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1 Introduction
Existence of periodic, almost periodic, and pseudo almost periodic solutions of differential
equations has great significance and is therefore an important problem. Such dynamics
can be found in electronic circuits and many other physical and biological systems (see
[3, 6, 9, 18–21, 23, 26]). Ezzinbi et al. [5] introduced a new and powerful measure-theoretic
method to resolve this open problem. Since then, this method has been used for various
classes of evolution equations as well as stochastic differential equations and has become
very popular.

The notion of measure pseudo almost periodicity was first introduced by Blot et al. [5]
(see also [1, 8, 12, 13, 15–17, 27]). Obviously, these new results generalize the earlier work
of Diagana [10]. Recently, Diagana et al. [11] have introduced the notion of double measure
pseudo almost periodicity as a generalization of the measure pseudo almost periodicity.
We note that this generalized concept coincides with the latter one (take μ ≡ ν).

In this paper, by applying an appropriate fixed point theorem, we derive some conditions
which ensure the existence, the exponential stability, and the uniqueness of (μ,ν)-pap so-
lutions of the following models with delays:

x′
i(t) = –ci(t)xi(t) +

n∑

j=1

dij(t)fj
(
t, xj(t)

)
+

n∑

j=1

aij(t)gj
(
t, xj(t – τij)

)

+
n∑

j=1

n∑

l=1

bijl(t)hj
(
t, xj(t – σij)

)
hl

(
t, xl(t – νij)

)
+ Ii(t), (1.1)
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xi(s) = ϕi(s), s ∈ (–θ , 0], i ∈ {1, . . . , n},

where functions

ci, Ii, dij, aij, bijl : R →R and fj, gj, hj : R×R→R, i, j, l ∈ {1, . . . , n}

are continuous and τij, σij, and νij are positive constants.
The paper is organized as follows: in Sect. 2 we collect key definitions, examples, and

basic results. In Sect. 3 we discuss the existence, the stability, and the uniqueness of double
measure pseudo almost periodic solutions of system (1.1). Finally, in Sect. 4 we present an
application which illustrates the effectiveness of our results.

2 Preliminaries
Definition 2.1 (see [5]) Let f be a continuous function on R with values in R

n. Then f is
said to be almost periodic, denoted by f ∈AP(R,Rn), if for all ε > 0, there exists a number
l(ε) > 0 such that every interval I of length l(ε) contains a point τ ∈ R with the property
that

∥∥f (t + τ ) – f (t)
∥∥ < ε for all t ∈R.

The space AP(R,Rn) equipped with the norm

‖f ‖∞ := max
1≤i≤n

sup
t∈R

∣∣fi(t)
∣∣

is then a Banach space. Let B be the Lebesque σ -field on R and define a collection M of
measures on B

M =
{
μ is a positive measure on B;

μ(R) = +∞, and μ
(
[s, t]

)
< ∞, for all s, t ∈ R, s ≤ t

}
.

Let X be a Banach space, and denote by BC(R, X) the Banach space of bounded contin-
uous functions from R to X, equipped with the supremum norm ‖f ‖∞ = supt∈R ‖f (t)‖. In
order to be able to introduce double measure pseudo almost periodic functions, we need
the following ergodic spaces:

E
(
R,Rn,μ,ν

)
:=

{
f ∈ BC

(
R,Rn) : lim

z→∞
1

ν([–z, z])

∫ z

–z

∥∥f (t)
∥∥dμ(t) = 0

}

and

E
(
R,Rn,μ

)
:= E

(
R,Rn,μ,μ

)
=

{
f ∈ BC

(
R,Rn) : lim

z→∞
1

μ([–z, z])

∫ z

–z

∥∥f (t)
∥∥dμ(t) = 0

}
.

Definition 2.2 (see [11]) If μ,ν ∈ M, then f ∈ BC(R,Rn) is said to be (μ,ν)-pseudo al-
most periodic, abbreviated as (μ,ν)-pap, denoted by f ∈ PAP(R,Rn,μ,ν), if there exists
a decomposition

f = g + ϕ, where ϕ ∈ E
(
R,Rn,μ,ν

)
and g ∈AP

(
R,Rn). (2.1)



Miraoui and Repovš Boundary Value Problems         (2020) 2020:54 Page 3 of 17

We also introduce the following notation PAP(R,Rn,μ) := PAP(R,Rn,μ,μ).

Definition 2.3 (see [11]) If μ,ν ∈ M and f (t, u) : R×R → R
n is continuous, then f (t, u)

is said to be (μ,ν)-pseudo almost periodic in t, uniformly with respect to u, abbreviated as
(μ,ν)-papu, denoted by f ∈PAPU (R×R,Rn,μ,ν), if

f = g + h, where g ∈APU
(
R×R,Rn) and h ∈ EU

(
R×R,Rn,μ

)
.

Example 2.1 Let μ ∈M and

G(t) =
[
sin(t) + sin(

√
2t)

]
cos(x) +

sin(x)
1 + t2 , t ∈R.

Then G ∈PAPU (R×R,R,μ).

