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1. INTRODUCTION

In His remarkable paper [12] A. N. Draniénikov gave a method for constructing for every
n > 3 examples of infinite-dimensional compacta (i.e. compact metric spaces) X, with
integral cohomological dimension c-dimz X, = n. It follows by a well-known result of R. D.
Edwards [34] that there are therefore n-dimensional compacta Y, and cell-like surjections
fo: Yo — X, ie. for every x € X, the pre-image f, !(x) has trivial shape. By the N6belung-
Pontrjagin embedding theorem [29] there exist embeddings ¢,: Y, — R2"*! which in turn
yield upper semicontinuous decompositions G, of R2"**, with non-degeneracy set given by
{¢.f ' (x)Ixe X,}, whose quotient spaces R?"*!/G, contain X, and so are infinite dimen-
sional. Thus cell-like maps can raise dimension on manifolds of dimensions 7 and above.

Such phenomena are impossible in R? for g < 3. Cell-like images of topological g-
manifolds are always Z-homology g-manifolds [36], and for these cohomological and
covering dimensions agree if q < 3; for ¢ < 2 it is classical that homology g-manifolds are
topological manifolds [37], for ¢ = 3 see [35]. Recently J. Dydak and J. J. Walsh [16] have
shown that there exists an infinite-dimensional compactum X with c¢-dimzX = 2. The
preceding argument shows that cell-like maps can also raise dimension on R* and RS, For
more on the cell-like mapping problem and its history, see the survey [25].

We are interested in dimension four, the remaining unsettled case of the cell-like
mapping problem. A. N. Drani$nikov and E. V. S&epin conjectured [15] that cell-like maps
cannot raise dimension on 4-manifolds. As evidence for this conjecture we prove:

THEOREM 1.1. Let X be a Z-homology 4-manifold. Then dim X < oo (equivalently
dim X = 4) if and only if for some n > 3, X has the disjoint Pontrjagin n-tuples property.

CoRroLLARY 1.2. Let M* be a topological 4-manifold and f: M — X be a proper cell-like
onto map. Then dim X < oo if and only if for some n > 3, X has the disjoint Pontrjagin n-
tuples property.

Remarks. In general a Z-homology manifold need not be finite-dimensional. For
example the spaces R2"*1/G, mentioned above are infinite-dimensional Z-homology
(2n + 1)-manifolds.

In the first version of this paper, written in 1988 [26], Theorem 1.1 was obtained with
the additional restriction that X should be locally 1-connected with respect to singular
homology (lc}). This property is automatic for X as in 1.2 [9]. As we remark in Section 6, it
is possible to state the theorem without mentioning the Pontrjagin n-tuples property or the:
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Pontrjagin disc. However the proof makes heavy use of these concepts and so it is natural to
state the theorem using them#t.

A metric space X is said to have the disjoint Pontrjagin n-tuples property, denoted dd,, if
for every ¢ > 0 and every collection of maps f;,f;, . . . ,.f;: D2 — X of the Pontrjagin disc
D2 into X, there exist maps g,, g3, - - . » gx: D2 = X such that (i) for every i, d(f;, ;) <&,
and (i) ();.,4(D?) = &. The definition of the Pontrjagin disc is given in section 3. In
brief, D2 is obtained from the standard 2-cell by repeatedly subdividing and replacing the
interior of each 2-simplex by a small punct torus. As will be shown later, Daverman’s
disjoint triples property DD, [9] (which has the same definition as dd, except that D? is
replaced by the standard 2-cell) implies dd,. Hence we obtain the following corollary, which
was originally obtained by D. J. Garity [18; Proposition 1]. Note that our results also show
that the hypothesis of finite-dimensionality in Theorem 1 of [18] is unnecessary.

CoroLLARY 1.3, [18] Let G be an upper semi-continuous cell-like decomposition of a
topological 4-mamfold M and suppose that the quotient space. M/G has the property DD3
Then M/G has (covering) dimension 4.

On the other hand the ghastly 4-dimensional examples of R. J. Daverman and J. J.
Walsh [10] do not have DD,, whereas Theorem 5.3 below implies that they do possess dd ;.
The conjecture of Drani$nikov and Séepin is, by 5.3, clearly equivalent to the following
question.

QUESTION 1.4. Does every cell-like quotient of a topological 4-manifold possess property
dd,?

The idea of our proof of finite-dimensionality of an X satisfying dd, is roughly as
follows. By duality, a subset 4 of a homology 4-manifold has cohomological dimension at
most 1 if all “small” 1-cycles in its complement X — A are nullhomologous in (a small subset
of) X — A. The homology theory here is Borel-Moore, in which the definition of cycles has
no clear geometric meaning. We prove that in a locally connected space, Borel-Moore 1-
cycles are represented by maps in of circles. We also show that if a map of a circle represents
a trivial 1-cycle in a space which is locally 1-connected with respect to Borel-Moore
homology, then it extends to a map of the Pontrjagin disc. (These two results, and their
proofs, are of independent interest, involving new applications of the Menger universal
curve and of an argument due to W. Hurewicz.) Now under dd, it is easy to show that there
is a dense finite-dimensional set A of images of the Pontrjagin disc. By the above results
about l-cycles, it follows easily from the special form of A that the complement
X — A has cohomological dimension—and so covering dimension—at most 1. Hence X is
the union of two finite-dimensional pieces, and so finite-dimensional by the sum theorem of
dimension theory.

2. PRELIMINARIES

All spaces will be separable metric spaces, with metric denoted by d, and, except for
function spaces, they will also be locally compact. By N,(K) we denote the open e-

t The disjoint Pontrjagin n-tuples property can be viewed as specifying a degree of homological general position.
J. J. Walsh has recently informed us that, adopting the latter point of view, there is a comparable analysis in each
dimension, leading to the result that homology n-manifolds which satisfy homological general position are finite
dimensional. Details will appear in Homological General Position and the Finite Dimensionality of Homology
Manifolds by J. J. Walsh.
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neighborhood of K « X, i.e. N,(K) = {x€ X| d(x, K) < ¢}. By I we denote the unit interval
[0, 1], while S* and B* denote the k-dimensional sphere and closed ball respectively. The
Hilbert cube IIP[0, 1] with usual metric is denoted by I®. We will use a variety of
homology theories (explained in the next paragraph), while cohomology will be Aleksan-
drov-Cech-sheaf, denoted by H*, or by H¥ if compact supports are used. A tilde will denote
reduced homology and cohomology. Coefficients will be usually the integers Z, in which
case they will be omitted from notation.

