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1. INTRODUCTION

This paper is concerned with cell-like maps. Very roughly the notion of cell-like map
is a generalization of the idea of homeomorphism. Under a homeomorphism, the inverse
image of a point is a single point. Under a cell-like map, the inverse image of a point
may counsist of more than one point, but has homotopical and geometrical properties
very like that of a point. It turns out that cell-like maps arise everywhere in geometric
topology -~ for example a limit of homeomorphisms between manifolds is necessarily cell -
like. Moreover cell-like maps enjoy pleasant homotopy properties, and cnjoy easier--to-
use categorical properties than homeomorphisms. Finally they are a tool which features
strongly in the solufion of key problews, such as the four-dimensional Poincaré conjecture,
the chiaracterization of topological manifolds, and certain profound problems in dimension
theory.

We introduce the notion of cell-likeness by describing a special case, namely that of
cellularity. The concept of cellularity originated in the work of M. Brown [31]: a subset
K C M of an n-dimensional manifold Af is said to be cellular in M if K = ({2, B; for
some sequence { B;} of n-dimensional cells B; C M, such that, for every i, k' C int B; and
B;,y C int B;. (Here and elsewhere in this paper, manifolds are assumed to have empty
boundary, but are not assumed to have any PL or sinooth structure.) Clearly every point,
and more generally every PL embedded cell in R (Euclidean n-space) is cellular in R™.
The so-called topologist’s sine curve, i.c. the set

K ={(z,y) eR* |y =sin(1/2),0< z < 1} U ({0} x [-1,1]),

provides a less trivial example of a cellular subset of the plane R* — in particular it shows
that cellular sets need not be locally connected.

Some clue as to the relevance of cellular sets lies in the fact that (with the above
notation) Al — K is homeomorphic to M — point. Brown used cellularity to prove that a
nicely embedded (# — 1)-sphere §°7! iu §™ is equivalent to the usual embedding as the
equator. The proof is of stunning elegance, and any reader unfamiliar with it is urged to
refer 1o the original iimmediately [31].
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As further evidence of the connection of this idea with homeomorphisms, suppose
S : M — N is alimit of a sequence of homeomorphisms f,. If M and N are n-manifolds,
it is a simple exercise to verify that if {C,} is a base of neighbourhoods of some point
z € N, with each Cy, an n-cell, then the sequence of n-cells { f;7!(C»)} is a neighbourhood
base of f~1(z), which is thus cellular in M. Thus study of the closure of homeomorphism
groups leads inevitably to the idca of cellularity.

Note that cellularity depends on the embedding of K" in M, rather than merely on
K itsclf. For example there exist wild arcs (i.e. embeddings of the interval [0, 1]) in R for
n 2 3 ([20], {79]) which have non-simply-connected complement and so are non-ccllular,
while the standard embeddings manifestly are cellular in R™. Nor is this dependence on
embedding only a phenomenon associated with wildness. The dunce hat, a celebrated
contractible 2-complex, can be PL embedded in R! in several ways, some of which are
cellular, some of which are not {159].

In view of this dependence on embedding, it is convenient to use a wider concept,
introduced by R.C. Lacher in [104] -- sec also [87], which does not suffer from this defect.
A non-empty compactum k' is said to be cell-like if for some embedding of A" in an ANR
M, the following property holds:

UV°: For every ncighbourhood U of K in M, there exists a neighbourhood V' such that
K C V' C U and the inclusion i : V — U is nullhomotopic.

Here and in what follows ANR denotes an absolute neighbourhood retract for the
class of separable metric spaces. The usual definition of an ANR Y is that whenever Y
is embedded as a closed subset of a separable metric space, then it is a retract of some
neighbourhood in that space. However an equivalent, and more useful, version of the
definition is in terms of absolute neighbourhood extension, namely that given a map f of
a closed subset A of a separable metric space Z 1o Y, there exists an extension of f to a
map F: U — Y, where U is some neighbourhiood of A in Z. The class of ANRs includes
all polyhedra, and is roughly the largest convenient class of spaces which homotopically
resemble polyhedra. For details of the properties of these spaces, sec [23].

Scholium 1.1. The following are equivalent for a finite dimensional compactum K.

(a ) K is cell-like.

(b) For any embedding of K in an ANR M. property UV'™ holds.

(c) K has the shape of a point.

(d) There exists some embedding of Iy in a manifold P such that K is cellular
in P.

(e) Every map of K" into an ANR is nullhomotopic.

(1) For every embedding of K in an ANR, K is contractible in each of its neigh-
bourloods.
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For a proof of these statements a convenient source is Lacher’s survey article [105].
Notice that (b) reveals that cell-likeness (unlike cellularity) is independent of the embed-
ding of K in a manifold.

Given a map f : X — Y, we say f is cell-like, respectively cellular, if for each
y € Y, the inverse image f~!(y) is cell-like, respectively cellular in (the manifold!) X.
Careful study of the definitions reveals that a cellular or cell-like compactum cannot be
empty, so f is necessarily onto. It is clear that both for maps and spaces, cellular implies
cell-like. The converse is false, since by (f) above, any contractible polyhedron is cell-like;
thus the wild arcs mentioned earlier provide examples of cell-like, non-cellular spaces and
maps. Readers should note that cell-like maps are called CE-maps by certain authors.
We shall explain at the end of section 3 why this is a very unfortunate name, and refrain
from using it again.

What exactly is the difference between cellularity and cell-likeness, when consid-
ering subsets of an n-manifold? It follows easily froin the Schoenflies Theorem that the
concepts agree for n < 2 [44]. In higher dimensions, we have the following result.

Cellularity Criterion. Let k' C M be a compact subset of an n-manifold, n > 3. If

n = 3 assume that some neighbourhood of K in M contains no fake 3-cells. Then K is
cellular in M if and only if K is cell-like and satisfies the following cellularity criterion:

For every neighbourhood U C M of K there exists a neighbourhood VCUofk
such that the inclusion-induced homomorphism i, : ;y(V - K) — m(U = K) is
trivial.

This was proved for n # 4 by D.R. McMillan, Jr. [114]); for n = 4 it was shown by
D. Repovs [130], using work of F.S. Quinn {126] and M.Il. Freedman [80].

As evidence that cell-likeness is not only a more convenient generalisation of home-
omorphism than cellularity, but also the correct one, we state the following result. A proof
may be found in {105]; see also the end of section 3.

Theorem 1.2. Let f: X — Y be an onto map between locally compact ANRs which
is proper (i.e. all point inverses arc compact). Then [ is celi-like if and only if for every
non-empty open subset U of Y, [if~1(U!): f~Y(U) = U is & homotopy equivalence.

Thus cell-like maps on locally compact ANRs are hereditary homotopy equivalences,
and so a natural homotopy theoretic generalization of homeomorphisms. It is interesting
that such hereditary homotopy equivalences appeared in the work of Sullivan {141] on the
Hauptvermutung in 1966 before the concept of cell-likeness was fully evolved.

As further evidence of the value of all this, suppose that M™ and N are n-manifolds.
Let H(M™, N") denote the (possibly empty) space of homcomorphisms of M to N, topol-
ogized as a subspace of the space of all continuous maps, with the usual compact-open
topology [71]. Let CELL(M,N) and CE(M, N) denote similarly the spaces of cellular
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and cell-like maps respectively. It is obvious (using the earlier remark about limits of
homeomorphisms being cellular) that:

HM,N)C HIM,N)C CELL(M,N)C CE(M,N).

Cell-like Approximation Theorem 1.3. For every cell-like map f : M™ — N™ be-
tween topological n—manifolds, and every ¢ > 0, there is a homeomorphism h : M — N
such that d(f,h) < € in the sup-norm metric on the space of all continuous maps. [Ifn =3
one must assume that f is cellular.)

Corollary 1.4.
(i) For every n, CELL(M,N)= H(M,N).
(ii) Provided n # 3, CE(M,N)=CELL(M,N)= H(M,N).