We shall need the following two conditions:
(M.1) For every measure μ ∈M and every τ ∈R, there exist β > 0 and a bounded inter-

val I such that, for every A ∈ B,

A ∩ I = ∅ �⇒ μτ (A) := μ
({a + τ : a ∈ A}) ≤ βμ(A).

(M.2) Measures μ,ν ∈M satisfy the following condition:

lim sup
r→∞

μ([–r, r])
ν([–r, r])

< ∞.

Lemma 2.2 (see [11]) Let μ,ν ∈ M and suppose that conditions (M.1) and (M.2) hold.
Then

• decomposition (2.1) above is unique;
• (PAP(R,Rn,μ,ν),‖ · ‖∞) is a Banach space; and
• PAP(R,Rn,μ,ν) is translation invariant.

3 Double measure pseudo almost periodic solutions
We introduce the following notations:

sup
t∈R

{∣∣dij(t)
∣∣} := d̄ij, sup

t∈R

{∣∣Ii(t)
∣∣} := Īi,

sup
t∈R

{∣∣aij(t)
∣∣} := āij, sup

t∈R

{∣∣bijl(t)
∣∣} := b̄ijl,

and the following conditions:
(M.3) For all 1 ≤ i, j, l ≤ n,

{dij, aij, bijl, Ii} ⊂PAP(R,R,μ,ν).

(M.4) For all i ∈ {1, 2, . . . , n},

[
t �→ ci(t)

] ∈AP(R,R) and inf
t∈R

{
ci(t)

}
= c∗

i > 0.
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(M.5) For all p > 1 and 1 ≤ j ≤ n,

fj, gj, hj ∈PAP(R×R,R,μ,ν)

and there exist positive continuous functions

Lf
j , Lg

j , Lh
j ∈ Lp(R, dμ) ∩ Lp(R, dx)

such that, for all t, u, v ∈R,

∣∣fj(t, u) – fj(t, v)
∣∣ < Lf

j (t)|u – v|,
∣∣gj(t, u) – gj(t, v)

∣∣ < Lg
j (t)|u – v|,

∣∣hj(t, u) – hj(t, v)
∣∣ < Lh

j (t)|u – v|.

In addition, we also assume that for 1 ≤ j ≤ n:

fj(t, 0) = gj(t, 0) = hj(t, 0) = 0 for all t ∈R.

(M.6)

q0 := max
i∈{1,2,...,n}

{∑n
j=1[d̄ij‖Lf

j ‖p + āij‖Lg
j ‖p +

∑n
l=1 b̄ijl(‖Lh

j ‖p‖hl‖∞ + ‖Lh
l ‖p‖hj‖∞)]

(qc∗
i )

1
q

}
< 1.

Next, define

L := max
i∈{1,2,...,n}

{
Īi

c∗
i

}
,

p0 := max
i∈{1,2,...,n}

{∑n
j=1[d̄ij‖Lf

j ‖p + āij‖Lg
j ‖p +

∑n
l=1 b̄ijl‖Lh

j ‖p‖hl‖∞]

(qc∗
i )

1
q

}
.

Remark 3.1 If q0 < 1, then p0 < 1.

Lemma 3.2 Suppose that measures μ,ν ∈M satisfy the following requirements:
• p > 1 and condition (M.2) holds;
• Λ ∈ C(R×R,R) is a Lipschitz function such that LΛ ∈ Lp(R, dμ); and
• y ∈PAP(R,R,μ,ν).

Then [s �→ Λ(s, y(s – θ ))] ∈PAP(R,R,μ,ν), where θ ∈ R.

Proof Since y ∈PAP(R,R,μ,ν), it follows that

y = y1 + y2, where y1 ∈AP(R,R) and y2 ∈ E(R,R,μ,ν).

Let

Ψ (t) = Λ
(
t, y1(t – θ )

)
+

[
Λ

(
t, y1(t – θ ) + y2(t – θ )

)
– Λ

(
t, y1(t – θ )

)]
= Ψ1(t) + Ψ2(t),
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where

Ψ1(t) = Λ
(
t, y1(t – θ )

)
and Ψ2(t) = Λ

(
t, y1(t – θ ) + y2(t – θ )

)
– Λ

(
t, y1(t – θ )

)
.

Applying [14], we can conclude that Ψ1 ∈AP(R,R).
Next, we prove that Ψ2 ∈ E(R,R,μ,ν). Let z > 0, then we have

1
ν([–z, z])

∫ z

–z

∣∣Ψ2(t)
∣∣dμ(t)

=
1

ν([–z, z])

∫ z

–z

∣∣Λ
(
t, y1(t – θ ) + y2(t – θ )

)
– Λ

(
t, y1(t – θ )

)∣∣dμ(t)

≤ 1
ν([–z, z])

∫ z

–z
LΛ(t)

∣∣y2(t – θ )
∣∣dμ(t).

Since condition (M.2) holds and y2 ∈ E(R,R,μ,ν), we get

1
ν([–z, z])

∫ z

–z

∣∣Ψ2(t)
∣∣dμ(t)

≤ 1
ν([–z, z])

∫ z

–z
LΛ(t)

∣∣y2(t – θ )
∣∣dμ(t)

≤ ‖y2‖∞
ν([–z, z])

∫ z

–z
LΛ(t) dμ(t)

≤ ‖y2‖∞
ν([–z, z])

[∫ z

–z

(
LΛ(t)

)p dμ(t)
] 1

p
[∫ z

–z
dμ(t)

] 1
q

, where
1
p

+
1
q

= 1

≤ ‖y2‖∞

ν([–z, z])
1
p

∥∥LΛ
∥∥

p

[
μ([–z, z])
ν([–z, z])

] 1
q

→ 0, as z → +∞.