We shall consider four homology theories, Cech (denoted by - H,), Steenrod-Sitnikov
with compact supports (denoted by zH,), Borel-Moore (for which we reserve no special
symbol), and singular (denoted by ,H,). The subscript E in gH, stands for “exact”, and we
follow the treatment of E. G. Skljarenko [31], in which a version of Steenrod-Sitnikov
homology called exact homology is developed. A natural transformation between two
homology theories ,H; and zH; will be denoted by T, 5. There are well-known natural
transformations

T, 4:Hi—~ (H; and T, H;—cH,;

where ,H; is any homology theory. If X = imk ;is an inverse limit of polyhedra K;, then
for every i, there is a short exact sequence

0~ Hm' Hyy 4 (K;) = gH(X) 25 cH(X) 0. @

When the coefficients in the above homology theories are the integers, Steenrod—Sitnikov
homology coincides with Borel-Moore homology, but in general, for example with rational
coefficients, this is not so [31]. Borel-Moore theory is an appropriate one to use in the
definition of homology manifold, since it is the theory which allows the most natural
formulation and proof of the various duality theorems; for a development of Borel-Moore
theory, see G. E. Bredon’s book [7]. We shall use without further comment the coincidence
in our circumstances of Borel-Moore and Steenrod—Sitnikov “exact” homology. We recall
that for general spaces, singular theory behaves badly, while Cech theory fails to be exact.

We say that a locally compact metric space X is locally connected up to dimension n with
respect to a homology theory ,H;, denoted by Ic%, if for all open sets U and points x in U,
there exists an open set V such that xe V < U and for all j < n, i,: Aﬁ,(V) - AH',(U) is
zero. (A ; denotes reduced homology.) Similarly we say X is locally homotopy n-connected,
denoted by LC", if a similar conclusion holds with , § ; replaced by the homotopy groups =;.

A set Z < X is locally homologically k-co-connected, with respect to Steenrod—Sitnikov
(= Borel-Moore) homology, denoted lcck, if for all open neighborhoods U of an arbitrary
point xe X, there exists a smaller open neighborhood ¥ of x such that the map i,:
A,V — Z)-»H,(U—-2Z)iszeroforx < k,and V—Z # .

A space has finite (integral) cohomological dimension N if for all open sets U, we have
HY*'(U) = 0, but for no smaller N is this true (here cohomology is with compact supports).
We write c-dimz X = N.

A space X is said to be a Z-homology n-manifold, denoted n-hm, if

(i) X has finite (integral) cohomological dimension, and
(ii) for every xe X, ;H (X, X — x)~ H_(R", R" — 0).

Here ; H denotes Borel-Moore homology —see previous paragraph for further details.
Note that (i) and (ii) imply that

(ii) X is cohomologically locally connected (clc®) [19, 24] and that for each neighbor-
hood U of an arbitrary point x € X there exists a smaller neighborhood ¥ such that
j*: H¥(V)— H}(U) has a finitely generated image,
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and also that

(iv) the orientation sheaf of X is locally constant [8],

(v) the cohomological dimension of X is exactly n [24, 32],
and finally, and crucially for our purposes,

(vi) X is lcg [5].

A compact set C is said to be cell-like if it has the shape of a point. A proper map
f: X — Yis said to be cell-like if for every ye Y, f ~1(y) is cell-like. [A map f: X — Y is said
to be proper if for any compact subset K of ¥, f ~1(K) is compact.] A map f: X — Y is said
to be one-to-one over A Y if f|f ~'(A):. f ~'(A) > A4 is a bijection. For metric spaces X
and Y we shall use the following notation: ¢(X, Y) = {f: X — Y|f is continuous} and
€(X,Y) = {fe¥(X, Y)| for every yeY, cardf ~*(y) < k}. All spaces of functions will
carry the usual sup-norm metric d given by d(f, g) = sup{d(f(x), g(x))|xe X}.

We work with locally compact spaces, but in practice arguments reduce to the case of
compact spaces, because the spaces mapped in are all compact. The following scholium

explains this. The reader may find it helpful to consider the case when P(V, U) is the
property “any two points in 7 may be joined by an arc in U™.

ScHoLiuM 2.2. Let X be a locally compact space, and P = P(K, L) a property of pairs of
subsets of X with K = L. Suppose further that for all open sets U and all x € U, there exists an
open set V such that xe V <= U and P(V, U) holds. Then given any relatively compact open
sets V, U with V. U, and £ > 0, there exists 8 = d(¢, V, U) > 0 such that for any xe V, the
property P(Ny(x), N.(x)n U) holds.

Demonstration. For each xe ¥V, let W be an open set such that xe W, < N, (x)n U anfl
P(W,, N,(x) n U)holds. Then take é to be a Lebesgue number for the cover { W, }, . yof V.

3. THE PONTRJAGIN DISC

A key instrument in our work will be a homogeneous (modulo the boundary), 2-
dimensional compactum D2 called the Pontrjagin disc. The construction is a variant of the
classical procedure of L. S. Pontrjagin [28]. It has been axiomatized by R. F. Williams [38],
and has found applications in several more recent papers [21], [22], [1]. The space D? is
constructed as the inverse limit of an inverse sequence of discs with orientable handles.

We begin the construction by fixing notation. Let F denote a torus, with some fixed
triangulation t(F), from which the interior of a 2-simplex ¢ has been removed. Denote the
boundary of F by K. Let ¢ = ¢(F, K): F - ¢ be a fixed PL map which is one-to-one over
d¢ and such that ¢ ~'(dc) = K, and which sends all simplexes of F not meeting K to the
barycentre of ¢. Finally whenever we glue together two oriented manifolds along the
boundary of a 2-simplex, we shall use a fixed orientation reversing PL. homeomorphism
as the glueing map, so that the result will be an orientable manifoid.

Inductively we shall construct an inverse sequence of discs with orientable handles
{ Qx> Pr.x+1}» Where each Q, is embedded in R3, along with triangulations t(Q,) of Q, with
mesh 1t < klﬁ To begin let Q, be some tame 2-cell in R* and t(Q,) some triangulation of
it with mesh less than 1 (measured in the standard metric on R3). To construct Q, , , from
Q.. take the second barycentric subdivision [7(Q,)]"” of Q, and for each 2-simplex vet(Q,),
let A, = St(9,[t(Q,)]") so that A, < Int v. Then define

Qr+1 = (Qk - LVJ Int L) Y.} (Lv) Fv)
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where ¥,: K, — 04, is a copy of the fixed orientation-reversing homeomorphism chosen
above. We may clearly assume that (for some suitable embedding in R®) diam F, <
1/(k + 1) for every v. Finally choose t(Q,+;) to be some triangulation of mesh less
than 1/(k + 1) in the PL structure induced on Q,,, by the given triangulations of
(@ — U, Int 4,) and |, F,. To define the bonding maps p, x+;: Qu+1 — Qi take the
map induced by the identity on (@, — | J,Int4,) and by an appropriate copy ¢, of ¢
on F,, ie. such that ¢,|K, = ¢,.
We define the Pontrjagin disc to be

—
D?= m, {Qy, Pr.i+1}-

We define the boundary D2 of D2 to be p; 1(3Q,) and the interior of D2 to be D? — dD2. It
is easy to see that the definitions are independent of choices made in the construction, and it
follows as in [21] that D? — 9dD? is indeed homogeneous (although we shall not need this
latter fact). We shall use several times the fact that D2 is independent of choice of T(Q,). This
may be verified, for example by direct construction of maps between inverse sequences using
3.1 below. Forevery k > 0,let Z, = p; !, , (([7(Qx-1)]")V), i.e. the inverse image under the
bonding map p, ., , of the 1-skeleton of the second derived of Q,_,, and Z} = p; '(Z,),
where p,: D2 — Q, is the canonical projection. Note that p,] Z# is injective. Moreover each
of the components of D? — Z# is homeomorphic to the interior of D2.