These results have a varied history. For n < 2 they were proved by J.H. Roberts and
N.E. Steenrod [131], and J.W.T. Youngs [158}; much earlier R.L. Moore had settled the
special case where M = N = §2 [121}). For n = 3, following proofs in certain special cases
by V.N. Kyong [103] and McMillan [116], the gencral case was obtained independently by
S. Armentrout [11] and L.C. Siebenmann [137]. The last-mentioned paper also contains
a proof of the case n > 5, while the case n = 4 was tackled by Quinn [126].

The restrictions here and elsewhere on the case n = 3 arise because of the unresolved
status of the Poincaré conjecture. If this conjecture is false, let F' be a fake 3-cell, i.e.
a compact contractible 3-manifold with boundary $? such that F' % B3; such a space is
obtained by removing the interior of a 3-simplex from a counter-example to the Poincaré
conjecture. Then let M = (§3 — the interior of 2 3-simplex JUF and let f: M — §3 be
a map which collapses F to a point but is otherwise a homeomorphism. Then f is cell-like
since F is contractible, but it cannot be approximated by homeomorphisms since M # §°
[31).

A thorough survey of the state of the art for cell-like maps up to 1977 is contained
in the paper of Lacher {105]. Related later survey papers are [35), {38], [41], [70}], [76]
and [129).
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2. WHY ARE CELL-LIKE MAPS IMPORTANT?

We give examples showing how cell-like maps have played an essential role in geometric
topology in the last three decades. One particularly rich way of viewing cell-like maps
is via decomposition theory. Given a closed, proper, onto map f : X — Y, there is an
associated decomposition G(f) = {/~'(y) | y € Y} of X iuto compact subsets. Note that
the map f is cell-like precisely if G(f) consists of cell-like sets. One may forin the quotient
space X/G(f), in whick cach clement of G( f) is identified to a (separate) point, and it is
easy to sce that Y = X/G(f). Thus one may study the map f via X and a decomposition
G of X, which has the advantage that one is working purely inside one space X. We shall
see that this is a natural and uscful procedure.

A. Exotic Factors Of R". Suppose that X is a space such that, for some 2, X x R =
R*t1 If n < 2, then X is nccessarily homeomorphic to R™, and in particular is a manifold
{155). For many years the corresponding result in higher dimensions was unknown. The
first counterexample, for n = 3, is due to R.II. Bing. His celebrated dog-bone space [16]
is a decomposition G of R3 consisting of single points plus an uncountable family of tame
arcs. The arcs are so entangled with each other that the decomposition space R3/G fails
to be a 3-manifold around the poiuts corresponding to each arc. Nevertheless, as Bing
showed in [17), R3/G x R 2 R, The deccomposition space is thus very ncarly a manifold,
and indeed the proof that it is not is intricate and delicate. Many more such examples are
now known. It is always possible to find in R* (for n > 3) an arc A such that R® — A is
not simply connected [20}, [79]. The quotient map p: R* — R"/A4 is cell-like, but R®/A
cannot be a manifold, because of the lack of simple connectivity on removing the point
corresponding to A. However, as shown by Andrews and Curtis [9]), R*/A x R @ R"+!,

B. The Double Suspension Problem. At the 1963 Conference on Differential and
Algebraic Topology in Scattle, J.\V. Milnor gave a list of seven of the toughest and most
important problems in geometric topology (108]. At the top of the list was the following
problem. Let M3 be a non-simply-connected homology 3-sphere (i.e. a closed topological
3-mnanifold with the integral homology of §%). An example of such a space is provided by
the Poincaré dodecahedral space [94). Its suspension EM is necessarily simply connected
and so by the Whitehead theorem homotopy equivalent to §¢, but cannot be homeomor-
phic to §*4, since the links of the suspension points are not simply-connected {113 ; 2.4.5}.
[By the suspension of the space X we mean the unreduced suspension, obtained by erect-
ing two cones on X, formally £X = X x [~1,1}/{X x -1,X x 1}.] However the double
suspension £2M disarms such an objection, and Milnor’s problem is whether E2M = §5.

An affirmative answer has surprising consequences. Clearly £2A contains a cir-
cle, joining up the suspension points, which is a subcomplex of the obvious triangulation.
In this triangulation, 1-simplexes of the circle are linked to copies of M, whereas in any
triangulation of §° obtained by subdividing the usual one, links of 1-simplexes are simply-
connected. Thus a homeomorphism of £2M with $* provides a weird triangulation of a
sphere, totally unrelated to the usual one. The homeomorphism, if it exists, cannot be a
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PL one, but must be ‘wild’. After a partial solution in some cases by R.D. Edwards in
1975, J.W. Cannon in 1977 {34), [36] showed that the double suspension of any homology
n-sphere is homeomorphic to §n+2, '

Cannon’s proof proceeds in two main stages. First he obtains a resolution of £2M,
that is a proper, cell-like map f : §$®*2 — £2M. Then he shows that such a map f can be
approximated by homeomorphisms, if its target has the so-called disjoint discs property,
denoted by DDP. A space X has the DDP if for any two maps f, f2 : B? — X of the
standard two-dimensional disc, and any ¢ > 0, there exist maps ¢;,9; : B? — X, such
that for i = 1,2 we have d(f;,g;) < ¢, and g,(B*) N g2(B?) = . The DDP is exploited to
produce self-homeomorphisms of $"t? which shrink the elements in G(f) in a controlled
way, so as to produce the approximating homeomorphisms. This shrinking technique,
invented and pioneered by R.H. Bing, shows the gain that results from working with the
understandable space (liere $"t?) rather than the more mysterious one (here £2M). An
excellent discussion of the proof can be found in the survey article by Cannon [38].

C. Edwards’ Approximation Theorem. Building on the work of Cannon, Edwards
proved in 1977 the following theorem [73], which generalizes Siebenmann’s Cell-like Ap-
proximation Theorem [137).

Theorem 2.1: Edwards’ Approximation Theorem. A proper, cell-like map [ :
M — X from a topological n-manifold M™, n > 5, onto an ANR X can be approximated
by homeomorphisms if and only if X has the DDP.

Edwards’ original manuscript [73] was never published. He wrote an outline of
the proof for the Proceedings of the 1978 International Congress of Mathematicians in
Helsinki [76]. Later F. Latour presented a proof at the Séminaire Bourbaki (108}, but a
complete proof (for n > 6 only) appeared for the first time in R.J. Daverman’s book (44).
The proof is one of the most impressive in the whole subject, intricate yet elegant.

The theorem provides an effective way of identifying manifolds. For example it is
easy to verify that a double suspension £2M has the DDP, and so the theorem replaces
the second (harder) half of Cannon’s argument in the double suspension theorem. More
generally it provides a powerful tool for recognising higher dimensional manifolds. There
are two snags in its use to identify a space X as a manifold. The first is the need to have a
cell-like map from a manifold to X. The work of Quinn [125], {1286}, [127], [128] provides
powerful machinery which to some extent guarantees that for a suitable space X, such a
resolution does exist. The second snag (the requirement that X is finite dimensignal) we
shall discuss in section 3.

Theorem 2.2: Recognition Theorem. An n-dimensional, locally compact, separable
metric space X is a topological n-manifold (n > 5) if and only if X satisfies the following
conditions:

(1) X is an ANR;

(2) Foreveryz € X, H(X,X - z;Z) > H.(R*,R* - 0;Z);

(3) X has the DDP;
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(4) A certain integer-valued surgery obstruction (X ) (the local signature) van-
ishes.

Condition (2) implies that X is a homology n-manifold, and condition (1) implies
that it is an ENR (Euclidean neighbourhood retract) and hence a generalized n-manifold
(23], {44]. Condition (4) then guarantees the resolution needed to apply Edward’s theo-
rem. For more information on the recognition of topological manifolds, see the surveys of
Cannon [35] and Repovs [129]. We shall return to this problem in the epilogue.

