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Abstract: The purpose of this paper is to study the existence of weak solutions for some classes of hemivari-
ational problems in the Euclidean space Rd (d ≥ 3). These hemivariational inequalities have a variational
structure and, thanks to this, we are able to �nd a non-trivial weak solution for them by using variational
methods and a non-smooth version of the Palais principle of symmetric criticality for locally Lipschitz con-
tinuous functionals, due to Krawcewicz and Marzantowicz. The main tools in our approach are based on
appropriate theoretical arguments on suitable subgroups of the orthogonal group O(d) and their actions on
the Sobolev space H1(Rd). Moreover, under an additional hypotheses on the dimension d and in the pres-
ence of symmetry on the nonlinear datum, the existence of multiple pairs of sign-changing solutions with
di�erent symmetries structure has been proved. In connection to classical Schrödinger equations a concrete
and meaningful example of an application is presented.
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1 Introduction
The aim of this paper is to study some nonlinear eigenvalue problems for certain classes of hemivariational
inequalities that depend on a real parameter. For instance, the motivation for such a study comes from the
investigation of perturbations, usually determined in terms of parameters. The hemivariational inequalities
appears as a generalization of the variational inequalities and their study is based on the notion of Clarke
subdi�erential of a locally Lipschitz function. The theory of hemivariational inequalities appears as a new
�eld of Non-smooth Analysis; see [23, Part I - Chapter II] and the references therein.

More precisely, we study the following hemivariational inequality problem:
(Sλ)Find u ∈ H1(Rd) such that

∫
Rd

∇u(x) ·∇φ(x)dx +
∫
Rd

u(x)φ(x)dx

+λ
∫
Rd

W(x)F0(u(x); −φ(x))dx ≥ 0,

∀φ ∈ H1(Rd).
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Here (Rd , | · |) denotes the Euclidean space (with d ≥ 3), F : R→ R is a locally Lipschitz continuous function,
whereas

F0(s; z) := lim sup
y→s
t→0+

F(y + tz) − F(y)
t

is the generalized directional derivative of F at the point s ∈ R in the direction z ∈ R; see the classical
monograph of Clarke [15] for details. Finally,W ∈ L∞(Rd)∩ L1(Rd) \{0} is a non-negative radially symmetric
map and λ is a positive real parameter.

We assume that there exist κ1 > 0 and q ∈ (2, 2*), where 2* = 2d/(d − 2), such that

|ζ | ≤ κ1(1 + |s|q−1), ∀ζ ∈ ∂F(s), for every s ∈ R, (1.1)

where ∂F(s) denotes the generalized gradient of the function F at s ∈ R (see Section 2).
With the above notations the main result reads as follows.

Theorem 1. Let F : R → R be a locally Lipschitz continuous function with F(0) = 0 and satisfying the growth
condition (1.1) for some q ∈ (2, 2*), in addition to

lim sup
s→0+

F(s)
s2 = +∞ and lim inf

s→0+

F(s)
s2 > −∞. (1.2)

Moreover, let W ∈ L∞(Rd) ∩ L1(Rd) \ {0} be a non-negative radially symmetric map. Then the following facts
hold:
(a1)There exists a positive number λ* such that, for every λ ∈ (0, λ*), the problem (Sλ) admits at least one

non-trivial radial weak solution uλ ∈ H1(Rd) with |uλ(x)| → 0 as |x| →∞.
(a2)If d > 3 and F is even then there exists a positive number λ* such that for every λ ∈ (0, λ*), the problem (Sλ)

admits at least
ζ (d)
S := 1 + (−1)d +

[
d − 3

2

]
pairs of non-trivial weak solutions {±uλ,i}i∈J′d ⊂ H

1(Rd) with |uλ,i(x)| → 0, as |x| → ∞, for every i ∈ J′d :=
{1, ..., ζ (d)

S }, and with di�erent symmetries structure. More precisely, if d ≠ 5 problem (Sλ) admits at least

τd := ζ (d)
S − 1

pairs of sign-changing weak solutions.

Here, the symbol [·] denotes the integer function.
Theproof of the above result is based on variationalmethod in thenonsmooth setting. As it iswell known,

the lack of a compact embeddings of the Sobolev space H1(Rd) into Lebesgue spaces produces several dif-
�culties for exploiting variational methods. In order to recover compactness, the �rst task is to construct
certain subspaces of H1(Rd) containing invariant functions under special actions de�ned by means of care-
fully chosen subgroups of the orthogonal group O(d). Subsequently, a locally Lipschitz continuous function
is constructed which is invariant under the action of suitable subgroups of O(d), whose restriction to the
appropriate subspace of invariant functions admits critical points.

Thanks to a nonsmooth version of the principle of symmetric criticality obtained by Krawcewicz and
Marzantowicz [19], these points will also be critical points of the original functional, and they are exactly
weak solutions of problem (Sλ). The abstract critical point result that we employ here is a nonsmooth version
of the variational principle established by Ricceri [31]; see Bonanno and Molica Bisci [11] for details.

Moreover, we also emphasize that the multiplicity property stated in Theorem 1 - part (a2) is obtained by
using the group-theoretical approach developed by Kristály, Moroşanu, and O’Regan [22]; see Subsection 2.1.
Thanks to this analysis, we are able to construct

ζ (d)
S := 1 + (−1)d +

[
d − 3

2

]
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subspaces of H1(Rd) with di�erent symmetries properties. In addition, when d ≠ 5, there are

τd := (−1)d +
[
d − 3

2

]
of these subspaces which do not contain radial symmetric functions; see the quoted paper [8] due to Bartsch
and Willem, as well as [22, Theorem 2.2].

We point out that some almost straightforward computations in [26] are adapted here to the non-smooth
case. However, due to the non-smooth framework, our abstract procedure, as well as the setting of the main
results, is di�erent from the results contained in [26], where the continuous case was studied; see Section 4
for additional comments and remarks.

The manuscript is organized as follows. In Section 2 we set some notations and recall some properties of
the functional space we shall work in. In order to apply critical point methods to problem (Sλ), we need to
work in a subspace of the functional space H1(Rd) in particular, we give some tools which will be useful in
the paper (see Propositions 8 and Lemma 7). In Section 3 we study problem (Sλ) and we prove our existence
result (see Theorem 1). Finally, we study the existence of multiple non-radial solutions to the problem (Sλ) for
λ su�ciently small. In connection to classical Schrödinger equations in the continuous setting (see, among
others, the papers [5, 6, 9, 10]) a meaningful example of an application is given in the last section.

We refer to the books [1, 23, 33] as general references on the subject treated in the paper.