ProOPOSITION 3.1. Let E be a disc with orientable handles. Then there exists an onto map
f:(D? 0D?2) - (E, 0E) such that f|0D? is a homeomorphism.

Proof. Let E have p 2 0 handles. Choose k large enough that @, has at least p handles. ‘
Clearly there is an onto map g: (Q,, 00,) — (E, E) such that g|Q, is a homeomorphism.
Then f = gp, is the required map.

LemMMA 3.2. Let X be a compact metric space and f: D* — X any map. Then for every
& > 0 there exists a finite cover € = {D?}I, of D? with Pontrjagin discs D} such that

() for everyi+#j, D} D} = 0D} n D7} is an arc, a point, or empty,

(i) for every i, diam f(D}) <,

(iii) The nerve of the covering € (as a simplicial complex) is some 2-dimensional simplicial
complex.

Proof. Given &> 0, it follows by uniform continuity of f that for sufficiently large k,
each component C, of D2 — Z} will map under f to a set of diameter less than ¢ The
desired cover consists of the closures (in D?) of each component C,. Its nerve is Q,.

We shall refer to such a cover, € say, of D? as a Pontrjagin cellulation ( for f of mesh less
than £). Note that the mesh is measured in X, not in D2, We remark that there is evidently a
theory of Pontrjagin surfaces just like the usual one, in which D2 replaces the usual 2-cell.
For example, just as in the usual proof of the Jordan Curve theorem, for a Pontrjagin
subdisc D of D? which is a component of D> — Z# for some k, the discs in some sufficiently
fine cellulation of D2 which meet D form a neighborhood of D which is itself homeomorphic
to D2 One may summarize this by saying that D? is a self-similar fractal; arbitrarily small
pieces are equivalent to the whole space, just as for the familiar 2-cell. We shall exploit this
in Section 4.

We shall adopt an obvious terminology for cellulations. By the O-skeleton or vertices we
mean all the singletons arising as D} n D7 as in 3.2(j). Similarly by the 1-skeleton or edges
we mean the arcs so arising.
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PROPOSITION 3.3. Let X be a Ic! space and f: D* — X an arbitrary map. Then for every
& > 0 there can be found an integer N and a map f': Qy — X such that f and f' py, are e-close.

Proof. Given ¢ > 0 let § be such that

(i) every subset of D? of diameter less than 4 maps under f to a subset of diameter less
than ¢/3.

(ii) for every loop a: S! —f(D?) of diameter less than & there exists an extension
& X — X, where X is a disc with orientable handles with 6 = §! and diam
a(Z) < ¢/3.

The existence of such a é follows easily from compactness and the Ic} hypothesis. By
lemma 3.2 choose a Pontrjagin cellulation for f of mesh less than . For each i, let
&: X, = X be the map guaranteed by (ii) for the loop f|0D?. As in the proof of Lemma 3.1
there exist onto maps ¢;: Qi — Z;. Let N = max{n(i)|1 <i < m} and define the required
map by f'|py(D?) = & ¢;py, - By the definition of 4 it is clear that f'py and f are indeed
e-close.

ProPoSITION 3.4. Let X be LC* and satisfy the disjoint triples property DD, [9). Then X
satisfies dd.

Proof (sketch): Given maps f;: D? —» X, (i = 1, 2, 3) and ¢ > 0, by 3.3 there are maps f:
Qx — X (for some N) such that f; and f;py are &/2-close. By DD, and an argument as in
Proposition 24.1 of [9], there exist maps g,: @y — X which are ¢/2-close to f; and satisfy
91(Qn) N 92(Qx) N 93(Qy) = . Then the maps g;py verify dd,.

In developing the properties of B2, we next recall two well-known facts about singular
homology—see [30]. Firstly the Hurewicz homomorpism is onto, so any element
A€ H,(X) is represented by a map f:S'— X. Secondly if A =0, then there exists a
compact orientable surface N with one boundary component B and a map F: N - X such
that F|B = f under some identification of B = dN and S'.

ProposiTioN 3.5. With the above notation, if A =0€e,H,(X), there exists a map
G: D? = X such that G|0D? = f|S* (under some identification of dD?* and S'). Moreover
given any map F: N — X representing a singular nullhomology of f as above, G may be chosen
so that there exists a surjection K: D? —» N with G = FK.

Proof. Given some singular nullhomology F: N -+ X, by 3.1 there is a surjection
K:D?~ N which is a homeomorphism over ON. Then G = FK yields the desired map.

LEMMA 3.6. If D, and D, are Pontrjagin discs such that D, n D, = 8D, n 8D, is an arc,
then D, uD, =~ D2

Proof. 1t is easy to see that if D, and D, are inverse limits of {Q{"} and {Q{®}
respectively, then D; uD, may be constructed inductively as above starting from
oMU QY. Since p, is 1 — 1 on Z¥, which contains D2, Q' n Q¥ is an arc homeo-
morphic to 0D, N dD,, and so Q¥ U Q¢ is a 2-cell. The result follows by the independence
of triangulation noted in the construction of D?2.

Definition 3.7. By the Pontrjagin annulus A we mean the space obtained from S!
x [1, 2] by replacing each of the discs {#eS'|0 < 0 < n} x[1,2] and {feS!|n < 6 < 2n}
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x [1, 2] by Pontrjagin discs. We define A to be the set corresponding to (S* x 1) U(S* x 2)

in S! x[1, 2], and (when convenient) regard both S* x 1 and S* x 2 as identified to S' via
6,1) =(6,2) = 0. It follows from 3.6 that A is homeomorphic to the space obtained
from S!x[1,2] by replacing each of the discs E; = {f#eS'|0;,_, <0 <80;}x[1,2],
0=60,<8, <...<86,=2n), by a Pontrjagin disc, for any choice of such 0.

Definition 3.8. A locally compact metric space is said to be locally Pontrjagin 1-
connected, denoted by 1 — pc, if it is locally connected and if for all open sets U and points
x e U, there exists an open set V such that xe ¥ < U and if f: dD? — V is any map, then
there exists an extension F: D2 — U. If X is compact this implies as usual that for all¢ > 0
there exists a > 0 such that if f: 3D? — X is any map with diam f(dD?) < §, then there
exists an extension F: D? — X with diam (F(D?)) <e.

THEOREM 3.9. Let X be a locally compact metric space which is locally Pontrjagin 1-
connected. Then for all x > 0 and g: S! = S! x 1 — X there exists n = n(x, g) > 0 such that
given h:S'=8S'x2- X with d(g,h) <n, there exists G:A — N,(g(S')) such that
G|oA =guUh.