D. Topology Of 4—manifolds. One of the three Fields medals awarded in 1986 went to
M.H. Freedman for his epoch-making work on the topology of 4-manifolds. His work
culminates in a classification of all simply-connected 4-manifolds in terms of the inter-
section form on the second homology group and the Kirby-Siebenmann obstruction [95).
This follows from a topological theory of surgery in dimension 4. Oge of the main results
is the proof of the 4-dimensional Poincaré conjecture, that every 4-manifold homotopy
equivalent to the 4-sphere $* is homeomorphic to it [80]. The key step in the proof is
that the so-called Casson handle CH [85] is homeomorphic to the standard open 2-handle
H® = (B® x Int B?,0B? x Int B?). The Casson handle arises after an infinite process
of adding stnooth standard handles so as to control the fundamental group, during which
control over diffeomorphism type is lost. The proof of homeomorphism uses two cell-like
maps
H® — CH/{gapst} — CH

where {gaps*} is a certain cell-like decomposition. Freedman’s proof establishes, using
dazzingly beautiful arguments, that both these maps are in fact approximable by homeo-
morphisms. We recommend a survey of this work in a forthcoming book by R.C. Kirby
(93], while full details are contained in the book by Freedman and Quinn {81}

E. The Bing Shrinking Criterion. As already indicated, one of the crucial ideas in
this subject was introduced by Bing. A map f: X — Y of complete metric spaces is
said to satisfy the Bing shrinking criterion if for every continuous positive-valued function
€ : Y — Ry, there exists a homeomorphism h : X — X such that, for all y € Y,
diam hf~'(y) < e(y), and for all z € X, d(fh(z), f(z)) < €(f(z)). [ Y is compact,
" the function € may be replaced by a single positive number.] Under these hypotheses
on X and Y, it is true that f satisfies the Bing shrinking criterion if and only if it is
approximable by homeomorphisms [112]. The first use of this was made by Bing, when
he proved that the sum of two Alexander horned spheres is $3 [15]. Normally the space
X will be a manifold while Y will be more mysterious, and the criterion allows problems
about ¥ (such as proving that it is a manifold, homeomorphic to X) to be tackled within
X. This approach is dominant in decomposition space theory [44]. We shall not concern
ourselves directly with the shrinking process here, but the reader should be-aware that it
is a vital ingredient on the technical side of many proofs. I
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F. The Borsuk Conjecture. This conjecture [22] is that every compact ANR has the
homotopy type of a polyhedron. For simply—connected ANRs it was proved in 1957 by de
Lyra [49]). The first proof of the general case used the methods of Q-manifolds, that is
spaces locally homeomorphic to the Hilbert cube Q. Using a theorem of R.T. Miller and
Edwards [117] to the effect that the cone over a compact ANR is the cell-like image of the
Hilbert cube Q, J.E. West proved [151] that every compact ANR X is the cell-like image
of some compact Q-manifold. Now since cell-like maps between ANRs are homotopy
equivalences (see 1.2 above), X has the homotopy type of a Q-manifold, and so by the
earlier triangulation theorem for Q-manifolds, that every Q-manifold is homeomorphic to
the product of Q with a polyhedron [38], the Borsuk conjecture follows.

G. Maps Between ANRs And Simple Homotopy Theory. Further evidence of
the close connection of cell-like maps with homeomorphisms is provided by the following
theorem due to Chapman [38).

Chapman’s Cell-like Approximation Theorem. A map f: X — Y between locally
compact ANRs is cell-like if and only if f x idg : X x Q@ — Y x Q is approximable by
honicomorphisms.

This result, apparently of a rather abstract nature, has startling consequences. The
ANR theorem of R.D. Edwards {38] states that for any compact ANR X, X x Q is a
@-manifold, and hence by the triangulation theorem mentioned in the previous section,
X xQ = K x Q for some polyhedron K. It follows naturally from the theory of Q-
manifolds that K is_determined up to simple homotopy equivalence (38]. Thus to X we
may associate a well-defined simple homotopy type. This is summarised in the following
result:

Chapman-West Theorem. If f : X — Y is a cell-like map between compact ANRs,
then f is a simple homotopy equivalence.

Notice that as a trivial consequence a homeomorphism between compact polyhedra
is thus necessarily a simple homotopy equivalence, thereby demonstrating for example the
topological invariance of simple homotopy type and of Whitehead torsion [40], [118).
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3. THE CELL-LIKE MAPPING PROBLEM

Here we explain the cell-like mapping problem and analyse its history and connections
with other problems. Before tackling the main topic of this section, we need to review
some results from dimension theory. We remind the reader that in this paper we restrict
attention to separable metric spaces and continuous maps. '

First we give a definition of Lebesgue or covering dimension. Although not the
classical one, it is convenient for our purposes. We say that dim X < n if for every closed
subset A of X, and every map f : A — S, there exists an extension F : X — $" of f.
[The reader who dislikes thinking of §~! as the empty set may regard it as a convention
that dim @ = —1.] We define dim X = n if dim X < n but it is false that dim X < n - 1.
It must of course be verified that dim X < n implies dim X < n + 1, and for this we

refer the reader to J.J. Walsh’s elegant survey [148]. We record the following equivalent
characterizations.

Theorem 3.1. For a separable metric space X the following are equivalent.
(i)dimX <n
(ii) For every cover {U,} of X, there exists a refinement {V;} of {U,} (i.e. for
every (3 there is an a such that Vg C U, ) such that every point in X has a
neighbourhood meeting at most n + 1 elements of the cover {Vz}.

(iii) Every point of X has arbitrarily small neighbourhoods whose frontiers have
dimension less than or equal ton — 1.

In (iii) the dimension referred to is defined by induction in the obvious way. For
more information on dimension refer to R. Engelking's book [78]. We content ourselves
with stating some of the properties we shall use most often.

Theorem 3.2. Let X be a separable metric space. Then the following properties of
dimension hold. '
(i) X = U2, Xi, with X; closed in X and dim X; < n for all i, then dim X <
n.
(ii) £ X = X, U X, then dim X < dim X+ dim X2 + 1.
(iii) If f : X — Y is a closed onto map between separable metric spaces, and for
some integer k and all y € Y it is true that card f~'(y) < k, then dim Y <
dim X + (k- 1).

For details of these results, and their original authors, see the books by W. Hurewicz
and H. Wallman [90], and Engelking (78]

To define the cohomological dimension of a space, we replace S™ in the above
definition of dimension with the Eilenberg-MacLane complex K(Z,n). We recall some
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properties of these spaces. For any abelian group G, an Eilenberg~MacLane space of type
(G,n) is a connected CW complex X such that

G ifg=mn,

T X)= {o if ¢ # n.

An Eilenberg-MacLane space of type (G,n) will be denoted by K(G,n), a forgiveable
abuse of notation in view of 3.3 below. We shall be particularly concerned with complexes
of type (Z,n). It is clear that S! is of type (Z,1), and CP* is of type ('Z, 2). In general
an Eilenberg-MacLane space of type (Z,n) may be made from S™ by attaching cells of
dimension greater than n so as to kill the higher homotopy groups of §*. We record the
following properties of Eilenberg-MacLane spaces. ’

Theorem 3.3. Eilenberg-MacLane spaces have the following properties.
(i) For any G and n, an Eilenberg-MacLane space of type (G, n) exists, and any
two are homotopy equivalent.
(ii) For any G and n, and any space X, the set of homotopy classes (X, K(G,n)]
is naturally isomorphic to the n*® cohohlology group H*(X;G).

For proofs of these facts see [140]. In (ii) the cohomology is Alexander-Cech-sheaf"
cohomology, which coincides with singular cohomology if X is a CW complex (89}, [140).
A good introduction to properties of Eilenberg-~MacLane spaces is the paper of D.B. Fuks
(82). .

Throughout this paper, we shall write H* to denote Alexander—Cech-sheaf cohomol-
ogy. Coefficients will invariably be taken in the integers Z, and suppressed from notation.
We now define the cohomological dimension of a space X, denoted by c-dim X. We say
c-dim X < n if for every closed subset A C X and map f: A — K(Z,n), there exists
an extension to a map of X to K(Z,n). We make the convention that K(Z,-1) = @ (or
equivalently that c-dim X < -1 if and only if X = 0). Again we define c-dim X = n if
c-dim X < n but c-dim X £ (n~1). As before this definition requires a verification that
c—dim X < n implies c-dim X < n+ 1; the most elegant proof of this uses the observation
(implied by 3.3 (i)) that K(Z,n — 1) is homotopy equivalent to the loop space QK (Z,n)
— see {148]. We remark that it is easy to define cohomological dimension over any group
G by substituting K(G,n) for K(Z,n). We shall not need this idea, but in cases where
this is done it is usual then to refer to our definition as integral cohomological dimension,
and denote it by c-dimz.