Therefore

[
t �→ Ψ2(t)

] ∈ E(R,R,μ,ν) and
[
s �→ Λ

(
s, y(s – θ )

)] ∈PAP(R,R,μ,ν).

This completes the proof of Lemma 3.2. �

If measures μ and ν are equal, then hypothesis (M.2) is satisfied and we can deduce the
following corollary.

Corollary 3.3 Suppose that measure μ ∈M satisfies the following conditions:
• p > 1;
• Λ ∈ C(R×R,R) is a Lipschitz function such that LΛ ∈ Lp(R, dμ); and
• y ∈PAP(R,R,μ).

Then [s �→ Λ(s, y(s – θ ))] ∈PAP(R,R,μ), where θ ∈R.

Lemma 3.4 Let μ,ν ∈M and suppose that

y, z ∈PAP(R,R,μ,ν).
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Then

y × z ∈PAP(R,R,μ,ν).

Proof Since y, z ∈PAP(R,R,μ,ν), it follows that

y = y1 + y2 and z = z1 + z2, where y1, z1 ∈AP(R,R) and y2, z2 ∈ E(R,R,μ,ν).

Then

y × z = y1z1 + y2z1 + y1z2 + y2z2.

We shall show that y1z1 ∈AP(R,R). Letting ϕ0 ∈AP(R,R), we see that

∥∥ϕ2
0 (t) – ϕ2

0 (t + τ )
∥∥ =

∥∥ϕ0(t) + ϕ0(t + τ )
∥∥ · ∥∥ϕ0(t) – ϕ0(t + τ )

∥∥ ≤ 2‖ϕ0‖∞ · ε.

Then ϕ2
0 ∈AP(R,R), so it follows that

(y1 + z1)2 ∈AP(R,R) and (y1 – z1)2 ∈AP(R,R),

since

(y1 + z1) ∈AP(R,R) and (y1 – z1) ∈AP(R,R).

Note that

y1 × z1 =
1
4
(
(y1 + z1)2 – (y1 – z1)2),

so we can conclude that indeed y1z1 ∈AP(R,R).
Next, we shall prove that

y2z1 + y1z2 + y2z2 ∈ E(R,R,μ,ν).

Indeed, for z > 0, we have

1
ν([–z, z])

∫ z

–z

∣∣(y1z2 + y2z1 + y2z2)(t)
∣∣dμ(t)

≤ ‖y1‖∞
ν([–z, z])

∫ z

–z

∣∣z2(t)
∣∣dμ(t) +

‖z1‖∞
ν([–z, z])

∫ z

–z

∣∣y2(t)
∣∣dμ(t)

+
‖y2‖∞

ν([–z, z])

∫ z

–z

∣∣z2(t)
∣∣dμ(t).

Since y2, z2 ∈ E(R,R,μ,ν), this completes the proof of Lemma 3.4. �

Next, we define the nonlinear operator Γ as follows: for any ϕ = (ϕ1, . . . ,ϕn) ∈
PAP(R,Rn,μ,ν),

(Γ ◦ ϕ)(t) := xϕ(t) =
(∫ t

–∞
F1(s)e–

∫ t
s c1(u) du ds, . . . ,

∫ t

–∞
Fn(s)e–

∫ t
s cn(u) du ds

)T
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and

Fi(s) =
n∑

j=1

dij(s)fj
(
s,ϕj(s)

)
+

n∑

j=1

aij(s)gj
(
s,ϕj(s – τij)

)

+
n∑

j=1

n∑

l=1

bijl(s)hj
(
s,ϕj(s – σij)

)
hl(s, s – νij) + Ii(s).

Lemma 3.5 Suppose that conditions (M.1)–(M.6) hold. Then Γ maps PAP(R,Rn,μ,ν)
into itself.

Proof Let ϕ = (ϕ1, . . . ,ϕn) ∈PAP(R,Rn,μ,ν). Then the function

Fi : s �→
n∑

i=1

dij(s)fj
(
s,ϕj(s)

)
+

n∑

j=1

aij(s)gj
(
s,ϕj(s – τij)

)

+
n∑

j=1

n∑

l=1

bijl(s)hj(s, s – σij)hl
(
ϕl(s, s – νij)

)
+ Ii(s) (3.1)

is double measure pseudo almost periodic for all 1 ≤ i ≤ n, by Lemmas 2.2, 3.2, and 3.4.
Hence, for all 1 ≤ i ≤ n, we have

Fi = F1
i + F2

i , where F1
i ∈AP(R,R) and F2

i ∈ E(R,R,μ,ν).