Proof. By Scholium 2.2, we know that given k > 0, there exists d(x) > 0 such that if
f: dD? = X is a map with diam f(0D?) < § which takes values in some fixed compact
neighborhood of g(S!), there exists an extension F: D2 — X with diam F(D?) < k. Suppose
given g:S1 =S'x1 - X. Pick a sequence 0=0,< 6, <6, < ... <6, =2n such that
diam g([8,_,, 6;]) < d/2for 1 <j < k. Since X is locally connected, there exists u > 0 such
that any two u-close points in the chosen compact neighborhood of g(S*) can be joined by a
path of diameter at most 6/2. Let n = min(x, u, §/2) and suppose also given any h: §* = §*
x2 — X such that d(h, g) <n. As g(8;) and h(6;) are p-close for 1 <j <k, they may be
joined by paths of diameter at most /2. Such paths together with h and g define maps of the
boundaries 9E; of the discs E; = {6eS'|0,_, <0 <0;} x[1,2] forj=1,.. .,k By con-
struction, each 0E; is mapped to a set of diameter no more than 6/2 + /2. Hence replacing
(the interior of) each E; by a Pontrjagin disc, and using 1 — pc, we can extend these maps to
a map G of the new space to X. By the remark at the end of Definition 3.7, this new space is
homeomorphic to A, while it is clear that G|dA =guh and G(A) < N,(g(S?)), as
required.

4. REPRESENTATION OF 1-DIMENSIONAL HOMOLOGY CLASSES

In this section we show that under local connectedness hypotheses for the appropriate
homology theory, 1-dimensional homology classes and relations between them have
singular representations. There are two main ideas. Firstly we use a “resolution” involving
the Menger universal curve to show that 1-dimensional homology classes in locally
connected spaces have a singular representation. Secondly we revive an old argument of
Hurewicz in our “fractal” setting to show that an approximate mapping property implies an
exact one. It follows that in Borel-Moore (= Steenrod-Sitnikov) homology, trivial 1-cycles
in a homologically locally 1-connected space are represented by maps of Pontrjagin discs.

THEOREM 4.1. Let X be a connected, locally connected and locally compact metric space.
Then the natural transformation T, g: H,(X)— gH(X) is surjective (and hence so is the
natural transformation T, o: H,(X) — cH,(X)).
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Proof. Consider any z’ € ;H,(X). Since we are taking homology with compact supports,
we can find compact subsets K and L of X such that K< lInt L and z’elmi,:
gH,(K) = gH,(X), say z’ = i (z). There is no harm in assuming L lies in the Hilbert cube
I*. By a theorem first obtained by R. D. Anderson [2] (see [39] or [11] for a proof) there
exists a continuous surjection 7: u! - I such that for all points xeI®, n~!(x) = u'. Here
u! denotes the Menger universal curve. The map n|n ~!(K): #~ !(K) — K is a Vietoris map
in exact homology in degree zero, ie. g H,.(n~1(y)) = 0 for m < 0 and all ye K, by Lemma
4.2 below. Hence by L. A. Nguen’s extension of the Vietoris—Begle mapping theorem [27],
n,: gH(n "} (K)) - gH,(K) is onto. Choose Ze cH,(n ™ '(K)) such that =,(Z) = z. Since
Int L is locally connected (LC®) and u! 1-dimensional, n|z~}(K):n ' (K)»> K cInt L
extends by the Kuratowski-Dugundji extension theorem [6] to a map P: N — Int L, where
N is some neighborhood of #~!(K) in u!. There is a commutative diagram

2~ YK)L2—sN

I

K—3mLALsx

.in which the horizontal maps are all inclusions. By Prdposition 4.3 below i, ,(Z) is singularly
induced, i.e. can be written as T, g(w) where we ,H,(N). Then we have

2’ = (igiziz)(2) = (i4i3)y (i2) s M4 (2) = (iJsP)...(ix)*(i) = (i4i3P).(Ts.E(W»
€ (i3 P)y (T, e(s H, (N))
< (i4i3)y T, g(;H (Int L)) = i4o(Ts e(,H (L)),

as required, using the naturality of T, .

LemMA 4.2. If u* is the Menger universal k-dimensional space, then for all i we have

eHi(1*) = cHy(u¥)
and
y 4 ifi=0,
cH(ub) = ﬁzan=h
0 otherwise.

Proof. The space u* may be written as the inverse limit of a sequence of maps of
(2k + 1)-dimensional PL manifolds M such that each bonding map is onto and has a single
non-degenerate inverse image, which is homotopy equivalent to a finite wedge of k-spheres
[3]. Such spaces are constructed by taking neighborhoods of the dual k-skeleton of finer
and finer triangulations starting from an initial I2**!, It is easy to see that the inverse
sequence {,H;(M)};cn vanishes except when i = 0, where it is constant and isomorphic to
Z, and when i = k, where it is isomorphic to the inverse sequence

zbtzo7l 7007207 200200Z00Z & ...,

where p, denotes projection on the first n summands. The cgnclusion follows at once from
the sequence 2.1 relating exact and Cech homology, since lim ! vanishes on sequences with
surjective bonding maps.
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PROPOSITION 4.3. If N is an open subset of p*, any exact or Cech 1-cycle is singularly
induced, ie. T, g,H,(N)) = gH,(N) and T, c(,Hy(N)) = cH (N).

Proof. If k > 1, there is nothing to prove since u* is LC* ! and so all groups agree [23],
[7; V.11.9].

Next suppose N = u'. By 4.2, ;H,(u') = ¢H,(u') and so it suffices to consider -H,.
Now in the notation of 4.2, cH,(N) = lim? JH(M;)where N = u' = (\T M, the M being
the stages in the usual Menger construction [17; 1.11.5, p. 122]. Here we regard all M; as
subsets of M, = I3, with the inherited metric. To produce a singular 1-cycle realizing a
given Cech class, it clearly suffices to prove the following: given a PL map f;: ' = M;
representing A€, H,(M;), and such that f;(S') meets all the cubes of the jth stage of the
construction, then there exists a PL map fj,,: S* - M, such that f;, ,(S') meets all the
cubes of the (j + 1)st stage of the construction, and such that f;,, represents an arbitrary

element of ((p;+1,;),) " (A€ H (M;,,)and d(f},f;+,) < 3‘&/5, the diameter of the cubes
used in the jth stage of the construction. Given this statement, it is easy to construct
inductively maps f; converging to a (sugjcctive) map f: S! - N whose singular homology
class represents any given element of lim,H,(M)).

The above conditions are easy to arrange. The second condition follows if in altering f;
to f;+, we move no point out of the cube C, of the jth stage of the construction in which it
lies. To achieve this simply ensure that each arc of f(5') N C, is moved (keeping endpoints
fixed) within C, so as to miss the new holes drilled in C,, at the same time ensuring that we
avoid the places on the faces of this and all subsequent cubes where holes are to be drilled.
Moreover since ker (p;.+ ;, ;) is a sum of copies of Z, one corresponding to each hole drilled,
and is a direct summand in ,H,(M;,,), we can wind f(S') n C, areund the new holes to
produce any required element as in the second condition. [We must also ensure inductively
that f;,, does meet every cube of the (j + 1)st stage of the construction. This poses no
problems, one simply runs feelers into any uninvolved cubes.]