Theorem 3.4. For a separable metric space X the following are equivalent.
(i) c-dim X < n.
(ii) For every closed subset A of X, i*: HY(X) — H™(A) is onto.
(iii) For every open set U in X, H*Y(U) 0.
(iv) For every open set U in X,.and every ¢ > n +1, HJ(U) 0.

In this theorem H}(U) denotes cohomology with compact supports. For U with
compact closure this is isomorphic to both the reduced cohomology of the one-point
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compactification, and to H*(X,X — U). For more information on this theorem and on
cohomological dimension, see {3}, (28}, [69], [886], [102).

It took some while before a satisfactory definition of dimension was written down.
Before G. Peano produced his examples of space-filling curves, an informal notion of
“number of parameters required to describe the space” had been used. Following work
by (among others) H. Poincaré, L.E.J. Brouwer and H. Lebesgue, a satisfactory expo-
sition (using a different definition, equivalent to that above) was given by P.S. Uryson
{145} in 1924. Difficulties in using this led P.S. Aleksandrov to introduce the notion of
(co)homological dimension. He proved the following theorem in 1932. (More precisely he
proved an equivalent statement about homological dimension [1].)

Theorem 3.3 (Aleksandrov’s Theorem). Let X be a separable metric space. Then
(i) c-dim X < dim X.
(ii) Hdim X < oo then c-dim X = dim X.

Aleksandrov then posed the obvious problem [2).

ALEKSANDROV'S PROBLEM. Is there an infinite-dimensional compactumn which
has finite cohomological dimension ?

Note that in one case the problem has a straightforward answer. Since S$! is a
K(Z,1), dimension one and cohomological dimension one coincide. However the general
case of this formidable problem resisted many attacks. Its significance was enhanced by
work of R.D. Edwards {74], who showed in 1978 that the problem had a connection with
another major problem, namely the Cell-like Mapping problem.

GENERAL CELL-LIKE MAPPING PROBLEM. Does there exist a cell-like map
f: X — Y between compact metric spaces such that dim Y > dim X7

For maps on 3-manifolds this problem first appeared (in an equivalent form) in
the works of Bing [18] and Armentrout [10]. The solution in this case is given in section
4 below. By Aleksandrov’s Theorem, and the Vietoris—Begle Theorem (which applies
since cell-like maps induce isomorphisms on cohomology), ¥ must either have the same
dimension as X, or be infinite-dimensional {12}, [154]. In many results about cell-like
maps, a restriction to a finite-dimensional range was needed, but it was hoped that it
could be removed. In particular it is known that if X is a finite-dimensional ANR, then Y
is an ANR if and only if Y is finite—-dimensional; this will be taken up later in the section.

Theorem 3.8 (Edwards® Theorem). The general cell-like mapping problem and Alek-
sandrov’s problem are equivalent. More precisely, if X is a compactum of cohomological
dimension n, there exists a compactum Z of dimension n and a cell-likemap f:Z — X.

We shall refer to a compactum such as Z as an Edwards’ resolution of X. Ed-
wards’ Theorem supplies the hard half of the equivalence, the easy part following from
the Vietoris—Begle Theorem as above. As with so many of his profound results, Edwards
never published his proof. Walsh’s excellent survey, to which we have already referred
[148], contains an independent proof. In 1987 L.R. Rubin and P.J. Schapiro showed that
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the equivalence holds good if one considers arbitrary separable metric spaces rather than
compacta {135].

In November 1987 A.N. Dranisnikov announced in Moscow the following outstand-
ing result.

Theorem 3.7 (Draniinikov’s Theorem [88]). There exists an infinite-dimensional
compactum with cohomological dimension 3.

It seems fitting that the solution should in the end be obtained by a Russian,
bearing in mind the contribution of Russians to the theory of dimension; Dranidnikov is
a student of E.V.S¢epin, who in turn was Aleksandrov’s last student. Dranisnikov had
worked consistently on the problem for the last six years, although as can be seen from
the bibliography, which includes a complete list of his publications [50-70}, during this
time he has obtained many other outstanding results.

We shall devote an entire chapter to Dranisnikov’s result, and most of the remainder
of the paper will be devoted to the cell-like mapping problem. It is convenient to consider
various specialisations of the problem, since in practice cell-like maps arise on nice spaces
such as manifolds.

CE(C,n): THE CELL-LIKE MAPPING PROBLEM IN DIMENSION » FOR
A CLASS C OF SPACES. For any space X € C with dim X < n, does there exist a
cell-like map f: X = Y withdimY > dim X?

We note various relationships between these problems, in the following theorem.
Let C denote the class of compacta, ANR the class of compact ANRs, and M the class
of compact topological manifolds.

Theorem 3.8. The following relationships exists between the various problems (where
= denotes that problems are equivalent, A C B denotes that an affirmative solution of A
yields an affirmative solution of B, etc.)
(i) CE(C,n)C CE(M,2n+1)C CE(C,2n +1).
(ii) CE(C,n) = CE(ANR,n +1).
(iii) Hn > 4, CE(M,n)C CE(C,n - 2).
(iv) For any class D, CE(D,n - 1) CCE(D,n).

Proof (sketch): In (i) the second inclusion is obvious. For the first, suppose there
is a cell-like dimension-raising map f : X — Y of an n-dimensional compactum X.
Then X embeds in R?"+! by the Menger-Pontrjagin embedding theorem {124]. Take the
decomposition G of R*"*+! whose only non-trivial elements are {f~'(y) | y € Y}. Then
the projection map p : R?*+! — R*"+! /G is cell-like and must raise dimension since its
image contains a copy of Y.

That CE(C,n) C CE(ANR,n + 1) follows by a similar argument from the result
of H. Bothe [24] that any n-dimensional compactum embeds in an (n + 1)-dimensional
ANR. For the reverse inclusion, suppose that dimension cannot be raised on n-dimensional
compacta, and let f: X — Y be a map on an (n + 1)-dimensional ANR. We use a result
of K. Sicklucki [138] that a collection of pairwise disjoint m-dimensional closed subsets of
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an m-dimensional ANR must be countable. If F is the frontier of an open set in Y, by
this result only countably sets of the form f~!F can be (n+ 1)-dimensional, while for any
F for which this is not true, F = f(f~'F) is by hypothesis at most n-dimensional. By
3.1 (iii) it follows that Y is at most n-dimensional.

Given a cell-like dimension-raising map on an n-manifold M™, Daverman {43} has
shown how one may choose a dense countable family of arcs and a (possibly different)
cell-like map f which is one-to-one over the (1-dimensional) union A of the arcs. Then
we have a cell-like map on M - A, and dim M — A < n -2 — see the remarks in section
6 about duality and cohomological dimension. By 3.2(i), ](A) is at most 1-dimensional
and so f must raise dimension on M — A.

Finally (iv) is trivial, as one simply converts f: M — X to f X ids: : M x §1 —
X xSt

It can be seen that the problems for various classes of spaces are intricately con-
nected. In what follows we will consider the problem for the special case of manifolds. Thus
by the cell-like mapping problem in dimension n we mean (in the above notation)

the problem CE(M, ).

We conclude this section with a discussion of cell-like maps in general. As evidence
of their good categorical properties, we mention the following.

Proposition 3.9.
(i) If (f») is a uniformly convergent sequence of cell-like maps between ANIs,
the limit map is also cell-like.
(i)Iff: X =Y and g : Y — Z are cell-like maps of locally compact ANRs,
thensoisgf.
(iii) Let {X;,pis+1,i} be an inverse sequence of ANRs, and assume that each map

Pis1,i is cell-like. Then the limit map py : X = lim X; — X, is cell-like.

