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ALGEBRAIC SYSTEMS WITH LIPSCHITZ PERTURBATIONS

GIOVANNI MOLICA BISCI AND DUSAN REPOVS

ABSTRACT. By using variational methods, the existence of infinitely many solutions for
a nonlinear algebraic system with a parameter is established in presence of a perturbed
Lipschitz term. Our goal was achieved requiring an appropriate behavior of the nonlinear
term f, either at zero or at infinity, without symmetry conditions.

1. INTRODUCTION

In many cases a problem in a continuous framework can be handled by using a suit-
able method from discrete mathematics, and conversely. For instance, let us consider the
following relations

[u(i +1,7) = 2u(i, j) + u(i — 1, j)] + [u(i, j + 1) = 2u(i, j) + u(i,j — 1)]
+Af((i,7),u(i, §)) =0, V(i,4) € Z[1,m] x Z[1,n],
under the Dirichlet boundary conditions
u(3,0) =u(i,n+1) =0, VieZl,m|,

u(0,7) =u(m+1,5) =0, Vje€Z[l,n],
where f : Z[1,m] x Z[1,n] x R — R denotes a continuous function and A is a positive
parameter. As pointed out by Galewski and Orpel in [5], the above problem serves as the
discrete counterpart of the following continuous one:

2 2

G 5o+ M (@) ule) =0

w(z,0) =u(z,n+1)=0, Vz € (0,m+1)

w(0,y) =u(m+1,y) =0, Yy € (0,n+ 1).

However, the results obtained here (see Theorem 1 below) cannot be directly achieved
by proving the existence of solutions for the above equation. The modeling/simulation of
certain nonlinear problems from economics, biological neural networks, optimal control and
others, enforced in a natural manner a rapid development of the theory of discrete equations
(see for instance [26] and references therein).
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In this paper, motivated by this increasing interest, we study the following algebraic
system
Au=Af(u) + h(u), (545
in which u = (u1, ..., u,)" € R™ is a column vector, A = (a;j)nxn is a positive-definite matrix,
fuw) = (f1(u1), ..., fn(un))t, where the functions fi : R — R are assumed to be continuous
for every k € Z[1,n] := {1,2,...,n}, and X is a positive parameter.
Moreover,
h(u) = (hi(u1), ., hn(un))',
where, for every k € Z[1,n], the functions hy : R — R are Lipschitz continuous with
constants Ly > 0, that is:
|hi(t1) — hi(t2)] < Lglts — 2,
for every t1,to € R, and hi(0) = 0.
A large number of discrete problems can be formulated as special cases of the non-
perturbed (h = 0) algebraic system, namely (S£7A); see, for instance, the papers [23, 25, 26,
27, 28] and references therein. We also point out that the case

2 -1 0 .. 0
-1 2 -1 0
A = ’
o .. -1 2 -1
0 0o -1 2

nxn

has been considered in order to study the existence of nontrivial solutions of nonlinear
second-order difference equations [12, 13, 15]. Moreover, as it is well-known, boundary value
problems involving fourth-order difference equations such as

A4uk_2 = )\fk(uk), Vk e Z[l, n]
(D{) U_2 =U_1 = Uy = 0,

Un+1 = Up4+2 = Up43 = 07
can also be expressed as the problem (Sf; ), where A is the real symmetric and positive
definite matrix of the form

6 —4 1 0 0 0 0 0
-4 6 -4 1 0 0 0 0
1 -4 6 -4 0 0 0 0
0 1 -4 6 0 0 0 0
A=
0 0 0 0 6 —4 1 0
0 0 0 0 -4 6 -4 1
0 0 0 o .. 1 -4 6 -4
0 0 0 0 0 1 —4 6

Further, general references on difference equations and their applications can be found
e.g. in [1, 10].
Here, by using variational methods, under the key assumption that

L:= max L <\,
keZ[1,n]
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where \; is the first eigenvalue of the matrix A, we determine open intervals of positive
parameters such that problem (Sj;};) admits either an unbounded sequence of solutions,
provided that the nonlinearity f has a suitable behaviour at infinity (Theorem 3), or a
sequence of pairwise distinct solutions that converges to zero, if a similar behaviour occurs
at zero (see Theorem 4).

Our main tool is a recent critical point result obtained by Ricceri and recalled here in a
convenient form (see Theorem 2).

A special case of our results reads as follows (see Remark 4).