Therefore

(Γi ◦ ϕ)(t) =
∫ t

–∞
e–

∫ t
s ci(u) duF1

i (s) ds +
∫ t

–∞
e–

∫ t
s ci(u) duF2

i (s) ds

=
(
Γi ◦ F1

i
)
(t) +

(
Γi ◦ F2

i
)
(t). (3.2)

We have to prove that Γi ◦ F1
i ∈AP(R,R), i ∈ {1, 2, 3, . . . , n}. To this end, note that

∣∣(Γi ◦ F1
i
)
(t + τ ) –

(
Γi ◦ F1

i
)
(t)

∣∣ =
∣∣∣∣
∫ t+τ

–∞
e–

∫ t+τ
s ci(u) duF1

i (s) ds –
∫ t

–∞
e–

∫ t
s ci(u) duF1

i (s) ds
∣∣∣∣

≤
∣∣∣∣
∫ +∞

0
e–yc∗i F1

i (t + τ – y) dy –
∫ +∞

0
e–yc∗i F1

i (t – y) dy
∣∣∣∣

≤
∫ +∞

0
e–yc∗i

∣∣F1
i (t + τ – y) – F1

i (t – y)
∣∣dy

≤ ε

∫ +∞

0
e–yc∗i dy =

ε

c∗
i

.

Therefore Γi ◦ F1
i ∈AP(R,Rn), i ∈ {1, 2, 3, . . . , n}.

On the other hand, we can prove that Γi ◦ F2
i ∈ E(R,R,μ,ν) for i ∈ {1, 2, 3, . . . , n}. To this

end, note that

∫ z

–z

∣∣(Γi ◦ F2
i
)
(t)

∣∣dμ(t) =
∫ z

–z

∣∣∣∣
∫ t

–∞
e–

∫ t
s ci(u) duF2

i (s) ds
∣∣∣∣dμ(t).
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Using Fubini’s theorem, we get

1
ν([–z, z])

∫ z

–z

∣∣(Γi ◦ F2
i
)
(t)

∣∣dμ(t) =
1

ν([–z, z])

∫ z

–z

∣∣∣∣
∫ t

–∞
e–

∫ t
s ci(u) duF2

i (s) ds
∣∣∣∣dμ(t)

≤ 1
ν([–z, z])

∫ z

–z

∫ ∞

0
e–yc∗i

∣∣F2
i (t – y)

∣∣ds dμ(t)

≤ 1
ν([–z, z])

∫ ∞

0

∫ z

–z
e–yc∗i

∣∣F2
i (t – y)

∣∣ds dμ(t)

for all z > 0. Since F2
i ∈ E(R,R,μ,ν), it follows by Lemma 2.2 and the dominated conver-

gence theorem that

Γi ◦ F2
i ∈ E(R,R,μ,ν) for all i ∈ {1, 2, 3, . . . , n}.

We can thus conclude that

Γi ◦ ϕ ∈PAP(R,R,μ,ν) for all i ∈ {1, 2, 3, . . . , n},

hence

Γ ◦ ϕ ∈PAP
(
R,Rn,μ,ν

)
.

This completes the proof of Lemma 3.5. �

Theorem 3.6 Suppose that conditions (M.1)–(M.6) hold. Then system (1.1) admits a
unique (μ,ν)-pap solution in E, where

E =
{
ψ ∈PAP

(
R,Rn,μ,ν

)
: ‖ψ – ϕ0‖∞ ≤ p0L

1 – p0

}

and

ϕ0(t) =
(∫ t

–∞
e–

∫ t
s c1(u) duI1(s) ds, . . . ,

∫ t

–∞
e–

∫ t
s cn(u) duIn(s) ds

)T

.

Proof We have

‖ϕ0‖∞ = max
i∈{1,2,...,n}

sup
t∈R

(∣∣∣∣
∫ t

–∞
e–

∫ t
s ci(u) duIi(s) ds

∣∣∣∣

)
≤ max

i∈{1,2,...,n}

(
Īi

c∗
i

)
:= L

and

‖ϕ‖∞ ≤ ‖ϕ – ϕ0‖∞ + ‖ϕ‖∞ ≤ ‖ϕ – ϕ0‖∞ + L ≤ L
1 – p0

.

Let

E = E(ϕ0, p0) =
{
ϕ ∈PAP

(
R,Rn,μ,ν

)
: ‖ϕ – ϕ0‖∞ ≤ p0L

1 – p0

}
.
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Then, for every ϕ ∈ E, we obtain the following:

∥∥(Γ ◦ ϕ) – ϕ0
∥∥∞ = max

i∈{1,2,...,n}
sup
t∈R

{∣∣∣∣∣

∫ t

–∞
e–

∫ t
s ci(u) du

×
n∑

j=1

[
dij(s)fj

(
s,ϕj(s)

)
+ aij(s)gj

(
s,ϕj(s – τij)

)

+
n∑

l=1

bijl(s)hj
(
s,ϕj(s – σij)

)
hl

(
s,ϕl(s – νij)

)
]

ds

∣∣∣∣∣

}

≤ max
i∈{1,2,...,n}

sup
t∈R

{∫ t

–∞
e–

∫ t
s ci(u) du

n∑

j=1

[
d̄ijL

f
j (s)‖ϕ‖∞ + āijL

g
j (s)‖ϕ‖∞

+
n∑

l=1

b̄ijlLh
j (s)‖hl‖∞‖ϕ‖∞

]
ds

}

≤ max
i∈{1,2,...,n}

{∑n
j=1[d̄ij‖Lf

j ‖p + āij‖Lg
j ‖p +

∑n
l=1 b̄ijl‖Lh

j ‖p‖hl‖∞]