Proof: We leave (i) as an easy exercise, while (ii) follows from 1.2, since gf is a
hereditary homotopy equivalence. For (iii), note that X must be an ANR. For on crossing
the inverse system with the Hilbert cube Q, by Edwards’ ANR Theorem the spaces in
thie new system are @-manifolds. Hence the cell-like bonding maps are approximable by
homeomorphisms by [38]. Thus by a theorem of M. Brown [30}, p; xidg : X x@Q — X, xQ
is also approximable by homeomorphisms. Thus as X x Q is a Q-manifold, by Edwards’
ANR Theorem again, X is an ANR: Then as p; xidg is approximable by homeomorphisms,
it is a cell-like and so its factor p; must be too.

Remark: 3.9 (iii) solves a problem of Lacher (private communication).

Following Edwards’ equivalence theorem in 1978, there was renewed interest in Alek-
sandrov’s problem. Attempts were made to show that various infinite-dimensional spaces
had finite cohomological dimension. It was known that a space with finite~dimensjonal
subspaces of arbitrarily high finite dimension could not be the target of a cell-like map
which raised dimension. Spaces with few finite-dimensional subspaces were also known
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— in 1979 Walsh [147] had constructed an infinite-dimensional space with no subspaces
of positive dimension!

Although powerful results, theorems 1.2 and 2.1 sufter from the serious limitation
that a hypothesis is made on the image. Since in practice most cell-like maps of interest
arise via decomposition spaces, such hypotheses are not easy to verify. The focus of much
work prior to Drani3nikov’s example was directed towards cell-like maps on general spaces.

When considering a cell-like map f : X — Y between general spaces, we cannot
expect 1.2 to hold, due to possible local pathology in the spaces. Indeed the proof of 1.2
shows that f is a weak homotopy equivalence and then appeals to the Whitehead theorem,
valid for ANRs. However one might hope that in general f would be a hereditary shape
equivalence, i.e. that for any closed subset K of Y, f|f~'K : f~' K — K would be a shape
equivalence. We recall that a map g : A — B is a shape equivalence if g* : [B, P) — [A, P)
is an isomorphism for every polyhedron P; this implies that g induces isomorphisms of
cohomology and more generally of any representable functor. We have the following result,
due to Kozlowski [98)].

Theorem 3.10. Let f: X — Y be a cell-like map and suppose that dimY < oo. Then
[ is a hereditary shape equivalence.

At the same time one should mention a retated theorem of Kozlowski [98] (see also [88}]).

Theorem 3.11. Let f: X — Y be a hereditary shape equivalence of metric compacta.
If X is an ANR, then Y is also an ANR.

The finite~dimensional hypothesis on Y in 3.10 cannot be removed. An important
example due to J.L. Taylor exhibits the Hilbert Cube @Q as the cell-like image of a map f,
defined on a compactum, such that f is not even a shape equivalence [142]. (This is the
reason for our dislike of the term ‘CE’ for cell-like maps, since it suggests incorrectly that
they are equivalences.) This example has been very fertile, and later authors have produced
yet more subtle counterexamples from it [48], [111]. At the heart of Taylor’s example is
an example of J.F. Adams and independently H. Toda (see [{48]) of amap §: EZNL — L
between finite complexes such that all the compositions g - TNg - NG . TENG are
essential. The example essentially does little more than take the inverse limit of the
associated sequence; it is interesting to note that Dranisnikov’s example in section 5 also
contains an inverse system in which all compositions of bonding maps are essential.

In the light of this example a great many reductions of the cell-like mapping
problem to equivalent problems were made. These are now of minor interest, follow-
ing Dranis$nikov’s example. However there is one which is definitely worth recording. This
is an unpublished result of Edwards and Henderson [74], {84].

Assertion 3.12. The answer to the general cell-like mapping problem is affirmative (i.e
dimension can be raised) if and only if there exists an inverse sequence of spheres

sm o Jiogna J2ogna s om Ji gman L

such that
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(a) All the compositions f [, -+ - fi are essential.
(b) There exists an integer m such that no fy is homotopic to an m--fold suspen-
sion T™g, where g ; S™+1—™ —, Gra-m,

For remarks on the status of the proof of this assertion, see [70]. Condition (a)
above is reminiscent of the property of the map used in the construction of the Taylor
example. However it is known that the maps f; cannot all be suspensions of a single map,
since by a celebrated result of G. Nishida [122] the stable homotopy ring is nilpotent.

Thus it would appear that Dranisnikov’s example has highly non-obvious consequences
for the stable homotopy ring of spheres.

4. CE(M,n) FOR n < 3: DIMENSION IS PRESERVED.

We first deal with the cases where n < 2. In each of these cases, it follows from well-known
results or obvious remarks that cell-like maps cannot raise dimension. For n = 0, there
really is nothing to be said, since cell-like maps are homeomorphisms. For n = 1, the
requirement that point-inverses be connected forces them to be closed intervals. From
this it speedily follows that cell-like maps are limits of homeomorphisms, which shrink
the non-trivial interval point inverses very small. Of course in these dimensions cell-like
maps are obviously cellular.

For n = 2, the argument is not quite trivial. Firstly note that a cell-like subset of
the plane R? is connected and cannot separate the plane, hence it is cellular. This is easily
seen by the Schoenflies Theorem. Hence the notions of cell-like and cellular coincide.
To see that the cell-like image of a 2-manifold must be a 2-manifold, it is easiest to
use the classical characterizations of such spaces {155). These can be phrased entirely in
homologically terms, since they involve only notions like separating arcs and circles. Since
a cell-like map definitely induces isomorphisms on homology (see 1.2 ), it must follow
that the characterization as a 2-manifold of the source M must pass down to the target
f(M)if [ is cell-like. Details may be found in a paper of R.L. Wilder [154] — for a more
modern treatment, see Cannon’s paper {35].

In the absence of a characterization of 3-manifolds, the first non-trivial case of the
problem occurs in this dimension. A proof that dimension cannot be raised in this case
was first obtained by G. Kozlowski and Walsh [100]; the proof appeared several years
later [101). Variants have also been given by F.D. Ancel {5] and Dranisnikov and Séepin
[70]. In 1984 Walsh found a very slick proof of the more general fact that a Z-homology
3-manifold must be 3-dimensional [149)].

Theorem 4.1. Let X be a Z-lhomology 3-manifold (i.e. a locally compact separable
metric space of finite cohomological dimension such that for any z € X, (X, X - z) =
Hy(R%,R3 - 0).) Then dim X = 3.

Corollary 4.2. Cell-like maps on 3-manifolds cannot raise dimension.
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Proof of corollary: I X is the cell-like image of a 3-manifold, by the Vietoris-Begle
theorem it follows that X inherits the homological properties of a 3-manifold, and the
result is immediate.

Proof of 4.1: Since X islocally connected, any map a : I — X may be approximated
by a map @ with dim @(I) < 1. To achieve this, simply split a(7) into finitely many maps
into path-connected neighbourhoods and use the fact that path-connected implies arc-
connected, plus the sum theorem for dimension (3.2 (i)). The metric space of all maps of /
to X is second countable, and so we may find a countable dense set of maps {a;: I — X}
with dim a;(J) < 1. Let A = {J7Z, ai(J). Then by Theorem 3.2 (i), dim A < 1. Now for
any closed set K in X, c-dim K > 1 implies that cither Int &' # @ orthat K separates
X locally (see section 6). If K is a closed set in X — A, it is easy to see that for any open
connected set U, the set U — K is non-empty and connected, by definition of A. Hence
c-dim A" € 1 and so dim K < 1, by the coincidence of dimension and cohomological
dimension in this case. By a theorem of Tumarkin [143 — see also 1.5.11 of [78]], there
exists a G5 set {i.e. an intersection of countably many open sets) G such that A C G and
dim G = dim A = 1. Hence X — G is a countable union of closed sets: by the above each
must be at most 1-dimensional and so by Theorem 3.2 (i), dim X - G < 1. Hence by
Theorem 3.2 (ii), we have

dim X <dimG+dim (X -G)+1 <3.
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5. CE(M,n) FOR n 2 7: DIMENSION CAN BE RAISED.