2 Abstract framework
Let (X, ‖ · ‖X) be a real Banach space. We denote by X* the dual space of X, whereas 〈·, ·〉 denotes the duality
pairing between X* and X.

A function J : X → R is called locally Lipschitz continuous if to every y ∈ X there correspond a neighbor-
hood Vy of y and a constant Ly ≥ 0 such that

|J(z) − J(w)| ≤ Ly‖z − w‖X , (∀ z, w ∈ Vy).

If y, z ∈ X, wewrite J0(y; z) for the generalized directional derivative of J at the point y along the direction
z, i.e.,

J0(y; z) := lim sup
w→y
t→0+

J(w + tz) − J(w)
t .

The generalized gradient of the function J at y ∈ X, denoted by ∂J(y), is the set

∂J(y) :=
{
y* ∈ X* : 〈y*, z〉 ≤ J0(y; z), ∀ z ∈ X

}
.

The basic properties of generalized directional derivative and generalized gradient which we shall use
here were studied in [13, 15].

The following lemma displays some useful properties of the notions introduced above.

Lemma 2. If I, J : X → R are locally Lipschitz continuous functionals, then
(i) J0(y; ·) is positively homogeneous, sub-additive, and continuous for every y ∈ X;
(ii) J0(y; z) = max{〈y*, z〉 : y* ∈ ∂J(z)} for every y, z ∈ X;
(iii) J0(y; −z) = (−J)0(y; z) for every y, z ∈ X;
(iv) if J ∈ C1(X), then J0(y; z) = 〈J′(y), z〉 for every y, z ∈ X;
(v) (I + J)0(y; z) ≤ I0(y; z) + J0(y; z) for every y, z ∈ X. Moreover, if J is is continuously Gâteaux di�erentiable,

then (I + J)0(y; z) = I0(y; z) + J′(y; z) for every y, z ∈ X.

See [17] for details.
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Further, a point y ∈ X is called a (generalized) critical point of the locally Lipschitz continuous function
J if 0X* ∈ ∂J(y), i.e.

J0(y; z) ≥ 0,

for every z ∈ X.
Clearly, if J is a continuously Gâteaux di�erentiable at y ∈ X, then y becomes a (classical) critical point

of J, that is J′(y) = 0X* .
For an exhaustive overview of the non-smooth calculus we refer to the monographs [13, 15, 27, 28]. Fur-

ther, we cite the book [23] as a general reference on this subject.
Tomake thenonlinearmethodswork, some careful analysis of the fractional spaces involved is necessary.

Assume d ≥ 3 and let H1(Rd) be the standard Sobolev space endowed by the inner product

〈u, v〉 :=
∫
Rd

∇u(x) ·∇v(x)dx +
∫
Rd

u(x)v(x)dx, ∀ u, v ∈ H1(Rd)

and the induced norm

‖u‖ :=

∫
Rd

|∇u(x)|2dx +
∫
Rd

|u(x)|2dx

1/2

,

for every u ∈ H1(Rd).
In order to prove Theorem 1 we apply the principle of symmetric criticality together with the following

critical point theorem proved in [11] by Bonanno and Molica Bisci.

Theorem 3. Let X be a re�exive real Banach space and let Φ, Ψ : X → R be locally Lipschitz continuous
functionals such that Φ is sequentially weakly lower semicontinuous and coercive. Furthermore, assume that Ψ
is sequentially weakly upper semicontinuous. For every r > infX Φ, put

φ(r) := inf
u∈Φ−1((−∞,r))

(
sup

v∈Φ−1((−∞,r))
Ψ(v)

)
− Ψ(u)

r − Φ(u) .

Then for each r > infX Φ and each λ ∈
]
0, 1/φ(r)

[
, the restriction of Jλ := Φ − λΨ to Φ−1((−∞, r)) admits a

global minimum, which is a critical point (local minimum) of Jλ in X.

The above result represents a nonsmooth version of a variational principle established by Ricceri in [31].
For completeness, we also recall here the principle of symmetric criticality of Krawcewicz and Marzan-

towicz which represents a non-smooth version of the celebrated result proved by Palais in [29]. We point out
that the result proved in [19] was established for su�ciently smooth Banach G-manifolds. We will use here a
particular form of this result that is valid for Banach spaces.

An action of a compact Lie group G on the Banach space (X, ‖ · ‖X) is a continuous map

* : G × X → X : (g, y) 7→ g * y,

such that
1 * y = y, (gh) * y = g * (h * y), y 7→ g * y is linear.

The action * is said to be isometric if ‖g * y‖X = ‖y‖X, for every g ∈ G and y ∈ X. Moreover, the space of
G-invariant points is de�ned by

FixG(X) := {y ∈ X : g * y = y, ∀g ∈ G},

and a map h : X → R is said to be G-invariant on X if

h(g * y) = h(y)

for every g ∈ G and y ∈ X.
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Theorem 4. Let X be a Banach space, let G be a compact topological group acting linearly and isometrically
on X, and J : X → R a locally Lipschitz, G-invariant functional. Then every critical point of J : FixG(X)→ R is
also a critical point of J.

For details see, for instance, the book [23, Part I - Chapter 1] and Krawcewicz and Marzantowicz [19].

2.1 Group-theoretical arguments

Let O(d) be the orthogonal group in Rd and let G ⊆ O(d) be a subgroup. Assume that G acts on the space
H1(Rd). Hence, the set of �xed points of H1(Rd), with respect to G, is clearly given by

FixG(H1(Rd)) := {u ∈ H1(Rd) : gu = u, ∀g ∈ G}.

We note that, if G = O(d) and the action is the standard linear isometric map de�ned by

gu(x) := u(g−1x), ∀ x ∈ Rd and g ∈ O(d)

then FixO(d)(H1(Rd)) is exactly the subspace of radially symmetric functions of H1(Rd), also denoted by
H1

rad(Rd). Moreover, the following embedding

FixO(d)(H
1(Rd)) ↪→ Lq(Rd) (2.1)

is continuous (resp. compact), for every q ∈ [2, 2*] (resp. q ∈ (2, 2*)). See, for instance, the celebrated paper
[24].

Let either d = 4 or d ≥ 6 and consider the subgroup Hd,i ⊂ O(d) given by

Hd,i :=

 O(d/2) × O(d/2) if i = d − 2
2

O(i + 1) × O(d − 2i − 2) × O(i + 1) if i ≠ d − 2
2 ,

for every i ∈ Jd := {1, ..., τd}, where

τd := (−1)d +
[
d − 3

2

]
.