Theorem 1. Let z: R — R be a nonnegative and continuous function. Assume that

/ z(§)dg / 2(€)de
liminff>——— =90 limsup 24—

t—+o00 t2 ’ t— 400 t2
Then, for each A > 0, and for every Lipschitz continuous function h : R — R with Lipschitz
constant L, < Aa (where \g is the first eigenvalue of the matriz A defined in Section 4),
the following discrete problem

[w(@+1,7) —2u(i,j) +u(@ —1,5)] + [u(i, 7+ 1) — 2u(s, 5) + u(i, j — 1)]
+Az(u(i, 7)) + h(u(i, j)) =0, V(i,j) € Z[1,m] x Z[1,n]
with boundary conditions
uw(3,0) =u(i,n+1) =0, VieZl,m],
u(0,7) =u(m+1,5) =0, Vje€Z[l,n],
admits an unbounded sequence of solutions.

= +400.

Finally, for completeness, we just mention here that there is a vast literature on nonlinear
difference equations based on fixed point and upper and lower solution methods (see [2, §]).
For related topics see the works [3, 6, 7, 22]. For a complete and exhaustive overview on
variational methods we refer the reader to the monographs [11, 20].

2. ABSTRACT SETTING

Let (X, -||) be a finite-dimensional Banach space and let Jy : X — R be a function

satisfying the following structure hypothesis:

(A) for all uw € X, Jy(u) := ®(u) — AV (u) where ®,¥ : X — R are two functions of
class C' on X with ® coercive, i.e. lim w00 ®(u) = +00, and X is a real positive
parameter.

Moreover, provided that r > inf x @, put

( sup \Il(v)> — U(u)
o(r) = inf ver ool

ue®—1(]—o0,r[) r—®(u) ’
and
~v:=lminfp(r), 0:= liminf (r).

r—+00 r—(infx @)+
Clearly, v > 0 and § > 0. When v = 0 (or § = 0), in the sequel, we agree to read 1/ (or
1/9) as +o0.
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Theorem 2. Assuming that the condition (A) holds, one has

(a) If v < +oo then, for each X €]0,1/|, the following alternative holds:
either
(a1) Jx possesses a global minimum,
or
(ag) there is a sequence {un} of critical points (local minima) of Jx such that
limyy, s 00 P(ty,) = +00.
(b) If § < 400 then, for each X €]0,1/6], the following alternative holds:
either
(by) there is a global minimum of ® which is a local minimum of Jy,
or
(ba) there is a sequence {u,} of pairwise distinct critical points (local minima) of
Ix, with lim, o ®(uy,) = infx ®, which converges to a global minimum of ®.

Remark 1. Theorem 2 is the finite-dimensional version of the quoted multiplicity result of
Ricceri from [21].

As ambient space X, consider the n-dimensional Banach space R"™ endowed by the norm

fall = (32 u2)"”.

k=1
Set X,, be the class of all symmetric and positive-definite matrices of order n. Further,

we denote by Aq,..., A, the eigenvalues of A, ordered as follows 0 < A} < ... < A,.
It is well-known that if A € X,,, then for every u € X, one has

(2.1) Mllull® < ' Au < X Jull?,
and
1
(2.2) [ufloo < \/—/\T(quu)l/%
where ||u]|oo := max |ugl.
k€Z[1,n]
Set

utAu

(2.3) O(u) == — — > Hi(w),
k=1
and
(2.4) U(u) =Y Fi(up),  Ja(u) = 0(u) — AU(u),
k=1

¢ ¢
for every uw € X, where Hy(t) := / hi(§)d€ and Fy(t) = / fu(§)dE, for every (k,t) €
0 0

Z[1,n] x R.
Standard arguments show that J, € C*(X,R), as well as that critical points of J) are
exactly the solutions of problem (Sf;’ﬁ\); see, for instance, the paper [24].
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Lemma 1. Set

(2.5) L:= max Lj <\
k€Z[1,n]

Then the functional ® is coercive.

Proof. Bearing in mind (2.1), since hy is a Lipschitz continuous function (for every k €
Z[1,n]) with constant Ly > 0 and h;(0) = 0, we have

o0 = G- D) = gl =3 ([ k)

k=1

ALy s T 1, o L= o
2 7””” —LZ |t|dt = 5”“” - 52%
0
k=1 k=1
A —L
= (25 e
Hence, by (2.5), the above relation implies that the functional ® is coercive. |

3. MAIN RESULTS
Set

Z%%Fk(é) > Fi(t)

Ao i=liminf®=— and B> :=limsup *=
> t—+o0 t2 t—>+oop t2

From now on we shall assume that the functions hy : R — R, for every k € Z[1,n], are
Lipschitz continuous with constants Ly > 0 such that condition (2.5) holds.
Theorem 3. Let A € X,, and assume that the following inequality holds

M —L
ht Ay <
(hoo) Tr(A) +232, ;ai; +nL

oo

Then, for each
Tr(A)—l—Qszaij—l-nL M —L
2B " 24 |

problem (Sﬁ};) admits an unbounded sequence of solutions.