As is clear, the positive solution of this problem (i.e. that dimension-raising maps exist)
follows from Drani3dnikov's example of a compactum X with infinite dimeusion and coho-
mological dimension 3. For by embedding an Edwards’ resolution of X in R” C R" (n > 7),
and taking the quotient map as in Theorem 3.8, it is easy to produce dimension--raising
maps on R™.

The construction of such an é.\'ample involves a judicious mixture of geometric
techniques and algebraic ones. Apparently Dranidnikov initially believed that there were
no dimension—-raising maps. The turning point, and the revelation that it was necessary
to usc algebraic machinery beyond ordinary homology, came from a proof of the fact
that there is a map f : §* — PS™ which is a weak homotopy equivalence but induces
the zero map in K-theory. Here PS™ is the inverse limit of a Postnikov system for 5.
Moreover Dranisnikov had shown that if the compactum X has cohomological dimension
at most n, then for every closed subset A C X and every continuous map g: A — PS§™,
there exists an extension to X. If PS™ were S, then this latter result would solve the
problem negatively, i.e. would show dimension cannot be raised. Clearly these two results
suggest that the way to detect differences between PS™ and S™ is via an extraordinary
cohomology theory like K-theory, as opposed to ordinary cohomology or homotopy. With
the key insight that extraordinary cohomology theories had a role to play, Dranisnikov soon
found the necessary example. Certain natural constructions involve Eilenberg-MacLane
complexes, and for success appropriate cohomology groups must be zero. Fortunately the
Eilenberg-MacLane complexes A'(Z,u) for n > 3 behave in K-theory like points {8], {32].
In fact it turns out to be necessary to use K-theory with finite coefficients, to ensure
that finite subcomplexes of Eileuberg-MacLane complexes can be pieced together into an
inversc system with a compact limit. Dranisnikov has developed these ideas further [67],
suggesting that for each generalized cohomology theory between the Eilenberg-MacLane
spectrum and the sphere spectrum, there will be a different class of compacta which
have infinite dimension but are finite-dimensional in the eyes of the extraordinary theory
under consideration. In this section we confine ourselves to explaining the construction of
Dranisnikov’s example.

We describe Dranisnikov’s example in the reverse order to the usual logical one,
in the hope that this process will enable the reader to understand the key points in the
construction. One by one, the necessary details will be revealed.

The example X is the inverse limit of a sequence of simplicial complexes,
X =him {Xi, pisrai},
such that dim X' > 3 while c-dim X < 3. By Aleksandrov’s theorem (see 3.5(ii)), it follows

that dim X = oc. It is trivial to modify the construction to produce infinite dimensional
examples with larger finite cohiomological dimension.
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The bonds p;; : X; — X; (j > i) are all essential, and Xo = $*. Then poop: X —
Xo must be essential, since as Xy is an absolute neighbourhood extensor, and e-close maps
to it are homotopic, any nullhomotopy of py. o forces p;o to be nullhomotopic for large j.
We show that if dim X < 3, then p,, o must be nullhomotopic. For then dim(X x I) € 4
and so by the definition of dimension we can extend p., 0| X x 0 and a constant map of

X x 1toamapof X x [ to §1, contradicting the essential nature of po, . Hence dim
X >3

That c-dim X < 3 follows from the following condition satisfied by the maps
P = Pisric
for every subcomplex A of X;, Im i* : X, K(Z,3)] — [p~' A, K(Z,3)) containsIm (p|p~'(A4))" :
(A, K(Z,3)] — [p~'A, K(Z,3)), where i : p~' A — X is the inclusion.
This roughly says that the definition of cohomological dimension no more than 3 holds for
those closed sets which are inverse images of subcomplexes. This suffices to achieve the
result for all closed subsets of X, since in the construction the X; are embedded in the
Hilbert cube so that any closed subset A is a limit (in the Hilbert cube) of polyhedra of
the form p,-]},',-(J.-), where J; are subcomplexes. A routine application of neighbourhood

extensors and homotopy extension reveals that this yields the necessary extension to X
of any map of 4 to K(Z,3).

Notice that it follows from this that the maps p;o will be zero on cohomology in
degrees above 3. Since the cohomology of Xo = §* vanishes in degrees 3 and below, one
cannot use cohomology to detect that p;¢ is essential. To do this Dranisnikov employs an
extraordinary cohomology theory, which gives the proof its unique mixture of non-trivial
algebraic and geometric ingredients. The particular theory used is reduced complex K-
theory with mod p coefficients. This theory is represented by k*(X ) = [X AY,?, BU], where
)’;" is the Moore space S! U, B* (2-cell attached by a map of degree p, p prime). The
bonds pi4 ¢ will all induce injective maps on k*, in particular pfq : k*(Xo) % Z, — k7(X;)
will be injective. '

Having surveyed the features of the construction necessary for success, we now begin
to explain the details. As a final preliminary, we introduce the notion of an Edwards-
Walsh modification of a finite-dimensional simplicial complex K. This construction is
called the Edwards modification by Draniénikov in [68]. In the proof of Edwards’ theorem
published by Walsh [148] the construction appears anonymously. Apparently Edwards’
own proof applied obstruction theory without using this useful device, whose introduction
is due to Walsh.

As usual let k(") denote the n-skeleton of the simplicial complex K. We construct
stepwise on the skeleta a map ¢,, : Ed®(K)<*> — K(%), where the complexes Ed3( K)<">
are an increasing sequence of subcomplexes of the final complex Ed*(K) = Ed3(K)<*>,
where k = dim K. Moreover the maps ¢, are compatible, in the obvious sense that
én | ER(K)<*1> = ¢,_;. [Warning: Ed*(K)<"> is not the n-skeleton of Ed3(K),
but in general is an infinite-dimensional complex.]
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To begin, set Ed3(K)<®> = K® and ¢3 = idg. For every 4-simplex o of K,
regard its 3-skeleton (which is homeomorphic to §3) as the 3—skeleton of the bottom cell
in a copy K, of some fixed simplicial version of the Eilenberg-MacLane space Kk'(Z,3).
Let j, : 03 — K, be the inclusion, and M, the mapping cylinder (made into a simplicial
coniplex) of j,. Then Ed3(K)<*> is obtained from Ed*(K)<*> by attaching (for every
4-simplex o of k) a copy of M, along ¢(3). Extend ¢3 to ¢4 by collapsing each K, to the
barycentre & of o and extending linearly along the mapping cylinder.

The construction of Ed*(K)<*> from Ed*(K)<*> is typical of the steps needed
thereafter to construct Ed3(K) = Ed*(K)<¥m K>  Let ¢ be a 5-simplex of K. Consider

(o) = 67! (6'). This is an Edwards-Walsh modification of (some triangulation of)
54, and it is clear that ’

73 (¢7(0) 2 73 («»:‘ () - U 1;,) TACUE ééz,

r<o 1

while the lower homotopy groups vanish. (15 is the number of 3-simplexes in 6.) Thus,
attaching simplexes of dimension more than 4 to ¢; (o), we may construct an Eilenberg-

MacLane space i (@:5 Z.3). Let M, be the simplicial mapping cylinder of the inclu-

sion ¢:'(a) C K( :5 Z,3). Attach, for each 5-simplex o, this mapping cylinder to

by '{). As belore extend ¢4 to ¢s by collapsing the added Eilenberg-MacLane complexes
to the barycentres of the 5-simplexes. Continue inductively in this way for 6-simplexes,
... ,dim K -simplexes.

Note that there are many choices in the above construction, so it is not remotely
canonical. However we may assume that Ed3(K) is a countable simplicial complex. Also
there is a kind of naturality,in that if L is a subcomplex of i, then ¢|¢~* (L) : ¢~} (L) — L
is an Edwards-Walsh modification of L. Moreover for every simplex 7 € i’ of dimension
more than 3, $7!(7) is an Eilenberg-MacLane complex K (x, (+(¥),3).