Finally if N is open in u!, it follows by M. Bestvina’s triangulation theorem 3] that N
has a cover by closed sets each of which is homeomorphic to u! and which overlap, if at all,
in sets homeomorphic to u'. By a routine Mayer-Vietoris and induction argument, plus the
taking of direct limits, it follows from the above case that for arbitrary unions of such sets,
and in particular for N itself, the desired conclusion is true.

THEOREM 4.4. Let X be a connected, locally compact and lc} metric space. Suppose
f: 8' = X is a map such that the corresponding homology class A€ gH,(X) is trivial. Then
there exists an extension of f to D2, i.e. a map F: D? — X such that (under some identification
of D2 and S'), F|oD?2 = f. g

Remark. Here and in 4.9, one can replace lc} by Icg (local 1-connectedness with respect
to Cech homology), without change to the proof.

Proof of 44. The proof will employ two subsidiary lemmas. The strategy of the proof is
as follows; A is nullhomologous in some compact set K, which we can regard as being
embedded in the Hilbert cube. Then 4 is also nullhomologous in arbitrarily close neighbor-
hoods of K. Since these neighborhoods are ANRs, we may take singular homology, and so
by 2.5 regard the nulthomology as represented by a map of 2. The aim is then to use the Ic}
condition to push this map into K. To do this, the following definition is required.
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Definition 4.5. We say that a locally compact metric space X is weakly Pontrjagin 1-
connected, denoted by 1 — wpe, if it is locally connected, and if for all relatively compact
open sets U and points x € U, there exists an open set ¥ such that xe V' < U, and such that if
f:0D? - Vis any map, then there exists an embedding of U in the Hilbert cube I ® such that
for any neighborhood P of U in I®, there exists an extension of fto F: D2 — P.

A routine uniform continuity argument shows that the definition of 1 — wpc is inde-
pendent of the choice of embedding of U in the Hilbert cube. Of course such an embedding
always exists. Equally it is clear that 1 — pc implies 1 — wpc, since the former condition
guarantees extensions to U itself (rather than merely arbitrarily close neighborhoods
thereof).

LeMMA 4.6. Let X be a connected, locally compact and lct metric space. Then X is
1 — wpc.

Proof. 1t is well-known that an lcg space is locally connected. Without loss of generality,
suppose U lies in the Hilbert cube (where x and U are as in Definition 4.5). Pick ¥ for U as
in the definition of lc}. Given f: dD% — V, by the Hurewicz homomorphism f determines a
class ue,H, (V). Let P be an arbitrary open neighborhood of U in I°. The composition

H (NS H, (V) S gH,(U) - gH,(P) 5 ,H,(P)

clearly carries pu to the class y’ obtained by applying the Hurewicz homomorphism to f
regarded as a map to P. By lcg, we know that i, is zero, while the last map is an
isomorphism (the inverse of T, ;) since P is locally contractible and so HLC [7]. Hence
' = 0 and by Proposition 3.5, there exists a map F: D — P such that F|dD? = f. Clearly F
satisfies the requirements for 1 — wpc.

We now show that with an “extra” 1 — wpc hypothesis (in fact not extra, by 4.6), the
statement of 4.4 holds.

LeEmMA 4.7. Let X be a connected, locally compact and Ic} metric space which is 1 — wpc.
Suppose f: S* — X is a map such that the corresponding homology class A€ g H,(X) is trivial.
Then there exists an extension of f to D2, i.e. a map F: D? — X such that (under some
identification of D2 and S*), F|0D?* = f.

Remark. This is essentially due to Hurewicz [20], who applied the self-similar “fractal”
structure of the standard cell to prove that a weak LC" property implies the usual LC"
praperty. The idea behind the proof is simple and beautiful —repeatedly subdivide the cell

. into smaller and smaller similar pieces, applying weak local connectedness with tighter and
tighter controls to push the map closer and closer to X.

Proof. Since zH, has compact supports, we may suppose that 4 is nullhomologous in
some compact subset L < X. Choose compact subsets M, N such that L cIntM
c M c Int N < N. There is no loss of generality in assuming N is a subset of the Hilbert
cube I®, with inherited metric. By 2.2, we may assume that given n > 0,

(i) there exists 8 = 6(n) > 0 such that if x, x’e Int M and d(x, x’) < 6(y), then x and x’
may be joined by a path in N of diameter less than .

(ii) there exists 8 = 5(n) > 0 such that if f: D> — M satisfies diam f(9D?) < 6, then for
any neighborhood P of N in I® there is an extension F: D2 — P such that diam
F(D%) <.
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We require a sublemma.

SUBLEMMA. Suppose given open sets V < U of I® such that U "N < Int M, and a map
g: D2 = V such that g(dD3*) c VnInt M and, for any « > 0,g|0D?: dD? - VnInt M
extends to a map G: D2 - N, (U M). Then given 8 >0, y > 0, there can be found a
cellulation € = €(B,7) of D? and a map h = h(B, y): B? — Ny(U n M) such that:

(a) h|oD? = g|oD2;
(b) for any cell Ce ¥, h(0C) = M,
(c) for any cell Ce¥, diam h(C) < y.

Remark. The hypotheses of the sublemma hold if V"M and UM are as in the
definition of 1 — wpc, or if g|0D? represents a nullhomologous class in ¥ " M.

Proof of Sublemma. We first define a new map G whose image lies much closer to N. Let
u = $6(6(7)/2), where the functions & and 6 are as in (i) and (ii) above. Without loss of
generality, we may also assume that p <3 dist (U, N — Int M); we remark for future
reference that as a result G and the map g defined below both meet N only in a subset of
U nIntM. Choose a map G: D? — N,(U n M) as guaranteed by the hypotheses of the
Sublemma. Pick a cellulation € = %(8,y) of D2 such that for each cell De¥, diam
G(D) < u (possible by uniform continuity of G). We will define g inductively on the skeleta
of €.

For each vertex v of €, define g(v) = G(v) if G(v)e U n Int M; otherwise let g(v) be any
point of U n Int M within u of G(v). This defines g on the O-skeleton of €.

Suppose v and v’ are vertices of the same edge e in the 1-skeleton of €, e being a face of
De¥ say. If G(e) =« U nInt M, define gle = G|e; otherwise note that

d(g(v), g(v")) < d(g(v), G(v)) + diam G(D) + d(G(v'), g(v')) < p + p + u < 8(3(y)/2).

Hence we may join g(v) and g(v') in N by a path of diameter (y)/2, and we use this path to
define g on the edge e. Note that by the above remark, g(e) = U n Int M. By doing this
process for all edges, we define g on the 1-skeleton of €.