Let us de�ne the involution ηHd,i : Rd → Rd as follows

ηHd,i (x) :=

 (x3, x1) if i = d − 2
2 and x := (x1, x3) ∈ Rd/2 ×Rd/2

(x3, x2, x1) if i ≠ d − 2
2 and x := (x1, x2, x3) ∈ Ri+1 ×Rd−2i−2 ×Ri+1,

for every i ∈ Jd.
By de�nition, one has ηHd,i ∈ ̸ Hd,i, as well as

ηHd,iHd,iη
−1
Hd,i

= Hd,i , and η2
Hd,i

= idRd ,

for every i ∈ Jd.
Moreover, for every i ∈ Jd, let us consider the compact group

Hd,ηi := 〈Hd,i , ηHd,i 〉,

that is Hd,ηi = Hd,i ∪ ηHd,iHd,i, and the action~i : Hd,ηi × H
1(Rd)→ H1(Rd) of Hd,ηi on H

1(Rd) given by

h ~i u(x) :=
{
u(h−1x) if h ∈ Hd,i
−u(g−1η−1

Hd,i
x) if h = ηHd,i g ∈ Hd,ηi \ Hd,i , g ∈ Hd,i

(2.2)

for every x ∈ Rd.
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We note that ~i is de�ned for every element of Hd,ηi . Indeed, if h ∈ Hd,ηi , then either h ∈ Hd,i or h =
τg ∈ Hd,ηi \ Hd,i, with g ∈ Hd,i. Moreover, set

FixHd,ηi (H
1(Rd)) := {u ∈ H1(Rd) : h ~i u = u, ∀h ∈ Hd,ηi},

for every i ∈ Jd.
Following Bartsch and Willem [8], for every i ∈ Jd, the embedding

FixHd,ηi (H
1(Rd)) ↪→ Lq(Rd) (2.3)

is compact, for every q ∈ (2, 2*).

Proposition 5. With the above notations, the following properties hold:
if d = 4 or d ≥ 6, then

FixHd,ηi (H
1(Rd)) ∩ FixO(d)(H

1(Rd)) = {0}, (2.4)

for every i ∈ Jd;

if d = 6 or d ≥ 8, then
FixHd,ηi (H

1(Rd)) ∩ FixHd,ηj (H
1(Rd)) = {0}, (2.5)

for every i, j ∈ Jd and i ≠ j.

See [22, Theorem 2.2] for details.
From now on, for every u ∈ L`(Rd) and ` ∈ [2, 2*), we shall denote

‖u‖` :=

∫
Rd

|u(x)|`dx

1/`

,

and

‖W‖∞ := esssupx∈Rd |W(x)|, ‖u‖p :=

∫
Rd

|u(x)|pdx

1/p

,

for every p ∈ [2, 2*).
Moreover, let Ψ : H1(Rd)→ R given by

Ψ(u) :=
∫
Rd

W(x)F(u(x))dx, ∀ u ∈ H1(Rd).

The following locally Lipschitz property holds.

Lemma 6. Assume that condition (1.1) holds for some q ∈
(

2, 2*
)
and F(0) = 0. Furthermore, let W ∈ L∞(Rd)∩

L1(Rd) \ {0}. Then the extended functional Ψ e : Lq(Rd)→ R de�ned by

Ψ e(u) :=
∫
Rd

W(x)F(u(x))dx, ∀ u ∈ Lq(Rd)

is well-de�ned and locally Lipschitz continuous on Lq(Rd).

Proof. It is clear that Ψ e is well-de�ned. Indeed, by using Lebourg’s mean value theorem, �xing t1, t2 ∈ R,
there exist θ ∈ (0, 1) and ζθ ∈ ∂F(θt1 + (1 − θ)t2) such that

F(t1) − F(t2) = ζθ(t1 − t2). (2.6)
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Since F(0) = 0, by using (2.6) and condition (1.1), our assumptions onW and the Hölder inequality gives that∫
Rd

W(x)F(u(x))dx ≤ κ1

∫
Rd

W(x)|u(x)|dx +
∫
Rd

W(x)|u(x)|qdx



≤ κ1

∫
Rd

|W(x)|
q
q−1 dx


q−1
q
∫
Rd

|u(x)|qdx

1/q

(2.7)

+κ1‖W‖∞
∫
Rd

|u(x)|qdx,

for every u ∈ Lq(Rd). Hence, inequality (2.7) yields

Ψ e(u) ≤ κ1
(
‖W‖ q

q−1
‖u‖q + ‖W‖∞‖u‖qq

)
< +∞, (2.8)

for every u ∈ Lq(Rd).
In order to prove that Ψ e is locally Lipschitz continuous on Lq(Rd) it is straightforward to establish that the
functional Ψ e is in fact Lipschitz continuous on Lq(Rd). Now, for a �xed number r > 0 and arbitrary elements
u, v ∈ Lq(Rd) with max{‖u‖q , ‖v‖q} ≤ r, the following estimate holds

|Ψ e(u) − Ψ e(v)| ≤
∫
Rd

W(x)
∣∣F(u(x)) − F(v(x))

∣∣ dx
≤ κ1

∫
Rd

W(x)
(

1 + |u(x)|q−1 + |v(x)|q−1
)
|u(x) − v(x)|dx (2.9)

≤ κ1(‖W‖ q
q−1
‖u − v‖q + ‖W‖∞(‖u‖q−1

q + ‖v‖q−1
q )‖u − v‖q)

≤ κ2‖u − v‖q ,

where the Lipschitz constant κ2 := 2q−2(‖W‖ q
q−1

+ 2rq−1‖W‖∞)κ1 depends on r.
The above inequalities have been derived by using (2.6), assumption (1.1) and Hölder’s inequality. The

Lipschitz property on bounded sets for Ψ e is thus veri�ed. �

A meaningful consequence of the above lemma is the following semicontinuity property.

Corollary 7. Assume that condition (1.1) holds for some q ∈
(

2, 2*
)
and let W ∈ L∞(Rd) ∩ L1(Rd) \ {0}. Then

for every λ > 0, the functional

u 7→ 1
2‖u‖

2 − λΨ |FixY (H1(Rd))(u), ∀ u ∈ FixY (H1(Rd))

is sequentially weakly lower semicontinuous on FixY (H1(Rd)), where either Y = O(d) or Y = Hd,ηi for some
i ∈ Jd.