The key property of the construction is that for every simplex p, of dimension more
than 3 and with boundary dp, the inclusion ¢~!(dp) C ¢~!(p) induces an isomorphism on
3rd cohomology. Of course in K itself, i* : H3(p)} — H?3(9p) fails to be an isomorphism
when p is a 4-simplex, and this is why c-dim K > 4.

) This key property allows us to verify that the ‘cohomological dimension less than
3’ criterion is satisfied for inverse images under ¢ of subcomplexes. Indeed let L be a
subcomplex of K, and € : L — K(Z,3) a map. Recalling that { ,K(Z,3)] = H3( ,Z),
there are no obstructions to extending £ to a map £ : LU K™ — K(Z,3) say. We
require an extension to Ed3(LK) of the map &gl (L) : ¢~!(L) — K(Z,3). We al-
ready have an extension £¢ to ¢~! (LU K®). Now in attempting to construct a ex-
tension from ¢~! (LU K™) to ¢~!' (LU K"V}, (n > 3), the vanishing of the rele-
vant obstructions follows from the key property. Indeed the obstructions in question
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lie in H"*Y(¢~Y(a),¢1(00); 7, (K (DZ,3)). Only when n = 3 can these be non-
zero. However from the exact sequence of the pair and the key property, it follows that
H*(¢p™Y(0),¢~1(80)) = H* (¢ 10) and it is easy to see that the latter group is zero.

The observant reader will be becoming increasingly worried that the Edwards-
Walsh modification is patently a non-compact complex. To restore compact complexes we
make use of properties of the extraordinary cchomology theory k*.

Firstly we note that ¢* induces an isomorphism

6" k*(K) = k* (EdY(K)).

To see this we use induction on dim K = k say. If & < 3 there is nothing to prove. For
the inductive step, a standard Mayer—Vietoris technique allows reduction to the addition
of a single (k + 1)-simplex o to K. Given the inductive hypothesis, by the 5-lemma ¢°
will induce an isomorphism on k*(K U o) provided that

(#167'(a))" 1 k*(0) = k* (¢7Y(0))

is an isomorphism. Since the left hand group is of course trivial, and ¢~(¢) ~ K(PZ,3),
we require that k* (K (@ Z,3)) = 0. By the Kiinneth formula for k* [153)}, since by 3.3(i)
K(G® H,n) ~ K(G,n) x K(H,n), it is enough to show that k* (K (Z,3)) = 0 and this
result can be found in the works of Buhstaber and Miséenko [32] or Anderson and Hodgkin

(8].

Secondly we note that &~ has compact supports. More precisely let J be an in-
creasing union of finite subcomplexes J = |J;° Jn. Then since all the groups k*(J,) are
finite, the Mittag-Lefller condition is automatically satisfied, the lim! term vanishes and

so lim k*(J,) = k*(J) (153]. It follows that since Ed®(A’) is a countable complex, for
any element A € k*(K'), there exists a finite subcomplex J) of Ed3(K) such that, if
i:Jy = Ed3(K) denotes inclusion, (¢i)* : k*(K') — k*(J,) is non-zero. We remark that
this is the reason for introducing Z, coefficients. With ordinary K-theory, the lim' term
might well be non-zero, and so non-trivial classes could restrict to zero on every finite
subcomplex, causing difficulties in securing a compact inverse limit.

We can now describe the construction of the inverse sequence producing the exam-
ple. Define Xo = §%. Pick ap, a non—zero element of k*(5¢) & Z, (exercise!). By the
above, there exists a finite subcomplex, X; say, of Ed® (X¢) such that (¢ | X1)" (o) = a3
say is a non-zero element of k* (X;). The inductive construction of a finite subcomplex
Xn of Ed®(X,—-1) such that (¢ ] X,)" (@n-1) = a, is a non-zero element of k* (X,) is
now clear, noting the ‘naturality’ condition on subcomplexes of the Edwards-Walsh mod-
ification. The bonding maps are simply restrictions of the appropriate ¢. Since all the a,,
are non-zero, no composition of the bonds can be inessential.

This completes our survey of Draniinikov's construction. Note that the construction

is at lcast in principle an explicit one except for the selection of finite subcomplexes of the
Edwards-Walsh modifications.
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8. CE(M,n) FOR n =4,5,6: THE OPEN CASES.

The answer to the problem is unknown for these three values of n. The cases n = 5, 6 seem
to differ from n = 4. Little progress seems possible for them. Obviously if an infinite-
dimeasional compactum of cohomological dimension 2 exists, then it could be embedded
in R®, showing that the problems for n = 5,6 would have affirmative solutions (cf 3.8 (i)).
Unfortunately Dranisnikov’s methods cannot produce such a compactum. The reason is
that if one uses the Edwards~Walsh 2-modification in place of the 3-modification, the
construction runs into problems since k* (K(Z,2)) 2 @ Z, is no longer zero.

The case n = 4 does look more tractable. In this case Draninikov and Stepin [70)
conjecture that cell-like maps cannot raise dimension. As evidence for this we note the
following result of the authors and Séepin.

Theorem 6.1. [120] Let X be a Z-homology 4-manifold which is Ic}. Then dim X < oo
(equivalently dim X = 4) if and only if for some n > 3, X has the disjoint Pontrjagin
n-tuples property.

Corollary 6.2. Let M* be a topological 4-manifold and f : M — X be a proper cell-like
map. Then dim X < oo if and only if for some n 2 3, X has the disjoint Pontrjagin
n-tuples property.

In the Theorem, Ic! denotes locally 1-connected with respect to singular homology.
A metric space X is said to have the disjoint Pontrjagin n-tuples property, denoted dd,,, if
for every € > 0 and every collection of maps fi, fa,..., fn : D* — X of the Pontrjagin disc
D? into X, there exist maps g1,92,...,¢n : D* — X such that (i) for every i, d( fi, i) < ¢,
and (ii) =, 9i(D?) = 0. The definition of the Pontrjagin disc D? is roughly as follows. It
is obtained from the standatd 2-cell by repeatedly subdividing and replacing the interior
of each 2-simplex by a small punctured torus. Thus it is the inverse limit of a sequence of
multiple tori of increasing genus. One can map D? onto any surface, and there are results
relating maps of surfaces to maps of D?. More details may be found in [120).

Before explaining the proof, we remark that the Pontrjagin disc does have geometric
interest. Very often in decomposition space theory, the fact that a surface has finite genus
is significant. For example in Bing’s hooked rug (a certain wild 2-sphere in R® — see [19]) a
loop round the stem of an eye-bolt cannot span a surface in the exterior of the sphere, since
infinite genus is required to miss the chain of eyebolts. Clearly the Pontrjagin djsc does
have infinite genus around every point. (Although it is not a surface, it is homogeneous
modulo the boundary.) One may see Pontrjagin discs lurking in the background in the
survey of Cannon [35]. It is also worth remarking that the ghastly generalized n-manifolds
of Daverman and Walsh 48] satisfly the disjoint Pontrjagin triples property, but do not
have the corresponding disjointness property for maps of ordinary discs.

Outline of the proof: To show X is finite-dimensional if it satisfies dd,,, we proceed
as follows. By a routine Baire category argument, one shows that the space of all maps of
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D? to X contains a dense countable subset {g;}, where each g; is (n — 1) to 1. By 3.2 (iii)
and 3.2 (i), A = Uy® ¢i(D?) is finite dimensional. The aim is now to mimic the argument
of Walsh in the case n = 3, by proving X — A has cohomological dimension 1. By the
remark after 3.5 it is then 1-dimensional, and so by 3.2(ii) it follows that X has finite
dimension.

Using the Poincaré duality spectral sequence {26, V}, one can show that in a ho-
mology n-manifold, for a closed set K, c-dim K < k if and only if for all open sets U
in X, the map 1, : fl;(U -K) - fl;-’(U) is injective for j < n — k — 1. It follows that
(for n = 4) c-dim A < 1 if and only if i, is injective for j < 1 and Int (X — A) = 0.
Under the Ic! hypothesis, we may take the homology to be singular, and the density of
A means that only the case j = 1 is non-obvious. Now (replacing A by a G set as in
section 4) a class in ker i, : H;(ANU) — H,(U) may be represented by a map of a surface
S : (F,OF) — (U,U N A). Then after mapping a Pontrjagin disc onto F, one uses the
density of A to obtain a nearby map ¢ : D? — U N A, and approximates this by a map of
a surface, to show the original class was zero in fll(A nu).