(qc∗
i )

1
q

}
‖ϕ‖∞

≤ p0‖ϕ‖∞ ≤ p0
(‖ϕ – ϕ0‖∞ + ‖ϕ0‖∞

) ≤ p0L
1 – p0

,

where

p0 = max
i∈{1,2,...,n}

{∑n
j=1[d̄ij‖Lf

j ‖∞ + āij‖Lg
j ‖∞ +

∑n
l=1 b̄ijl‖Lh

j ‖∞‖hl‖∞]

(qc∗
i )

1
q

}
< 1.

Therefore Γ ◦ ϕ ∈ E.
Next, for all φ,ψ ∈ E, we get the following:

∣∣(Γi ◦ φ)(t) – (Γi ◦ ψ)(t)
∣∣

≤
∫ t

–∞
e–

∫ t
s ci(u) du

n∑

j=1

∣∣∣∣∣dij(s)
(
fj
(
s,φj(s)

)
– fj

(
s,ψj(s)

))

+ aij(s)
(
gj
(
s,φj(s – τij)

)
– gj

(
s,ψj(s – τij)

))

+
n∑

l=1

bijl(s)
(
hj

(
s,φj(s – σij)

)
hl

(
s,φl(s – νij)

)

– hj
(
s,ψj(s – σij)

)
hl

(
s,ψl(s – νij)

))
∣∣∣∣∣ds

≤
∫ t

–∞
e–

∫ t
s ci(u) du

n∑

j=1

[
d̄ijL

f
j (s) sup

t∈R

∣∣φj(t) – ψj(t)
∣∣ + āijL

g
j (s) sup

t∈R

∣∣φj(t) – ψj(t)
∣∣

+
n∑

l=1

bijl(s)
∣∣hj

(
s,φj(s – σij)

)
hl

(
s,φl(s – νij)

)
– hj

(
s,ψj(s – σij)

)
hl

(
s,φl(s – νij)

)

+hj
(
s,ψj

(
s – σij(s)

))
hl

(
s,φl(s – νij)

)
– hj

(
s,ψj(s – σij)

)
hl

(
s,ψl(s – νij)

)∣∣
]

ds



Miraoui and Repovš Boundary Value Problems         (2020) 2020:54 Page 10 of 17

≤
∫ +∞

0
e–c∗i y dy

n∑

j=1

[
d̄ijL

f
j (s) sup

t∈R

∣∣φj(t) – ψj(t)
∣∣ + āijL

g
j (s) sup

t∈R

∣∣φj(t) – ψj(t)
∣∣

+
n∑

l=1

b̄ijl(s)
(
Lh

j (s)‖hl‖∞ + Lh
l (s)‖hj‖∞

)
sup
t∈R

∣∣φj(t) – ψj(t)
∣∣
]

ds

≤
∑n

j=1[d̄ij‖Lf
j ‖p + āij‖Lg

j ‖p +
∑n

l=1 b̄ijl(‖Lh
j ‖p‖hl‖∞ + ‖Lh

l ‖p‖hj‖∞)]

(qc∗
i )

1
q

‖φ – ψ‖∞

≤ q0‖φ – ψ‖∞,

where i = 1, . . . , n. Therefore ‖(Γ ◦ φ) – (Γ ◦ ψ)‖∞ ≤ q0‖φ – ψ‖∞.
Note that since q0 < 1, Γ is a contraction and possesses a unique fixed point z, which

is a (μ,ν)-pap solution of system (1.1) in the region E. This completes the proof of Theo-
rem 3.6. �

If the two measures μ and ν are equal, then according to the proof of Theorem 3.6, the
following corollary can be deduced.

Corollary 3.7 Suppose that conditions (M.1) and (M.3)–(M.6) hold. Then system (1.1)
admits a unique μ-pap solution in

E =
{
ψ ∈PAP

(
R,Rn,μ

)
: ‖ψ – ϕ0‖∞ ≤ p0L

1 – p0

}
.

In the sequel, we shall assume that the functions Lf
j , Lg

j , and Lh
j are constant. By analogy,

we can prove the same results as above. In addition, by the following modifications of
conditions (M.5) and (M.6), the exponential stability of the solution can be obtained:

(M.7) For all 1 ≤ j ≤ n, there exist constants

Lf
j , Lg

j , Lh
j , Mf

j , Mg
j , Mh

j ∈R
∗
+

such that, for all t, x1, x2 ∈R,

∣∣fj(t, x1) – fj(t, x2)
∣∣ ≤ Lf

j |x1 – x2|,
∣∣fj(t, x1)

∣∣ ≤ Mf
j ,

∣∣gj(t, x1) – gj(t, x2)
∣∣ ≤ Lg

j |x1 – x2|,
∣∣gj(t, x1)

∣∣ ≤ Mg
j ,

∣∣hj(t, x1) – hj(t, x2)
∣∣ ≤ Lh

j |x1 – x2|,
∣∣hj(t, x1)

∣∣ ≤ Mh
j ,

and

fj(t, 0) = gj(t, 0) = hj(t, 0) = 0.