Proof. First, on account of Brézis [12, Corollaire III.8], the functional u 7→ ‖u‖2/2 is sequentially weakly lower
semicontinuous on FixY (H1(Rd)). Now, we prove that Ψ |FixY (H1(Rd)) is sequentially weakly continuous. In-
deed, let {uj}j∈N ⊂ FixY (H1(Rd)) be a sequence which weakly converges to an element u0 ∈ FixY (H1(Rd)).
Since Y is compactly embedded in Lq(Rd), for every q ∈ (2, 2*), passing to a subsequence if necessary, one
has ‖uj − u0‖q → 0 as j → ∞. According to Lemma 6, the extension of Ψ to Lq(Rd) is locally Lipschitz
continuous. Hence, there exists a constant Lu0 ≥ 0 such that

|Ψ(uj) − Ψ(u0)| ≤ Lu0‖uj − u0‖q , (2.10)

for every j ∈ N. Passing to the limit in (2.10), we conclude that Ψ is sequentially weakly continuous on
FixY (H1(Rd)). The proof is now complete. �

The next result will be crucial in the sequel; see [15, 20, 21, 27] for related results.
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Proposition 8. Assume that condition (1.1) holds for some q ∈
(

2, 2*
)
and let W ∈ L∞(Rd) ∩ L1(Rd) \ {0}.

Furthermore, let E be a closed subspace of H1(Rd) and denote by ΨE the restriction of Ψ to E. Then the following
inequality holds

Ψ0
E(u; v) ≤

∫
Rd

W(x)F0(u(x); v(x))dx, (2.11)

for every u, v ∈ E.

Proof. The map x 7→ W(x)F0(u(x); v(x)) is measurable on Rd. Indeed, W ∈ L∞(Rd) and the function x 7→
F0(u(x); v(x)) is measurable as the countable limsup of measurable functions, see p. 16 of [27] for details.
Moreover, condition (1.1) ensures that ∫

Rd

W(x)F0(u(x); v(x))dx < ∞.

Thus the map x 7→ W(x)F0(u(x); v(x)) belongs to L1(Rd).
The next task is to prove (2.11). To this goal, since E is separable, let us notice that there exist two sequences
{tj}j∈N ∈ R and {wj}j∈N ⊂ E such that tj → 0+, ‖wj − u‖ → 0 in E and

Ψ0
E(u; v) = lim

j→∞

ΨE(wj + tjv) − ΨE(wj)
tj

.

Without loss of generality we can also suppose that wj(x)→ u(x) a.e. in Rd as j →∞.
Now, for every j ∈ N, let us consider the measurable and non-negative function gj : Rd → R ∪ {+∞}

de�ned by
gj(x) := κ1|v(x)|(1 + |wj(x) + tjv(x)|q−1 + |wj(x)|q−1)

−
F(wj(x) + tjv(x)) − F(wj(x))

tj
,

for a.e. x ∈ Rd. Set

I := lim sup
j→∞

−∫
Rd

W(x)gj(x)dx

 .

The inverse Fatou’s Lemma applied to the sequences {Wgj}j∈N yields

I ≤ J :=
∫
Rd

W(x) lim sup
j→∞

(αj(x) − βj(x))dx, (2.12)

where
αj(x) =

F(wj(x) + tjv(x)) − F(wj(x))
tj

,

and
βj(x) := κ1|v(x)|(1 + |wj(x) + tjv(x)|q−1 + |wj(x)|q−1)

for every j ∈ N and a.e. x ∈ Rd.
By setting

γj :=
∫
Rd

W(x)βj(x)dx,

one has

I = lim sup
j→∞

∫
Rd

W(x)αj(x)dx − γj

 . (2.13)

Now, it is easily seen that there exists a function k ∈ L1(Rd) such that

|βj(x)| ≤ k(x),
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and
βj(x)→ κ1|v(x)|(1 + 2|u(x)|q−1)

for a.e. x ∈ Rd.
Consequently, the Lebesgue’s Dominated Convergence Theorem implies that

lim
j→∞

γj = κ1

∫
Rd

W(x)|v(x)|(1 + 2|u(x)|q−1)dx. (2.14)

By (2.13) and (2.14) it follows that

I = lim sup
j→∞

ΨE(wj + tjv) − ΨE(wj)
tj

− lim
j→∞

γj (2.15)

= Ψ0
E(u; v) − κ1

∫
Rd

W(x)|v(x)|(1 + 2|u(x)|q−1)dx.

Now

J ≤ Jα − κ1

∫
Rd

W(x)|v(x)|(1 + 2|u(x)|q−1)dx. (2.16)

where
Jα :=

∫
Rd

W(x) lim sup
j→∞

αj(x)dx.

Inequality (2.12) in addition to (2.15) and (2.16) yield

Ψ0
E(u; v) ≤ Jα . (2.17)

Finally,

Jα =
∫
Rd

W(x) lim sup
j→∞

F(wj(x) + tjv(x)) − F(wj(x))
tj

dx

≤
∫
Rd

W(x) lim
j→∞

F(wj + tjv) − F(wj)
tj

dx (2.18)

≤
∫
Rd

W(x)F0(u(x); v(x))dx.

By (2.17) and (2.18), inequality (2.11) now immediately follows. �

The next result is a direct and easy consequence of Proposition 8.

Proposition 9. Assume that condition (1.1) holds for some q ∈
(

2, 2*
)
and let W ∈ L∞(Rd)∩ L1(Rd) \ {0}. Let

Jλ : H1(Rd)→ R be the functional de�ned by

Jλ(u) := 1
2‖u‖

2 − λΨ(u), ∀ u ∈ H1(Rd).

Then the functional is locally Lipschitz continuous and its critical points solve (Sλ).

Proof. The functional Jλ is locally Lipschitz continuous. Indeed, Jλ is the sum of the C1(H1(Rd)) functional
u 7→ ‖u‖2/2 and of the locally Lipschitz continuous functional Ψ , see Lemma 6. Now, every critical point of
Jλ is a weak solution of problem (Sλ). Indeed, if u0 ∈ H1(Rd) is a critical point of Jλ, a direct application of
inequality (2.11) in Proposition 8 yields

0 ≤ J0
λ (u0;φ) = 〈u0, φ〉 + λ(−Ψ)0(u0;φ)

= 〈u0, φ〉 + λ(−Ψ)0(u0;φ) (2.19)

≤ 〈u0, φ〉 + λ
∫
Rd

W(x)F0(u0(x); −φ(x))dx,

for every φ ∈ H1(Rd). Since (2.19) holds, the function u0 ∈ H1(Rd) solves (Sλ). �
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2.2 Some test functions with symmetries

Following Kristály, Moroşanu, and O’Regan [22], we construct some special test functions belonging to
FixO(d)(H1(Rd)) that will be useful for our purposes. If a < b, de�ne

Aba := {x ∈ Rd : a ≤ |x| ≤ b}.