The converse is a routine exercise in dimension theory. First one filters X by a
sequence F; of 1-dimensional sets such that X — (|J}° F;) is 2-dimensional. Again using
duality, one can approximate a map of D? to X by a map missing each F;, and so obtain
a map with 2-dimensional image. Given a second map, one can similarly arrange that the
2-dimensional images of near approximations have 0-dimensional intersection, and it is
then simple to avoid this with a third map. This completes the outline of the proof.

Note finally that by 3.8 (ii), if every compactum of cohomological dimension 2 is in
fact 2-dimensional, then cell-like maps cannot raise dimension on 4~manifolds.
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7. EPILOGUE.

We conclude this survey by listing some of the remaining open problems related to cell-like
maps.

1. The Cell-like Mapping Problem For Manifolds.

The following remains one of the central problems of the subject.

PROBLEM 7.1. Isthere a cell-like map f : M — X, defined on a topological n-manifold
M, n € {4,5,6}, such that dim X = o0 ?

As was shown in chapter 6, this reduces for n = 4 to the following problem.

PROBLEM 7.2. Let f: M — X be a cell-like map defined on a topological 4-manifold
M?*. Does X have the disjoint Pontrjagin triples property?

An alternative way of looking at the problem CE(M,4) is via compacta of coho-
mological dimension 2 — see 3.8(iii).

PROBLEM 7.3. Determine which of the following hold:
(i) All compacta of cohomological dimension 2 are 2-dimensional.
(ii) There exists an infinite-dimensional compactum of cohomological dimension
2, but no Edwards’ resolution of it embeds in any 4-manifold.
(iii) There exists an infinite-dimensional compactum of cohomological dimension
2, and an Edwards’ resolution of it embeds in some 4-manifold.

Note that (i) and (ii) settle CE(M, 4) negatively, while (iii) implies a positive solu-
tion.

Turning to the higher~-dimensional cases, let f: Z — X be an Edwards' resolution
of Dranisnikov’s compactum X, i.e. Z is a compact 3-dimensional metric space and f is
a cell-like map. We obtained dimension-raising maps by embedding Z in R”.

PROBLEM 7.4. Does Z embed in R® for somen < 6 ?

If s0, there is obviously a cell-like di.mension—ra,ising map on R". As a supplemen-
tary problem, one might ask about the embedding dimension of Z. Notice that R"/G(f)
is a homology manifold and so by [42], R"/G(f) x R? has the DDP.

PR.OBLEM""I.S. Does R” /G( f) have the DDP? the DADP? (disjoint arc~disc proﬁ%rt_y)

At any rate it is clear that the DDP cannot prevent dimension being raised. Another
obvious problem is

PROBLEM 7.68. Give an explicit description (rather than a mere proof of existence) of
either an infinite-dimensional compactum of finite cohomological dimension, or a cell-like
dimension-raising map.

We also mention two problems due to Toruficzyk.
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PROBLEM 7.7. Suppose that in I* = I x I® (the 4-cell) there are disjoint continua
K and L such that p(K) = p(L) = I, where p : I x I¥ — [ is projection on the first
factor. Let C C I be a Cantor set. Does there exist an upper-semicontinuous cell-like
decomposition G of I* such that for every ¢ € C and every non—degenerate element g € G,
it is true that gNp~ ()N K #0 £ gNp~(c)N L?

If the answer is yes for every such K, L and C, then Toruniczyk can show that dimension-
raising maps exist on 4-manifolds.

Recall that a dendrite D is the closure (in R? say) of a direct limit of trees. Every
2-dimensional compactum embeds in D x D x I [25].

PROBLEM 7.8. Can cell-like maps raise dimensionon D x D x I ? A

Clearly it follows as in 3.8 from the existence of Edwards’ resolutions that if the answer is
no, then compacta of cohomological dimension 2 are 2-dimensional. Kozlowski, Row and
Walsh [99] have studied cell-like maps with 1-dimensional fibres on polyhedra (see also
[150]), and it may be that this is relevant to the special form of D x D x I.

We have said little about the 3-dimensional case. As noted earlier, the unsettled
status of the Poincaré conjecture puts limits on the way theorems may be stated. Assuming
the Poincaré conjecture is false, generalized 3-manifolds homotopy equivalent to S3 and’
without a resolution (i.e. a cell-like map from a genuine 3-manifold) have been constructed
by Wilder [155], Brin [28], Brin and McMitlan [29] and Jakobsche [91). By a result of
Jakobsche and Repovs [92], the last of these examples embeds in RY. It seems likely that
the other examples behave in the same way.

PROBLEM 7.9. Let M be one of the above generalized 3-manifolds. Does M x R
embed in S47

2. Resolution And Recognition Problems

The obstruction to the existence of a resolution of a generalized n-manifold was
mentioned earlier (see 2.C). Apart from its obvious use in the theorem characterizing
manifolds, resolutions are of general utility, providing a way of desingularizing the space.

The word originates in algebraic geometry, where systematic use is made of the concept. - -

Very roughly Quinn’s obstruction comes about as follows. One takes a map of a manifold
to the generalized manifold to be resolved and attempts by means of surgery to make
it more and more like a (hereditary) homotopy equivalence. As usual various surgery
obstructions arise connected with intersection forms. By passing to coverings most of the
obstructions can be shown to vanish, but the very last one persists and gives rise to the
obstruction of the local signature.
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PROBLEM 7.10. Does there exist a generalized n-manifold X (n > 5) with non-trivial
local signature o(X) ?

It is worth remarking that this is unconnected with the DDP. For Daverman {42]
has shown that X x R® has the DDP, while on the other hand by a result of Quinn [128]
o (X xR?) = o(X).

In view of Edwards’ Approximation Theorem, the problem of recognising topological
manifolds among (say) the class of generalized manifolds is intimately bound up with the
resolution problem. In 1977 Cannon posed the recognition problem in the following form.

PROBLEM 7.11. Determine easy-to—verify geometric properties which characterize
topological n-manifolds among the class of generalized n-manifolds.

For n < 2 the empty property suffices. For n > 5 the DDP plus the Quinn local
signature provide a reasonably satisfactory answer, although further clarification of the
exact status of the local signature is desirable. For n = 3 the problem is intimately tied
up with the Poincaré conjecture, as the example at the end of the introduction suggests.
The case n = 4 appears completely untouched. On the one hand, there seems no obvious
general position property to replace DDP. {An interesting exercise for the reader is to
prove that for n > 5 every topological n-manifold possesses the DDP.) On the other hand,
the shrinking theorems available appear less powerful, the best available {due to Bestvina
and Walsh [14]) having some restrictions not analogous to those in higher dimensional
cases.

3. Edwards’ Approximation Theorem. Neither in Edwards’ original manuscript {73,
nor in the subsequent expositions of the proof {44], (109}, did the case n = 5 get addressed.
This dimension poses extra general position problems, and requires further ideas.

PROBLEM 7.12. Prove the 5-dimensional case of Edwards’ Approximation Theorem.

4. The Moore Problem.

The following problem is named in honour of R.L. Moore, who (albeit in a different
form) posed and solved the 2-dimensional case.

PROBLEM 17.18. Let G be a cell-like upper semicontinuous decomposition of R*. If
R"/G is finite-dimensional, is R*/G x R = R**!?

The finite-dimensionality assumption is of course necessary in view of Dranjénikov’s
example [68]. By Edwards’ Approximation Theorem it is only necessary to verify that
R"/G x R has the DDP. Daverman has proved [42] that this space does has the ‘disjoint
arc—disc property’ (DADP). Even the ghastliest of examples have turned out to support
this conjecture [37], [41), [48], but despite considerable eflorts the conjecture seems no
nearer solution.
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