod4. 

P r o o f .  All the required maps were computed in Theorem 4. First consider the case of nontrivial 
orientation. The maps i!t -1 in the diagrams (6) are monomorphlsms in odd dimensions. Therefore, no 
dements  of the group L2~+~(G-) can be realized by normal maps of closed manifolds. The group L0(G-)  
is isomorphic to g / 2  and, according to [2], the image of C0(D~+I) in the projective group L ~ is Z /2 .  
This implies the assertion of the theorem in the case of nontrivial orientation. 

In the trivial orientation case, the map i!t -1 in diagram (5) is monomorphic in dimension 1, and in 
dimension 3 has the kernel (Z/2) 2 . According to [2] the image of Ca(D,.+1) in the projective group 
is (Z/2)  2 . Thus in dimension 3 the upper and lower estimates of the group Ca(Dr+~) coincide, and 
hence C'3(Dr+l) ~ (Z/2)  2 . In dimension 2 we can repeat the arguments used in dimension 0 for the 
nonoriented case. The theorem is proved. [] 

In dimension zero in the oriented case diagrams (5) and (6) also yield the upper est imate Z r+l for the 
group Uo(D,.+I), but this estimate considerably exceeds the lower estimate g from [2]. For dimension 2, 
the situation in the nonorientable case is similar. 
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