Since W ∈ L∞(Rd) \ {0} is a radially symmetric function with W ≥ 0, one can �nd real numbers R > r > 0
and α > 0 such that

essinfx∈ARr W(x) ≥ α > 0. (2.20)

Hence, let 0 < r < R, such that (2.20) holds and take σ ∈ (0, (R − r)/2). Set vσ ∈ FixO(d)(H1(Rd)) given by

vσ(x) :=



(
|x| − r
σ

)
+

if |x| ≤ r + σ

1 if r + σ ≤ |x| ≤ R − σ(
R − |x|
σ

)
+

if |x| ≥ R − σ

where z+ := max{0, z}. With the above notation, we have:
(i1) supp(vσ) ⊆ ARr ;
(i2) ‖vσ‖∞ ≤ 1;
(i3) vσ(x) = 1 for every x ∈ AR−σr+σ .
Now, assume r ≥ R

5 + 4
√

2
and set σ ∈ (0, 1). De�ne viσ ∈ H1(Rd) as follows

viσ(x) :=

 v
d−2

2
σ (x) if i = d − 2

2 and x := (x1, x3) ∈ Rd/2 ×Rd/2

vσi (x) if i ≠ d − 2
2 and x := (x1, x2, x3) ∈ Ri+1 ×Rd−2i−2 ×Ri+1,

for every x ∈ Rd, where:

v
d−2

2
σ (x1, x3) :=

[(
R − r

4 − max


√(
|x1|2 −

R + 3r
4

)2
+ |x3|2, σ

R − r
4


)

+

−
(
R − r

4 − max


√(
|x1|2 −

R + 3r
4

)2
+ |x3|2, σ

R − r
4


)

+

]

× 4
(R − r)(1 − σ) , ∀ (x1, x3) ∈ Rd/2 ×Rd/2,

and

vσi (x1, x2, x3) :=
[(

R − r
4 − max


√(
|x1|2 −

R + 3r
4

)2
+ |x3|2, σ

R − r
4


)

+

−
(
R − r

4 − max


√(
|x3|2 −

R + 3r
4

)2
+ |x1|2, σ

R − r
4


)

+

]

×
(
R − r

4 − max
{
|x2|, σ

R − r
4

})
+

4
(R − r)2(1 − σ)2 ,

for every (x1, x2, x3) ∈ Rd/2 ×Rd−2i−2 ×Rd/2, and i ≠ d − 2
2 .

Now, it is possible to prove that viσ ∈ FixHd,ηi (H
1(Rd)). Moreover, for every σ ∈ (0, 1], let

Q(1)
σ :=

(x1, x3) ∈ Ri+1 ×Ri+1 :

√(
|x1|2 −

R + 3r
4

)2
+ |x3|2 ≤ σ

R − r
4


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and

Q(2)
σ :=

(x1, x3) ∈ Ri+1 ×Ri+1 :

√(
|x3|2 −

R + 3r
4

)2
+ |x1|2 ≤ σ

R − r
4

 .

De�ne

Diσ :=

 D
d−2

2
σ if i = d − 2

2
Dσi if i ≠ d − 2

2 ,

where
D

d−2
2
σ :=

{
(x1, x3) ∈ Rd/2 ×Rd/2 : (x1, x3) ∈ Q(1)

σ ∩ Q(2)
σ

}
,

and
Dσi :=

{
(x1, x2, x3) ∈ Rd/2 ×Rd−2i−2 ×Rd/2 : (x1, x3) ∈ Q(1)

σ ∩ Q(2)
σ , and |x2| ≤ σ

R − r
4

}
,

for every i ≠ d − 2
2 .

The sets Diσ have positive Lebesgue measure and they are Hd,ηi -invariant. Moreover, for every σ ∈ (0, 1),
one has viσ ∈ FixHd,ηi (H

1(Rd)) and the following facts hold:
(j1) supp(viσ) = Di1 ⊆ A[r, R];
(j2) ‖viσ‖∞ ≤ 1;
(j3) |viσ(x)| = 1 for every x ∈ Diσ.

3 Proof of the Main Result
Part (a1) - The main idea of the proof consists of applying Theorem 3 to the functional

Jλ(u) = Φ(u) − λΨ |FixO(d)(H1(Rd))(u), ∀ u ∈ FixO(d)(H
1(Rd)),

with

Φ(u) := 1
2

∫
Rd

|∇u(x)|2dx +
∫
Rd

|u(x)|2dx

 ,

as well as
Ψ(u) :=

∫
Rd

W(x)F(u(x))dx.

Successively, the existence of one non-trivial radial solution of problem (Sλ) follows by the symmetric
criticality principle due to Krawcewicz and Marzantowicz and recalled above, in Theorem 4.

To this aim, �rst notice that the functionalsΦ andΨ |FixO(d)(H1(Rd)) have the regularity required by Theorem
3, according to Corollary 7. On the other hand, the functional Φ is clearly coercive in FixO(d)(H1(Rd)) and

inf
u∈FixO(d)(H1(Rd))

Φ(u) = 0.

Now, let us de�ne

λ* := 1
κ1cq

max
γ>0

 γ
√

2‖W‖ q
q−1

+ 2q/2cq−1
q ‖W‖∞γq−1

 , (3.1)

where κ1 = and
c` := sup

{
‖u‖`
‖u‖ : u ∈ FixO(d)(H

1(Rd)) \ {0}
}
,

for every q ∈ (2, 2*) and take 0 < λ < λ*.
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Thanks to (3.1), there exists γ̄ > 0 such that

λ < λ*(γ̄) := γ̄
κ1cq

 1
√

2‖W‖ q
q−1

+ 2q/2cq−1
q ‖W‖∞ γ̄q−1

 . (3.2)

Arguing as in [26], let us de�ne the function χ : (0, +∞)→ [0, +∞) as

χ(r) :=
sup

u∈Φ−1((−∞,r))
Ψ |FixO(d)(H1(Rd))(u)

r ,

for every r > 0.
It follows by (2.8) that

Ψ |FixO(d)(H1(Rd))(u) ≤ κ1
(
‖W‖ q

q−1
‖u‖q + ‖W‖∞‖u‖qq

)
, (3.3)

for every u ∈ FixO(d)(H1(Rd)).
Moreover, one has

‖u‖ <
√

2r, (3.4)

for every u ∈ Φ−1((−∞, r)).
Now, by using (3.4), the Sobolev embedding (2.1) and (3.3) yield

Ψ |FixO(d)(H1(Rd))(u) < κ1cq
(
‖W‖ q

q−1

√
2r + cq−1

q ‖W‖∞(2r)q/2
)
,

for every u ∈ Φ−1((−∞, r)).
Consequently,

sup
u∈Φ−1((−∞,r))

Ψ |FixO(d)(H1(Rd))(u) ≤ κ1cq
(
‖W‖ q

q−1

√
2r + cq−1

q ‖W‖∞(2r)q/2
)
.