(M.8) There exists a nonnegative constant q1 such that

q1 := max
i∈{1,2,...,n}

{∑n
j=1[d̄ijL

f
j + āijL

g
j +

∑n
l=1 b̄ijl(Lh

j Mh
l + Mh

j Lh
l )]

c∗
i

}
< 1.
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We let

p1 := max
i∈{1,2,...,n}

{∑n
j=1[d̄ijL

f
j + āijL

g
j +

∑n
l=1 b̄ijlLh

j Mh
l ]

c∗
i

}

and

ϕ0(t) :=
(∫ t

–∞
e–

∫ t
s c1(u) duI1(s) ds, . . . ,

∫ t

–∞
e–

∫ t
s cn(u) duIn(s) ds

)T

.

Theorem 3.8 Suppose that conditions (M.1)–(M.4) and (M.7)–(M.8) hold. Then system
(1.1) admits a unique (μ,ν)-pap solution in F, where

F =
{
ψ ∈PAP

(
R,Rn,μ,ν

)
: ‖ψ – ϕ0‖∞ ≤ p1L

1 – p1

}
.

Proof The following inequality holds:

∥∥(Γ ◦ ϕ) – ϕ0
∥∥∞ ≤ p1L

1 – p1
.

Therefore Γ ◦ ϕ ∈ F. Next, for all φ,ψ ∈ F,

∥∥(Γ ◦ φ) – (Γ ◦ ψ)
∥∥∞ ≤ q1‖φ – ψ‖∞.

Since q1 < 1, it follows that Γ possesses a unique fixed point z which is a (μ,ν)-pap solution
of system (1.1) in the region F. This completes the proof of Theorem 3.8. �

If μ = ν , we can deduce the following result.

Corollary 3.9 Suppose that conditions (M.1), (M.3)–(M.4), and (M.7)–(M.8) hold. Then
system (1.1) admits a unique μ-pap solution in

F =
{
ψ ∈PAP

(
R,Rn,μ

)
: ‖ψ – ϕ0‖∞ ≤ p1L

1 – p1

}
.

Theorem 3.10 Suppose that conditions (M.1)–(M.4) and (M.7)–(M.8) hold. Then system
(1.1) has a unique globally exponentially stable (μ,ν)-pap solution.

Proof System (1.1) has a unique (μ,ν)-pap solution

z(t) =
(
z1(t), . . . , zn(t)

)T ∈ E

and u(t) = (u1(t), . . . , un(t))T is the initial value.
Let x(t) = (x1(t), . . . , xn(t))T be an arbitrary solution of system (1.1) with initial value

ϕ∗(t) = (ϕ∗
1 (t), . . . ,ϕ∗

n(t))T . Let yi(t) = xi(t) – zi(t), ϕi(t) = ϕ∗
i (t) – ui(t) for i = 1, . . . , n.
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Then

y′
i(t) = –ci(t)yi(t) (3.3)

+
n∑

j=1

(dij(t)
(
fj
(
t, xj(t)

)
– fj

(
t, zj(t)

))

+ aij(t)
[
gj
(
t, xj(t – τij)

)
– gj

(
t, zj(t – τij)

)]
(3.4)

+
n∑

l=1

bijl(t)
[
hj

(
t, xj(t – σij)hl

(
t, xl(t – νij)

)

– hj
(
t, zj(t – σij)

)
hl

(
t, zl(t – νij)

)])
, (3.5)

where i ∈ {1, 2, 3, . . . , n}. Let Fi be defined by

Fi(w) = c∗
i – w –

n∑

j=1

[
d̄ijL

f
j + āijL

g
j ewτij +

n∑

l=1

b̄ijl
(
Lh

j ewσij Mh
l + Mh

j Lh
l ewνij

)
]

.

By condition (M.8), we have

Fi(0) = c∗
i –

n∑

j=1

[
d̄ijL

f
j + āijL

g
j +

n∑

l=1

b̄ijl
(
Lh

j Mh
l + Mh

j Lh
l
)
]

> 0.

Thus there exists ε∗
i > 0 such that Fi(ε∗

i ) = 0 and Fi(εi > 0) if εi ∈ (0, ε∗
i ).

Let η = min{ε∗
1 , . . . , ε∗

n}. Then Fi(η) ≥ 0 if i = 1, . . . , n. Next, there exists a nonnegative λ

such that

0 < λ < min
{
η, c∗

1, . . . , c∗
n
}

and Fi(λ) > 0,

so for all i ∈ {1, . . . , n},

1
c∗

i – λ

[ n∑

j=1

(
c̄ijL

f
j + d̄ijL

g
j eλτij

)
+

n∑

j=1

n∑

l=1

b̄ijl
(
Lh

j eλσij Mh
l + Mh

j Lh
l eλνij

)
]

< 1. (3.6)

Multiplying (3.3)–(3.5) by e
∫ s

0 ci(u) du and integrating on [0, t], we get

yi(t) = ϕi(0)e–
∫ t

0 ci(u) du +
∫ t

0
e–

∫ t
s ci(u) du

n∑

j=1

(
dij(s)

[
fj
(
s, yj(s) + zj(s)

)
– fj

(
s, zj(s)

)]

+ aij(s)
[
gj
(
s, yj(s – τij) + zj(s – τij)

)
– gj

(
s, zj(s – τij)

)]

+
n∑

l=1

bijl(s)
[
hj

(
s, yj(s – σij) + zj(s – σij)

)
hl

(
s, yj(t – νij) + zj(t – νij)

)

– hj
(
zj(t – σij)

)
hl

(
zl(t – νij)

)]
)

ds.