Now for any cell D of ¢, diam g(dD) is at most twice the diameter of (the image of) an
edge, i.e. at most 2.5(y)/2 = 6(y). Thus we may complete the definition of g by extending
over each cell D of € by a map equalling the already defined g on D and whose image has
diameter less than y and lies in N4(N), using the 1 — wpc property (ii) stated at the start of
the proof. By the remark, the extension in fact takes values in. Ny(M) as required. The
properties (a), (b) and (c) claimed in the Sublemma are clear. This proves the Sublemma.

To complete the proof of the main result, we shall apply the sublemma inductively, to
produce a sequence of maps converging to the desired map F.

Let ¢, = {5dist (L, N — Int M) and ¢, = 4¢,_, for k > 1. Let 8, = 8(¢,) where ¢ is the
above function. Without loss of generality, 6,., < §, for k > 0.

Inductively we shall construct maps fo.f;,....fki: D2—I® and cellulations
€y, €,,%,,...,%, of D? such that, for 0 <i <k,

1, filoD?=f|oD?

2, f; sends the 1-skeleton of €, to M,

3; for any cell D of €,, diam f,(D) < ¢,

4, for any cell D of ¢, diam f(dD) < §,,,,

TOP 31:3-L
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and, for0<i<k—1,

5, €., refines G,,
6; f;=fi+, on the 1-skeleton of €,,

T, d(fi.fiv1) <&

To obtain f,, apply the Sublemma with U = V' = N, (L) and § = y = min(g,, ;). Note
that by the definition of ¢, and the hypothesis onf: §! — L, the hypotheses of the Sublemma
hold. Inductively given f; for i < k, we construct f; , , by applying the Sublemma to each cell
of €,. More precisely, given Ce¥,, by 4,, diam f,(3C) < 8, ,. Thus choosing (for some
convenient point ye M) ¥V = N, . (y) and U = N, (y), the hypotheses of the Sublemma
hold for ;| C: C — V. Choosing § = y = min(g . ;, ;+ ), the Sublemma produces a map on
C and a cellulation of C; amalgamating the cellulations, and taking the unions of the maps,
for each cell, produces €, ., and f; ., as required. Properties 1, , ; to 6, , are clear from the
construction. Finally it is clear that on any cell C as above, f;(C) and f; . ,(C) both lie in
U = N, (y), from which 7,,, is clear. This completes the inductive construction of the
maps f;.

Clearly (f,) is a Cauchy sequence in the complete metric space of maps from D? to I®,
and so converges to a map F: D2 — I°. By 2 and 3, sup {d(f,(¢), M)} te D?} tends to zero
asn— 0,50 F(D?) = M < X. Clearly F|0D? = f]dD?, thanks to the above construction
of F from f. )

This completes the proof of 4.7, and hence thanks to 4.6 the proof of 4.4 is complete.

Remark. In fact we can work with an apparently slightly weaker condition than
1 — wpc, in which the “extensions” F of f: D2 — X are not precise extensions, but instead
can be chosen so that f|0D? and F|dD? are arbitrarily close as maps to X, (the rest of F
taking values in P < I*). The proof that this weaker condition in fact implies 1 — wpc uses
a similar fractal trick. Since we do not require the result, we merely draw a picture, leaving
the interested reader to figure out the necessary epsilonics.
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Exactly the same fractal ideas can be used to prove the following.

ProPOSITION 4.8. Suppose X is a compact locally connected metric space such that for any
map f: S* = X and any A > O there exists a map g: B> — X such that d(f, g) < A (where we
identify S! and 0B?). Then n,(X) = 1.

We again leave the proof of this result to the interested reader.
Putting this together, we have

THEOREM 4.9. Let X be a locally compact, Ick metric space. Then every class in gH (X)) is
represented by a map f: S' = 0D? — X. Such a map represents the trivial class if and only if
fextends to a map F: D% — X.

Proof. The representation and backward implication for triviality are simply restate-
ments of 4.1 and 4.4. For the forward implication, note that by naturality and the diagram

o2 5 p2 5 x,

it suffices to show that i,: pH,(dD?)— ¢H,(D?) is zero. In the inverse sequence
{Qns Py.n+1} defining D2, we note that i,: ,H,(0Q,) — ,H(Q,) is zero, and that the two
inverse sequences {,H;(Q,)},n and {iH 1(0Q,) }nen satisfy the lid_ittag—Leﬂler condition in
all degrees j. Hence by continuity of Cech homology and the lim! sequence 2.1 for exact
homology, we find i, = 0, as required.

THEOREM 4.10. Let X be a locally compact metric space. Then the following are equivalent:

(@) Xislcl,
(i) X is lck (locally 1-connected with respect to Cech homology),
(iii) X is 1 — pc (locally Pontrjagin 1-connected).

Proof. (i) implies (ii): This is immediate from the sequence 2.1, since the natural map
gH (U)—> cH,(U) is onto.

(ii) implies (iii): Local connectivity is immediate. Given x and U as in 3.8, pick V as
guaranteed by Ic}. Then a map f: S! — ¥ can be regarded as a Borel-Moore 1-cycle in V,
and so is nullhomologous in U. Thus by 4.9, f extends to F: D2 — U, as required.

(iii) implies (i): ‘Given x and U as in the definition of IcL, pick ¥ as guaranteed by 1 — pc.
By 4.9, any 1-cycle in V is represented by a map f: S! — V. By 1 — pc, this extends to F:
D? - U and by 4.9 again this reveals the original 1-cycle to have been trivial.

5. THE PROOF OF THEOREM 1.1

Firstly we show that dd, guarantees finite dimensionality. To begin, we split X into two
pieces, one of which is always 1-dimensional. Let { f;|lie N} be any dense set of maps in
€(D?, X); such a set exists since ¥(D?, X) is separable. Let A = { 2, £;(D?). Our plan is
(roughly) to show that X — A is always 1-dimensional, and that A can be chosen to be
finite-dimensional in the presence of dd,,.

Assertion 1. For any closed set K« X — 4, dm K< 1.
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Proof. Since having covering dimension 1 is the same as having integral cohomological
dimension 1 (see [34, Corollary 3.3]), it suffices to show c-dimzK < 1. We require a lemma.

LemMma 5.1. Let K be a closed subset of an n-hm X. Suppose c-dimgK < k. Then
c-dimzK < k if and only if K is lec" %!

Proof: Sufficiency. By [7: 11.15.13] it is enough to show that for all open sets @ < X
and points xe Q n K, there is an open neighborhood U n K of x in K (where U is open in
X) such that j*: H(U n K) = H¥(Q n K) is zero. By local orientability choose an open
neighborhood W < Q of xe€ X such that on W the homology sheaf of X is constant [8].
Since X is clc®, by [7: V, Exercise 31] we may find open sets U < ¥ < W such that
i,,:,,-ﬁ,,(U)—»Eﬁ*(V) and i*:EH~*(V)—>EH~*(W’) are zero. Then for k < n there is a
commutative diagram

gHy (W) > gH, (W, W —K) - gH, . (W—K) > gH,_,_,(W)

Ti-o T8 T 1
eHyi(V) = gH,((V,V—K) = gH, ; (V—K) - gH, (V)
T Ta T Ti,=0

Eﬁn—k(U) - gH, (U, U ~K) - EH~u—k—1(U -K) - £H~n—k—1(U)

arising from the exact sequence of a pair. Further by the collapse of the Poincaré duality
spectral sequence [ 7; V.8], the vertical maps of the relative groups may be identified with the
maps

HYUnK) S H' (v nK) 5 HY(W A K).