The above inequality yields

χ(r) ≤ κ1cq

(
‖W‖ q

q−1

√
2
r + 2q/2cq−1

q ‖W‖∞rq/2−1
)
, (3.5)

for every r > 0.
Evaluating inequality (3.5) in r = γ̄2, it follows that

χ(γ̄2) ≤ κ1cq

(
√

2
‖W‖ q

q−1

γ̄ + 2q/2cq−1
q ‖W‖∞ γ̄q−2

)
. (3.6)

Now, we notice that

φ(γ̄2) := inf
u∈Φ−1((−∞,γ̄2))

(
sup

v∈Φ−1((−∞,γ̄2))
Ψ |FixO(d)(H1(Rd))(v)

)
− Ψ |FixO(d)(H1(Rd))(u)

r − Φ(u) ≤ χ(γ̄2),

owing to z0 ∈ Φ−1((−∞, γ̄2)) and Φ(z0) = Ψ |FixO(d)(H1(Rd))(z0) = 0, where z0 ∈ FixO(d)(H1(Rd)) is the zero
function.

Thanks to (3.2), the above inequality in addition to (3.6) give

φ(γ̄2) ≤ χ(γ̄2) ≤ κ1cq

(
√

2
‖W‖ q

q−1

γ̄ + 2q/2cq−1
q ‖W‖∞ γ̄q−2

)
< 1
λ . (3.7)

In conclusion,

λ ∈

0, γ̄
κ1cq

 1
√

2‖W‖ q
q−1

+ 2q/2cq−1
q ‖W‖∞ γ̄q−1

 ⊆ (0, 1/φ(γ̄2)).
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Invoking Theorem 3, there exists a function uλ ∈ Φ−1((−∞, γ̄2)) such that

J0(uλ;φ) ≥ 0, ∀φ ∈ FixO(d)(H
1(Rd)).

More precisely, the function uλ is a global minimum of the restriction of the functional Jλ to the sublevel
Φ−1((−∞, γ̄2)).

Hence, let uλ be such that

Jλ(uλ) ≤ Jλ(u), for any u ∈ FixO(d)(H
1(Rd)) such that Φ(u) < γ̄2 (3.8)

and
Φ(uλ) < γ̄2 , (3.9)

and also uλ is a critical point of Jλ in FixO(d)(H1(Rd)). Now, the orthogonal group O(d) acts isometrically on
H1(Rd) and, thanks to the symmetry of the potentialW, one has∫

Rd

W(x)F((gu)(x))dx =
∫
Rd

W(x)F(u(g−1x))dx =
∫
Rd

W(z)F(u(z))dz,

for every g ∈ O(d). Then the functional Jλ is O(d)-invariant on H1(Rd).
So, owing to Theorem4, uλ is aweak solution of problem (Sλ) . In this setting, in order to prove that uλ ≡ ̸ 0

in FixO(d)(H1(Rd)) , �rst we claim that there exists a sequence of functions
{
wj
}
j∈N in FixO(d)(H1(Rd)) such

that

lim sup
j→+∞

Ψ |FixO(d)(H1(Rd))(wj)
Φ(wj)

= +∞ . (3.10)

By the assumption on the limsup in (1.2), there exists a sequence {sj}j∈N ⊂ (0, +∞) such that sj → 0+ as
j → +∞ and

lim
j→+∞

F(sj)
s2
j

= +∞, (3.11)

namely, we have that for any M > 0 and j su�ciently large

F(sj) > Ms2
j . (3.12)

Now, de�ne wj := sjvσ for any j ∈ N, where the function vσ is given in Subsection 2.2. Since vσ ∈
FixO(d)(H1(Rd)) of course, one has wj ∈ FixO(d)(H1(Rd)) for any j ∈ N. Bearing in mind that the functions vσ
satisfy (i1)–(i3), thanks to F(0) = 0 and (3.12) we have

Ψ |FixO(d)(H1(Rd))(wj)
Φ(wj)

=

∫
AR−σr+σ

W(x)F(wj(x)) dx +
∫

ARr \AR−σr+σ

W(x)F(wj(x)) dx

Φ(wj)

=

∫
AR−σr+σ

W(x)F(sj) dx +
∫

ARr \AR−σr+σ

W(x)F(sjvσ(x)) dx

Φ(wj)
(3.13)

≥ 2

M|AR−σr+σ |αs2
j +

∫
ARr \AR−σr+σ

W(x)F(sjvσ(x)) dx

s2
j ‖vσ‖2 ,

for j su�ciently large.
Now, we have to consider two di�erent cases.
Case 1: lim

s→0+

F(s)
s2 = +∞.

Then there exists ρM > 0 such that for any s with 0 < s < ρM

F(s) ≥ Ms2 . (3.14)
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Since sj → 0+ and 0 ≤ vσ(x) ≤ 1 in Rd, it follows that wj(x) = sjvσ(x) → 0+ as j → +∞ uniformly in
x ∈ Rd. Hence, 0 ≤ wj(x) < ρM for j su�ciently large and for any x ∈ Rd. Hence, as a consequence of (3.13)
and (3.14), we have that

Ψ |FixO(d)(H1(Rd))(wj)
Φ(wj)

≥ 2

M|AR−σr+σ |αs2
j +

∫
ARr \AR−σr+σ

W(x)F(sjvσ(x)) dx

s2
j ‖vσ‖2

≥ 2Mα

|AR−σr+σ | +
∫

ARr \AR−σr+σ

|vσ(x)|2 dx

‖vσ‖2 ,

for j su�ciently large. The arbitrariness of M gives (3.10) and so the claim is proved.

Case 2: lim inf
s→0+

F(s)
s2 = ` ∈ R .

Then for any ε > 0 there exists ρε > 0 such that for any s with 0 < s < ρε

F(s) ≥ (` − ε)s2 . (3.15)

Arguing as above, we can suppose that 0 ≤ wj(x) = sjvσ(x) < ρε for j large enough and any x ∈ Rd. Thus, by
(3.13) and (3.15) we get

Ψ |FixO(d)(H1(Rd))(wj)
Φ(wj)

≥ 2

M|AR−σr+σ |αs2
j +

∫
ARr \AR−σr+σ

W(x)F(sjvσ(x)) dx

s2
j ‖vσ‖2 (3.16)

≥ 2α

M|AR−σr+σ | + (` − ε)
∫

ARr \AR−σr+σ

|vσ(x)|2 dx

‖vσ‖2 ,

provided that j is su�ciently large.
Let

M > max

0, − 2`
|AR−σr+σ |

∫
ARr \AR−σr+σ

|vσ(x)|2 dx

 ,

and

0 < ε <

M
2 |A

R−σ
r+σ | + `

∫
ARr \AR−σr+σ

|vσ(x)|2 dx

∫
ARr \AR−σr+σ

|vσ(x)|2 dx
.