Let

M = max
1≤i≤n

c∗
i∑n

j=1[(d̄ijL
f
j + āijL

g
j ) +

∑n
l=1 b̄ijl(Lh

j Mh
l + Mh

j Lh
l )]

.
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Clearly, M > 1, and

1
M

–
1

c∗
i – λ

[ n∑

j=1

(
c̄ijL

f
j + d̄ijL

g
j eλτij

)
+

n∑

j=1

n∑

l=1

b̄ijl
(
Lh

j eλσij Mh
l + Mh

j Lh
l eλνij

)
]

≤ 0,

where 0 < λ < min{η, c∗
1, c∗

2, . . . , c∗
n} is as in (3.6). Also,

∥∥y(t)
∥∥∞ ≤ M‖ϕ‖∞e–λt , t > 0. (3.7)

To prove inequality (3.7), we first show that, for any u > 1, the following inequality holds:

∥∥y(t)
∥∥∞ < uM‖ϕ‖∞e–λt , t > 0. (3.8)

Indeed, if (3.8) were false, there would exist some t1 > 0 and i ∈ {1, . . . , n} such that

∥∥y(t1)
∥∥∞ =

∥∥yi(t1)
∥∥∞ = uM‖ϕ‖∞e–λt1

and

∥∥y(t)
∥∥∞ ≤ uM‖ϕ‖∞e–λt for every t ∈ (–∞, t1].

So we could obtain

∣∣y(t1)
∣∣ ≤ ‖ϕ‖∞e–t1c∗i +

∫ t1

0
e(–t1–s)c∗i

n∑

j=1

[
d̄ijL

f
j
∥∥yj(s)

∥∥∞ + āijL
g
j
∥∥yj(s – τij)

∥∥∞

+
n∑

l=1

b̄ijl
(
Lh

j Mh
l
∥∥yj(s – σij)

∥∥∞ + Mh
j Lh

l
∥∥yj(s – νij)

∥∥∞
)
]

ds

≤ ‖ϕ‖∞e–t1c∗i +
∫ t1

0
e–(t1–s)c∗i uM

n∑

j=1

[
d̄ijL

f
j ‖ϕ‖∞e–λs + āijL

g
j ‖ϕ‖∞e–λ(s–τij)

+
n∑

l=1

b̄ijl
(
Lh

j Mh
l ‖ϕ‖∞e–λ(s–σij) + Mh

j Lh
l ‖ϕ‖∞e–λ(s–νij)

)
]

ds

≤ ‖ϕ‖∞e–t1c∗i +
∫ t1

0
e–(t1–s)c∗i uM‖ϕ‖∞e–λs

n∑

j=1

[
d̄ijL

f
j + āijL

g
j eλτij

+
n∑

l=1

b̄ijl
(
Lh

j Mh
l eλσij + Mh

j Lh
l eλνij

)
]

ds

≤ uM‖ϕ‖∞e–λt1

[
e(λ–ai∗)t1

(
1
M

–
1

c∗
i – λ

[ n∑

j=1

{
c̄ijL

f
j + d̄ijL

g
j eλτij

+
n∑

l=1

b̄ijl
(
Lh

j eλσij Mh
l + Mh

j Lh
l eλνij

)
}])

+
1

c∗
i – λ

[ n∑

j=1

(
d̄ijL

f
j + āijL

g
j eλτij

)
+

n∑

j=1

n∑

l=1

b̄ijl
(
Lh

j eλσij Mh
l + Mh

j Lh
l eλνij

)
]]
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≤ uM‖ϕ‖∞e–λt1
1

c∗
i – λ

[ n∑

j=1

(
(
c̄ijL

f
j + d̄ijL

g
j eλτij

)

+
n∑

l=1

b̄ijl
(
Lh

j eλσij Mh
l + Mh

j Lh
l eλνij

)
)]

= uM‖ϕ‖∞e–λt1 .

Hence we could conclude that ‖y(t1)‖∞ < uM‖ϕ‖∞e–λt1 , which contradicts inequality
(3.8). Note that u → 1, so (3.7) holds. Therefore system (1.1) has a unique globally ex-
ponentially stable (μ,ν)-pap solution. This completes the proof of Theorem 3.10. �

If μ = ν , then hypothesis (M.2) is satisfied, and we can deduce the following corollary:

Corollary 3.11 Suppose that conditions (M.1), (M.3)–(M.4), and (M.7)–(M.8) hold.
Then system (1.1) has a unique globally exponentially stable μ-pap solution.