Then if K is lcc® %!, we may suppose § = 0 and a diagram chase verifies that Bu is zero.
Hence so is j*: HY(U n K) - H*(Q n K).

If k > n the result is trivial since for any subset K of X, c-dimz K < c¢-dimz X = n.
Finally if k = n, there is no loss of generality in assuming U, V and W are connected. Then
gHo(U, U — K) = Coker (i,: gHo(U — K) = (Hy(U)) is zero if and only if U — K # (.
Now by definition of lcck, we know U — K # .

Necessity. Suppose c-dimz K < k, and that k < n. Then the groups in the second
column of the above diagram are all zero, and by a similar diagram chase it can be verified
that yo = 0. If k > n, there is again nothing to prove, as fHy(U,U — K)=0if j <0 [31].
Finally if k = n, the result is immediate by the above necessary and sufficient condition for
the vanishing of Hy(U, U — K).

COROLLARY 5.2. Let K be a closed subset of an n-hm X. Then

(i) c-dimzK =nifand only if IntK # .

(ii) c-dimyK =n— lifand only ifIntK = & and K separates X locally at some point.

(iii) ¢c-dimzK < n —3ifand only if Int K = &, K does not separate X locally anywhere,
and given any open set U, there exists an open set V< X with V< U and i,:
eH{(V - K)- gH,(U — K) zero.

This is immediate from the proof of 5.1. To complete the proof of Assertion 1, we use
Corollary 5.2 (iii) with n = 4. Note that by choice of 4, Int K = ¥ and K does not separate
X locally anywhere, since any image of D2 is path connected. We claim that for open sets U
as in the above diagram, a = i,: ;H,(U — K) - H,(U) is injective. From this the required
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lec} condition follows. Indeed in the diagram

eH1(U — K) = gH,(U)

T8 Ty
gHi(V — K) = gH\(V),

where all maps are induced by inclusion, we may use the lc} condition to ensure that y = 0.
Hence aff = 0 and so f = 0 if « is injective.

Suppose then that AeKera. By 4.9, AeKera gives rise to a map F: D2 — U such that
F(@D?) c U — K represents AcgH,(U — K). Let &= min(dist(F(D?), FrU), dist
(F(0D2), K)). By definition of A, there exists h: D2 - 4 = X — K such that d(h, F) <¢
(so h(D?) < U), and d(h|0D?2, F|0D?) < n(e, F|0D?), where nisasin 3.9. Let D = D2 U A,
where the component S* x 1 of dA is attached to 9D 2. By applying 3.5 twice, it is easy to see
that D =~ D2. By taking h on S* x 1 and the restriction of F on S* x 2 and applying 3.9 (with
the roles of S! x 1 and S* x 2 interchanged) and 4.10, we produce a map k: A - N,(h(S'))
extending the given map on the boundary JA. Then k and h determine a map
I: D2 = D - X. Now !|0D? represents A and by choice of ¢, [(D?) = U — K. Hence by 4.9, 4
represents the zero class in H, (U — K), i.e. « is injective. This proves Assertion 1.

We now use the special dd, hypothesis to produce a finite dimensional A. Let € =
€(D2, X). We claim that if X satisfies dd,, then €,_; = €,_(D?, X) is dense in €. To this
end take a countable collection {(D{", D{?, . . ., D{)|ke N} of n-tuples of pairwise disjoint
Pontrjagin subdiscs D{? = D? such that for every i and k, 0D’ = Z¥ for some I = (i), and
such that for any n distinct points x,, x,, . . . , x,€ D? there is an integer k > 1 such that for
every je{l,2,...,n}, x;€eD{. Without loss of generality, we may assume that if A}

= DY’ n dD? is non-empty, then it is an arc—see the remark after Lemma 3.2. Informally
the collection separates n-tuples of points in D2. Define &; = {fe¥|(\}-, /(DY) = & }.

Assertion 2. &, is dense in €.

Proof. Suppose given fe% and ¢ > 0. For simplicity write D/ and A4’ for D{’ and A}
respectively. First we consider the case where all the 47 are empty. By the remark after
Lemma 3.2, we may choose slightly larger pairwise disjoint Pontrjagin discs E/ such that
D/ < Int E/ and (as in 3.7) E/—Int D/ is a Pontrjagin annulus A’. By 4.10 X is 1 — pc and
3.9 applies. Thus provided E/ is only slightly larger than D/, the maps induced on the two
components of dA’ by fwill be 4n(c/2, f|0E) close, where 7 is as in Proposition 3.9. By dd,
pick maps g;: D — X such that (\}.,4,(D;) = & and d(f|D’, g;) < min (¢, in(e/2, f|OE’)).
Then by 3.9, f|0E’ and g;|0D/ extend to a map F;: A’ — N,;, (f(3E’)). Define f': B? - X
using fon D2 — | )}, IntE/, F, on A/, and g; on D’. Clearly f’ € &,, while by choice of g,
and F, it follows that f and f’ are e-close.

The general case is proved in a similar way. Again we may choose slightly larger
Pontrjagin subdiscs E/ of D2 such that if A/ = ¥ then as before D’ < Int E/, whereas if
Al #£ &, then D) — A/ c IntE/, D’ N dE' = A’ and f|dD’ — A’ and f|0E’ — 0D? are
sufficiently close. More precisely they should be so close as to satisfy the condition in a
version of 3.9 based on a Pontrjagin strip instead of a Pontrjagin annulus, where a
Pontrjagin strip is a copy of D? with dD? identified with ([0, 1] x[1, 2]), and with
oD’/ — AV and 8E’ — dD? corresponding to [0, 1] x 1 and [0, 1] x 2 respectively. As in 3.9,
the strip is divided into a chain of “small” Pontrjagin discs, and local Pontrjagin 1-
connectivity is used on each. Further details are left to the reader.




620 W. J. R. Mitchell, D. Repovs and E. V. $tepin

Assertion 3. &, is open in €.

Proof. We show the complement is closed. Let f, - f as p — oo, where f,¢&,. Then
there are points x} e D{? such that f,(x}) = f(x2) = ... =f,(x}). As D{¥ is compact, (x})
has a subsequence converging to (say) x' € D} . A subsequence of this subsequence may then
be chosen so that the corresponding subsequence of (x2) converges to (say) x2e D).
Proceeding in this way, we obtain simultaneous subsequences (x}),(x2), ..., (x})
such that for each j, xJ. » x'e DY as p’ - . Since the f(x}) are all equal, we have
f(x)=f(x*)= ... =f(x") and so f¢ &;.