By (3.16) we have

Ψ |FixO(d)(H1(Rd))(wj)
Φ(wj)

≥ 2α

M|AR−σr+σ | + (` − ε)
∫

ARr \AR−σr+σ

|vσ(x)|2 dx

‖vσ‖2

≥ 2α
‖vσ‖2

M|AR−σr+σ | + `

∫
ARr \AR−σr+σ

|vσ(x)|2 dx − ε
∫

ARr \AR−σr+σ

|vσ(x)|2 dx


≥ αM |A

R−σ
r+σ |
‖vσ‖2 ,

for j su�ciently large. Hence, assertion (3.10) is clearly veri�ed.
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Now, we notice that
‖wj‖ = sj ‖vσ‖ → 0,

as j → +∞ , so that for j large enough
‖wj‖ <

√
2γ̄.

Hence
wj ∈ Φ−1((−∞, γ̄2)

)
, (3.17)

and on account of (3.10), also

Jλ(wj) = Φ(wj) − λΨ |FixO(d)(H1(Rd))(wj) < 0, (3.18)

for j su�ciently large.
Since uλ is a global minimum of the restriction Jλ|Φ−1((−∞,γ̄2)), by (3.17) and (3.18) we have that

Jλ(uλ) ≤ Jλ(wj) < 0 = Jλ(0) , (3.19)

so that uλ ≢ 0 in FixO(d)(H1(Rd)).
Thus, uλ is a non-trivial weak solution of problem (Sλ). The arbitrariness of λ gives that uλ ≡ ̸ 0 for any

λ ∈ (0, λ*). By a Strauss-type estimate (see Lions [24]) we have that |uλ(x)| → 0 as |x| → ∞. This concludes
the proof of part (a1) of Theorem 1.

Part (a2) - Let
ci,` := sup

{
‖u‖`
‖u‖ : u ∈ FixHd,ηi (H

1(Rd)) \ {0}
}
,

for every ` ∈ (2, 2*), with i ∈ Jd and set

λ*i,q := 1
κ1ci,q

max
γ>0

 γ
√

2‖W‖ q
q−1

+ 2q/2cq−1
i,q ‖W‖∞γ

q−1

 . (3.20)

Assume d > 3 and suppose that the potential F is even. Let

λ* :=
{
λ* if d = 5
min{λ* , λ*i,q : i ∈ Jd} if d ≠ 5.

We claim that for every λ ∈ (0, λ*) problem (Sλ) admits at least

ζ (d)
S := 1 + (−1)d +

[
d − 3

2

]
pairs of non-trivial weak solutions {±uλ,i}i∈J′d ⊂ H

1(Rd), where J′d := {1, ..., ζ (d)
S }, such that |uλ,i(x)| → 0, as

|x| →∞, for every i ∈ J′d.
Moreover, if d ≠ 5 problem (Sλ) admits at least

τd := (−1)d +
[
d − 3

2

]
pairs of sign-changing weak solutions.

We divide the proof into two parts.
Part 1: dimension d = 5. Since F is symmetric, the energy functional

Jλ(u) := Φ(u) − λΨ |FixO(d)(H1(Rd))(u), ∀ u ∈ FixO(d)(H
1(Rd)),

is even. Owing to Theorem 1, for every λ ∈ (0, λ*), problem (Sλ) admits at least one (that is ζ (5)
S = 1) non-trivial

pair of radial weak solutions {±uλ} ⊂ H1(Rd). Furthermore, the functions ±uλ are homoclinic.
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Part 2: dimension d > 3 and d ≠ 5. For every λ > 0 and i ∈ Jd, consider the restriction Hλ,i :=
Jλ|FixHd,ηi (H1(Rd)) : FixHd,ηi (H

1(Rd))→ R de�ned by

Hλ,i := ΦHd,ηi (u) − λΨ |FixHd,ηi (H1(Rd))(u),

where
ΦHd,ηi (u) := 1

2‖u‖
2 and Ψ |FixHd,ηi (H1(Rd))(u) :=

∫
Rd

W(x)F(u(x))dx,

for every u ∈ FixHd,ηi (H
1(Rd)).

In order to obtain the existence of
τd := (−1)d +

[
d − 3

2

]
pairs of sign-changing weak solutions {±zλ,i}i∈Jd ⊂ H1(Rd), where Jd := {1, ..., τd}, the main idea of the
proof consists in applying Theorem 3 to the functionalsHλ,i, for every i ∈ Jd. We notice that, since d > 3 and
d ≠ 5, τd ≥ 1. Consequently, the cardinality |Jd| ≥ 1.

Since 0 < λ < λ*i,q, with i ∈ Jd, there exists γ̄i > 0 such that

λ < λ(i)
* (γ̄i) := γ̄i

κ1ci,q

 1
√

2‖W‖ q
q−1

+ 2q/2cq−1
i,q ‖W‖∞ γ̄

q−1
i

 . (3.21)

Similar arguments used for proving (3.7) yield

φ(γ̄2
i ) ≤ χ(γ̄2

i ) ≤ κ1cq

(
√

2
‖W‖ q

q−1

γ̄i
+ 2q/2cq−1

q ‖W‖∞ γ̄q−2
i

)
< 1
λ . (3.22)

Thus,

λ ∈

0, γ̄i
κ1cq

 1
√

2‖W‖ q
q−1

+ 2q/2cq−1
q ‖W‖∞ γ̄q−1

i

 ⊆ (0, 1/φ(γ̄2
i )).

Thanks to Theorem 3, there exists a function zλ,i ∈ Φ−1
Hd,ηi

((−∞, γ̄2
i )) such that

J0(zλ,i;φ) ≥ 0, ∀φ ∈ FixHd,ηi (H
1(Rd))

and, in particular, zλ,i is a global minimum of the restriction ofHλ,i to Φ−1
Hd,ηi

((−∞, γ̄2
i )).

Due to the evenness of Jλ, bearing inmind (2.2), and thanks to the symmetry assumptions on the potential
W, we have that the functional Jλ is Hd,ηi -invariant on H

1(Rd), i.e.