A€

Proof. Fix A as in the assertion of the theorem and put ®, ¥, J as in (2.3) and (2.4). Since
the critical points of Jy are the solutions of problem (.S ,{ﬂ};\)v our aim is to apply Theorem 2
part (a) to function Jy. Clearly (A) holds. l

Therefore, our conclusion follows provided that v < 400 as well as that Jy turns out to be
unbounded from below. To this end, let {c,,} be a real sequence such that lim ¢, = 400

m—00
and
n
Z max Fj(§)
< -
im = A,
m— oo c?n
Write

AM—L o,

Ty (= c
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for every m € N.
Since, owing to (2.2), it follows that

fve X :v'Av < 2r,} C{ve X : || <cp VE € Z[1,n]},
and we obtain

SR S A0S e

v AV<2rm =1 2

< < =
Prm) < T - T, M —L c%n

Hence, it follows that

2 1
< i .
7S Jim elrm) £ Ao < 3 < F00
Now, we verify that Jy is unbounded from below. First, assume that B>® = 4o00. Ac-
cordingly, fix such M that

Mo ’IY(A)+2Zi<jaij+nL

2\
and let {b,,} be a sequence of positive numbers, with hm bm = 400, such that
ZFk ) > Mb2,,  (VmeN).

Thus, taking in X the sequence {s,,} which, for each m € N, is given by (s, )i := by, for
every k € Z[1,n], owing to (2.1) and noting that

Bu) < t“‘“+i(/ utoar)
tAu 72%

<
ut Au )
= 5 T §||U|| .
one immediately has
st Asm
Talsm) = =25 = )\ZFk
k=1
Tr(A)+2>._.ai+nL i
< S b =AY Filbm)
k=1
< <Tr(A)+22i<jaij+nL_/\M) bfn
2
that is, lim Jy(sy,) = —o0.
m—00

Next, assume that B> < +o00. Since
Tr(A) +232, 5 ai; +nl
>
2B ’
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we can fix € > 0 such that

Tr(A) +232, 5 aij +nl

B> —
e< I\
Therefore, also calling {b,,} a sequence of positive numbers such that li_r>n bm = +00
m o
and
(B® —e)bl, <> Filbm) < (B® +e)b},,  (VmeN)
k=1
arguing as before and by choosing {s,,} in X as above, one has
Tr(A)+2>. .a;; +nlL
Ia(sm) < ( “ ZQKJ ’ — X\B> - e)) b2,.
So, lim Jy(sp) = —o0.
m—0o0
Hence, in both cases Jy is unbounded from below. The proof is thus complete. O

Remark 2. If f; are nonnegative continuous functions, condition (hZ ) reads as follows

> Fi(t) - > Fi(t)
lim inf *=1 < L lim sup *=L

t——+o00 12 TI“(A) +2 Zi<j aij + nL 400 t2

Arguing as in the proof of Theorem 3 and applying part (b) of Theorem 2, we obtain the
following result.

Theorem 4. Let A € X,, and assume that the following inequality holds

A — L
hi Ay < BO.
( 0) 0 Tr(A)+QZi<jaij+nL

Then, for each
Tr(A)+QZi<jaij +nlL )\1_L
2B0 " 240 |

problem (Sf‘ \) admits a sequence of nontrivial solutions {um} such that lim |lu| =
’ m—r o0

AE

lm ||t ]|ee = 0.
m—r oo

4. APPLICATION
In this section we consider a discrete system, namely (E{’h), given as follows
[w(i+1,7) —2u(i, j) +u(i —1,7)] + [w(i,j+ 1) — 2u(i, j) + u(i, j — 1))
+AS((05), u(i, §)) + hu(i, §)) = 0, V(i,4) € Z[1,m] x Z[1,n],
with boundary conditions
u(i,0) =u(i,n+1)=0, VieZl,m],
w(0,7) =u(m+1,5) =0, Vje€Z[l,n],

where f : Z[1,m] x Z[1,n] x R — R denotes a continuous function, X\ is a positive real
parameter and h : R — R be a Lipschitz continuous function with constant Lj,.
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As ambient space X, we consider the mn-dimensional Banach space R™" endowed by the

norm
mn

1/2
el i= (Y u?)
k=1

Further, if £ € N, the symbol My ¢(R) stands for the linear space of all the matrices of
order ¢ with real entries.