The density of €, - , follows by applying the Baire category theorem to (\{ &,, which is
clearly a subset of €,_,. Note that if f is in €, ,, then f is at most (n — 1) to 1, and so by
[17; 1.12.2], we have dim f(D2) <2+ (n— 1) — 1 = n. Since ¥(D?, X) is separable, we
may choose a countable dense sequence f,, f>, . . . with each f; in €, _ , . By the sum theorem
[17; 1.5.3] the set A = | J2, fi(D?) is at most n-dimensional.

The proof of the finite-dimensionality is now completed as in [35]. There exists by
Tumarkin’s theorem [17; 1.5.11] a G, set A’ > 4 with dim A’ = dim A. By the sum theorem
and assertion 1, dim(X — A’) = 1, since it is a countable union of 1-dimensional sets. By the
non-closed sum theorem [17; 1.5.10],

dmX <1+dimA +dimX - A)<1+n+1< .

The proof of the converse follows at once on setting N = 4 in the following general
result.

THEOREM 5.3. Let X be a finite-dimensional N-hm (N > 4) (e.g. X could be a finite-
dimensional cell-like quotient of a manifold). Then X satisfies dd,, and hence dd, for every
nz3.

Remarks. Conversely if X is a homology N-manifold (not necessarily finite-dimen-
sional), then provided n > 3 and N > 4, itis true that dd, , , implies dd,. It is also true that a
Z-homology 3-manifold satisfies dd, for all n > 4. These results, generalized to homology
with coefficients other than Z, will appear in another paper.

The proof of 5.3 proceeds in several stages.

Assertion 1. Any map of D2 to X can be approximated arbitrarily closely by a map
under which D2 has 2-dimensional image.
To prove this, let F = | ){2, F; be a union of closed sets in X such that c-dim F; = dim
F,<dim F =N — 3, and dim (X — F) =2 [17; 1.5.8]. Let @, = {f:D?2> X|f(D?)NF,
= & }. Clearly @, is open in € = €(D?2, X). We claim it is also dense. Suppose fe € and
& > 0 are given. Replacing F, by its intersection with a compact neighbourhood of f(D?) if
necessary, we may suppose F; is compact. Then applying Corollary 5.2(iii) and compactness,
we may find a § > 0 such that any loop in X — F; of diameter less than 4 is nullhomologous
in a set of diameter less than &/2 and lying in X — F;. To achieve this, cover F; by pairs of
open sets ¥ < U such that (by lect) i,: g H,(V — F;) = gH,(U — F,)is zero, and each set U
has diameter at most ¢. Then let & be a Lebesgue number for the cover { V}. Clearly there is
no harm in supposing that § < &/4. By 3.2 pick a Pontrjagin cellulation {D}I 1 <j<m}of
mesh less than /2 (measured in X) for f Let Z ={)J.,0D}. By ordering the cells
D}, D3, ..., D2, and using 5.2(jii) to alter f on any arcs dD? N dD? whose images under f
intersect F;, we construct g: Z —+ X — F, such that g and f|Z are §/2-close, and g = f on
oD} if f(D})nF,= . Then g(dD?) still has diameter at most 4, and so g(dD?) is
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nullhomologous in a set of diameter less than ¢/2 lying in the complement of F,. Thus by 4.9
there is an extension of g|éD? to h;: D7 —» X such that diam h;(D?) < ¢/2. Define
f:D? > X — F,; by using f on D? if f(Df)nF,= &, and using h, otherwise. Clearly
f'e®; and by construction d(f,f’) <e.

Thus by the Baire category theorem, (i, %; is dense in € = €(D?, X). Clearly if
ge( )14, then g(D*)NF = &, and so the image of g lies in the 2-dimensional set
X — F. This proves Assertion 1.

Assertion 2. Any two maps f,,f,: D? = X can be approximated arbitrarily closely by
mapsf;,f5: D? - X such that dim (f(D?) nf5(D?)) < Oand dim(fy(D?) <2(i=12).

Approximate f, as in Assertion 1. Let H = | J2, H; be a 1-dimensional F, set in the 2-
dimensional set f*, (D?) such that dim (f,(D?) — H) <0. Since n > 4,dim H <n — 3 and
by constructing an approximation to f, as in Assertion 1, but with each F; replaced by
F,u H;, an arbitrary close approximation f* to f, may be found. The required dimensional
conditions follow since the image of f*, misses H and F. This proves Assertion 2.

Given three maps f, f,f;: D? = X, use Assertion 2 to obtain approximations f', f to
f1,f». Then by the method of proof of Assertion 1, it is easy to find an approximation f to
f, whose image avoids the closed 0-dimensional set f(D?)f5(D?). It is clear that
D) Af5(D2) nf43(D?) = &, verifying dd,. This completes the proof of 5.3 and hence
of 5.1. Clearly we have the following Corollary.

COROLLARY 5.4. For n > 4, the ghastly generalized n-manifolds of Daverman and Walsh
[10] satisfy dd, but do not satisfy DD, for any q > 2.

Remark. The proof of 4.7 shows that there are indeed many non-constant maps of D2to
a generalized manifold, however ghastly.

6. PROOFS OF COROLLARIES AND CONCLUDING REMARKS

Corollary 1.2 follows from 1.1. Corollary 1.3 follows from 1.2 and 3.4, since by [9,
Theorem 16.11] M/G is LC*.

Remarks. In Corollary 1.2, it is sufficient to assume only that f is acyclic, rather than
cell-like. By constructing a dense 1-dimensional set as in [35], it is easy to see that cell-like
maps on 4-manifolds cannot raise dimension if and only if cell-like maps cannot raise
dimension on the class of all 2-dimensional compacta embeddable in some 4-manifold.
(This class includes all Boltjanskij compacta, see the questions below).

As remarked in the introduction, the theorem can be stated without mention of the
Pontrjagin disc. More precisely one may replace the disjoint Pontrjagin n-tuples property
by the following: for every ¢ > 0 there exists a § > 0 such that given any map f: §! — X with
diam f(S!) < 8, then f(S') is nullhomologous in a finite-dimensional subset of X of
diameter at most . (Here for simplicity we assume that X is compact.) Indeed if X is finite-
dimensional, this condition clearly holds. Conversely, by choosing a suitable cellulation, the
condition allows us to approximate arbitrarily closely any map f: D2 — X by one with
finite-dimensional image. Then the proof of Theorem 5.3 above shows X satisfies dd,, and
so it is finite-dimensional by Theorem 1.1.
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Questions 6.1. A compactum X is said to be a Boltjanskij compactum if dim(X x X) = 3.
The first example of such a space was constructed by V. Boltjanskij [4]. Note that such an X
must always be 2-dimensional [13].

(i) Can a cell-like map defined on a Boltjanskij compactum raise dimension?

(ii) Does every Z-homology 4-manifold contain a copy of some (or perhaps every)
Boltjanskij compactum? (Note that by [14] every topological 4-manifold contains a
copy of every Boltjanskij compactum (see also [33])).
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