Jλ(h ~i u) = Jλ(u),

for every h ∈ Hd,ηi and u ∈ H
1(Rd). Indeed, the group Hd,ηi acts isometrically on H1(Rd) and, thanks to the

symmetry assumption onW, it follows that∫
Rd

W(x)F((hu)(x))dx =
∫
Rd

W(x)F(u(h−1x))dx =
∫
Rd

W(z)F(u(z))dz,

if h ∈ Hd,i, and ∫
Rd

W(x)F((hu)(x))dx =
∫
Rd

W(x)F(u(g−1η−1
Hd,i
x))dx =

∫
Rd

W(z)F(u(z))dz,

if h = ηHd,i g ∈ Hd,ηi \ Hd,i.
On account of Theorem 4, the critical point pairs {±zλ,i} of Hλ,i are also (generalized) critical points of

Jλ.
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Let zλ,i ∈ FixHd,ηi (H
1(Rd)) be a critical point ofHλ,i in FixHd,ηi (H

1(Rd)) such that

Hλ,i(zλ,i) ≤ Hλ,i(u), for any u ∈ FixHd,ηi (H
1(Rd)) such that ΦHd,ηi (u) < γ̄2

i (3.23)

and
ΦHd,ηi (zλ,i) < γ̄

2
i . (3.24)

In order to prove that zλ,i ≡ ̸ 0 in FixHd,ηi (H
1(Rd)) , we claim that there exists a sequence

{
wij
}
j∈N in

FixHd,ηi (H
1(Rd)) such that

lim sup
j→+∞

Ψ |FixHd,ηi (H1(Rd))(wij)

Φ(wij)
= +∞ . (3.25)

The sequence
{
wij
}
j∈N ⊂ FixHd,ηi (H

1(Rd)), for which (3.25) holds, can be constructed by using the test
functions introduced in [22] and recalled in Subsection 2.2. Thus, let us de�newij := sjviσ for any j ∈ N. Clearly,
wij ∈ FixHd,ηi (H

1(Rd)) for any j ∈ N. Moreover, taking into account the properties of viσ displayed in (j1)–(j3),
simple computations show that

Ψ |FixHd,ηi (H1(Rd))(w
i
j)

Φ(wij)
=

∫
Diσ

W(x)F(wij(x)) dx +
∫

ARr \Diσ

W(x)F(wij(x)) dx

Φ(wij)

=

∫
Diσ

W(x)F(sj) dx +
∫

ARr \Diσ

W(x)F(sjviσ(x)) dx

Φ(wij)
(3.26)

≥ 2

M|Diσ|αs2
j +

∫
ARr \Diσ

W(x)F(sjviσ(x)) dx

s2
j ‖v

i
σ‖2 ,

for j su�ciently large.
Arguing as in the proof of Theorem 1, inequality (3.26) yields (3.25) and consequently, we conclude that

Hλ,i(zλ,i) ≤ Hλ,i(wij) < 0 = Hλ,i(0) ,

so that zλ,i ≢ 0 in FixHd,ηi (H
1(Rd)). In addition, |zλ,i(x)| → 0 as |x| →∞.

On the other hand, since λ < λ* and F is even, Theorem 1 and the principle of symmetric criticality
(recalled in Theorem 4) ensure that problem (Sλ) admits at least one non-trivial pair of radial weak solutions
{±uλ} ⊂ H1(Rd). Moreover, |uλ(x)| → 0 as |x| →∞.

In conclusion, since λ < λ*, there exist τd + 1 positive numbers γ̄, γ̄1,...,γ̄τd such that

±uλ ∈ Φ−1((−∞, γ̄2)) \ {0} ⊂ FixO(d)(H
1(Rd)),

and
±zλ,i ∈ Φ−1

Hd,ηi
((−∞, γ̄2

i )) \ {0} ⊂ FixHd,ηi (H
1(Rd)).

Bearing in mind relations (2.4) and (2.5) of Proposition 5 (see also [22, Theorem 2.2] for details) we have that

Φ−1((−∞, γ̄2)) ∩ Φ−1
Hd,ηi

((−∞, γ̄2
i )) \ {0} = ∅,

for every i ∈ Jd and
Φ−1
Hd,ηi

((−∞, γ̄2
i )) ∩ Φ−1

Hd,ηj
((−∞, γ̄2

j )) \ {0} = ∅,

for every i, j ∈ Jd and i ≠ j. Consequently problem (Sλ) admits at least

ζ (d)
S := τd + 1,
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pairs of non-trivial weak solutions {±uλ,i}i∈J′d ⊂ H
1(Rd), where J′d := {1, ..., ζ (d)

S }, such that |uλ,i(x)| → 0, as
|x| →∞, for every i ∈ J′d. Moreover, by construction, it follows that

τd := (−1)d +
[
d − 3

2

]
pairs of the attained solutions are sign-changing.

The proof is now complete. �

4 Some applications
A simple prototype of a function F ful�lling the structural assumption (1.1) can be easily constructed as fol-
lows. Let f : R→ R be a measurable function such that

sup
s∈R

|f (s)|
1 + |s|q−1 < +∞, (4.1)

for some q ∈
(

2, 2*
)
. Furthermore, let F be the potential de�ned by

F(s) :=
s∫

0

f (t)dt,

for every s ∈ R. Of course F is a Carathéodory function that is locally Lipschitz with F(0) = 0. Since the
growth condition (4.1) is satis�ed, f is locally essentially bounded, that is f ∈ L∞loc(Rd). Thus, invoking [27,
Proposition 1.7] it follows that

∂F(s) = [f (s), f (s)] (4.2)

where
f (s) := lim

δ→0+
essinf|t−s|<δ f (t),

and
f (s) := lim

δ→0+
esssup|t−s|<δ f (t),

for every s ∈ R.
On account of (4.1) and (4.2), inequality (1.1) immediately follows. Furthermore, if f is a continuous func-

tion and (4.1) holds, then problem (Sλ) assumes the simple and signi�cative form:
(S′λ)Find u ∈ H1(Rd) such that

∫
Rd

∇u(x) ·∇φ(x)dx +
∫
Rd

u(x)φ(x)dx

−λ
∫
Rd

W(x)f (u(x))φ(x)dx = 0,

∀φ ∈ H1(Rd).

See [18] for related topics.
Of course, the solutions of (S′λ) are exactly the weak solutions of the following Schrödinger equation{

−∆u + u = λW(x)f (u) in Rd

u ∈ H1(Rd),

which has been widely studied in the literature. In particular, Theorem 1 can be viewed as a non-smooth
version of the results contained in [26]. See, among others, the papers [1–4, 7] as well as [14, 16, 25, 30].
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We point out that the approach adopted here can be used in order to study the existence of multiple
solutions for hemivariational inequalities on a strip-like domain of the Euclidean space (see [21] for related
topics). Since this approach di�ers to the above, we will treat it in a forthcoming paper.
Acknowledgements. The paper was realized with the auspices of the Italian MIUR project Variational meth-
ods, with applications to problems in mathematical physics and geometry (2015KB9WPT 009) and the Slove-
nian Research Agency grants P1-0292, J1-8131, J1-7025, N1-0083, and N1-0064.
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