Let v : Z[1,m] x Z[1,n] — Z[1, mn| be the bijection defined by v(i,j) := i+ m(j — 1), for
every (i,7) € Z[1,m] x Z[1,n].

Let us denote wy = u(v=(k)) and gx(wy) = f(v=1(k),wy), for every k € Z[1,mn].
With the above notations, problem (Ef\ch) can be written as a nonlinear algebraic system of
the form

Aw = Ag(w) + h(w), (S%5)
where A is given by

D -1, 0 0 0 0 0 0

-1, D -1, 0 0 0 0 0
0 -1, D -1, 0 0 0 0
0 0 -1, D . 0 0 0 0

A= Emmnxmn(R)v

0 0 0 0 D -1, 0 0
0 0 0 0 -1, D —I, 0
0 0 0 0 0 -1, D —I,
0 0 0 0 0 0 -1, D

in which D is defined by

|

—_

S

|

—_

o
o O OO
o O OO
oo oo
o O OO

D = € My (R),

o O OO
OO OO
o O OO
o O OO

o

|

—_

W~

|

—

Iy € Muxm(R) is the identity matrix and g(w) = (g1(w1),..s Gmn(Wmn))t, h(w) =
(h(w1), ooy A(Winn))t, for every w € X.

In [9], Ji and Yang studied the structure of the spectrum of the above (non-perturbed)
Dirichlet problem. By their result we have that A € X,,,,.

It is easy to observe that the solutions of (Ef ’h) are the critical points of the C'-functional

tAw Wk
Ta(w) = —)\Z/ gr(t dt—Z/ h(t)dt, ¥V w e X.

Denote by A4 the first eigenvalue of the matrix A. By using the above variational frame-
work, Theorem 3 assumes the following form.
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Theorem 5. Assume that A4 < Ly, in addition to

mn mn

3 t
max/ gk (s)ds Z/ gr(s)ds
—1¢1<t Jo A4 — L — Jo
(hh ) lim inf =2 < A h lim sup L
o0 t—+o0 t2 (2 + Lh)(m + n) t—+oo t2

Then for each

e 24+ Lp)(m+n) Aa—1Ly
2B "ToA |

problem (E{h) admits an unbounded sequence of solutions.

Remark 3. Substituting £ — +oo with € — 07 in Theorem 5, the same statement as
Theorem 4 is easily proved.

Remark 4. We just point out that Theorem 1 in Introduction directly follows by Theorem
5 assuming that Ly < 4.

In conclusion we present here a direct consequence of Theorem 5.

Example 1. Let h: R — R be a Lipschitz continuous function with constant L, < A4 and

let
_ 2nl(n+2)! -1  2nl(n+2)I+1

W T 1 T T Ay
for every n € N.
Let {g.} be a sequence of non-negative functions given by

1 nl(n +2)\2
gn(£) = \/16,(n+1)!2 - (5—72 ) . VneN.

and define f : R — R as follows

[(n+1)12 — n!Q]% if €€ G [an, by]
1©) = [Cowar =

n

0 otherwise.
One has

(n+1)! by,
/ f(t)dt:/ F()dt = (n+ 1)1 —

and
F(ap)=n"? -1, F(b,)=(n+1)1? -1

for every n € N.

Hence . r
i FOn) _ g Fl) g
n—-+oco b% n—-+oo a%
F F
Therefore, we can prove that lim inf (26 ) = 0 and lim sup (f ) =4.
§—+oo g =+ 5

Then, for every
(2+ Lp)(m+n)

A >
8mn

)
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the following problem
[u(i+1,7) = 2u(i,5) +u(i —1,5)] + [u(i,j + 1) — 2u(i, j) +u(i,j — 1)]
+Af(u(i, j)) + h(u(i,5)) =0, VY (i,J4) € Z[1,m] x Z[1,n]
with boundary conditions
u(i,0) =u(i,n+1) =0, VieZl,m],
u(0,j) =u(m+1,5) =0, Vje€Z[l,n]

admits an unbounded sequence of solutions.

Remark 5. We refer to the paper of Galewski and Orpel [5] for some multiplicity results on
discrete partial difference equations as well as to the monograph of Cheng [4] for their discrete
geometrical interpretation. See also the papers [14, 16, 17, 18, 19] for recent contributions
on discrete problems.
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