4 An application to neural networks
Neural networks have attracted a lot of attention in recent years, and especially the special
case of the so-called high-order Hopfield neural networks (HOHNNs), which have been
intensively investigated by many scholars in recent years because of their stronger approx-
imation characteristics, larger storage capacity, faster convergence speed, and higher fault
tolerance than low-order Hopfield neural networks. Many excellent results about their dy-
namic characteristics have been obtained, e.g., [2–4, 7, 14, 22, 24, 25]. Clearly, the study
of the oscillations and dynamics of such models is an exciting new topic.

Using the results from this paper, we prove the existence, the exponential stability, and
the uniqueness of (μ,ν)-pap solutions of the following models of high-order Hopfield neu-
ral networks (HOHNNs) with delays:

x′
i(t) = –ci(t)xi(t) +

n∑

j=1

dij(t)fj
(
t, xj(t)

)
+

n∑

j=1

aij(t)gj
(
t, xj(t – τij)

)

+
n∑

j=1

n∑

l=1

bijl(t)hj
(
t, xj(t – σij)

)
hl

(
t, xl(t – νij)

)
+ Ii(t), (4.1)

where i ∈ {1, . . . , n}.
• n—number of neurons in neural network;
• xi(t)—ith neuron at time t;
• fj, gj, hj—activation function of jth neuron;
• dij(t), aij(t), bijl(t)—functions connection weights;
• Ii(t)—external inputs at time t;
• ci(t) > 0—rate of ith neuron;
• τij ≥ 0, σij ≥ 0, νij ≥ 0—transmission delays.
The initial conditions associated with system (4.1) are of the form

xi(s) = ϕi(s), s ∈ (–θ , 0], i = 1, 2, . . . , n.

In our paper we have generalized the previous results by using the notion of double
measure and working with two-variable functions.
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Example 4.1 Consider the following model:

x′
i(t) = –ci(t)xi(t) +

2∑

j=1

dij(t)fj
(
t, xj(t)

)
+

2∑

j=1

aij(t)gj
(
t, xj(t – 1)

)

+
2∑

j=1

2∑

l=1

bijl(t)hj
(
t, xj(t – 1)

)
hl

(
t, xl(t – 1)

)
+ Ii(t), 1 ≤ i ≤ 2, (4.2)

where c1 = c2 = 2, g1(t) = g2(t) = sin t. Then

Lg1 = Lg2 = Mg1 = Mg2 = 1, τij = σij = νij = 1.

Measures μ and ν are defined by the following double weights, respectively:

ρ1(t) = esin(t), t ∈R,

and

ρ2(t) =

{
et if t ≤ 0,
1 if t > 0.

Then we have

2r
e

≤ μ
(
[–r, r]

)
=

∫ r

–r
esin(t) dt ≤ 2er.

We now prove that μ ∈M satisfies condition (M.1). Indeed,

sin(τ + a) ≤ 2 + sin(a) for all τ ∈R, a ∈ A,

which implies that

μ(τ + A) ≤ e2μ(A) for all τ ∈R,

so by [5], ν ∈M satisfies condition (M.1). Since

lim sup
r→+∞

μ([–r, r])
ν([–r, r])

= lim sup
r→+∞

∫ r
–r ρ1(t) dt

∫ r
–r ρ2(t) dt

< ∞,

it follows that condition (M.2) is also satisfied. We set

(
dij(t)

)
1≤i,j≤2 =

⎛

⎝
2 sin t+e–t

10
cos t
10

sin
√

2t+e–t

10
2 cos

√
2t+e–t

10

⎞

⎠ ,

(
aij(t)

)
1≤i,j≤2 =

(
cos t+e–t

10
sin t
10

4 cos t+e–t

10
sin t+e–t

10

)
,

(
Ii(t)

)
1≤i,j≤2 =

(
8 cos

√
5t

10
5 sin t+e–t

10

)
,



Miraoui and Repovš Boundary Value Problems         (2020) 2020:54 Page 16 of 17

(b1jl)(t))1≤j,l≤2 =

(
0 3 sin

√
3t+e–t

10
0 0

)
,

(
b2jl(t)

)
1≤j,l≤2 =

(
0 2 cos

√
5t+e–t

10
0 0

)
.

Therefore

L =
4

10
, p1 =

75
100

< 1, and q1 =
9

10
< 1.

Using Theorems 3.8 and 3.10, we can now see that model (4.2) has a unique (μ,ν)-pap
solution which is globally exponentially stable on

G =
{
ϕ ∈PAP

(
R,Rn,μ,ν

)
: ‖ϕ – ϕ0‖∞ ≤ 12

10

}
.

Funding
Supported by the Slovenian Research Agency grants P1-0292, N1-0114, N1-0083, N1-0064, and J1-8131.

List of abbreviations
ap, almost periodic; apu, almost periodic uniformly; pap, pseudo almost periodic; papu, pseudo almost periodic
uniformly; HOHNN, high-field Hopfield neural network.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
Both authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
Both authors contributed equally to the writing of this paper. Both authors have read and approved the submitted
manuscript.

Author details
1IPEIK, University of Kairouan, Kairouan, Tunisia. 2LR11ES53, FSS, University of Sfax, Sfax, Tunisia. 3Faculty of Education,
University of Ljubljana, Ljubljana, Slovenia. 4Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana,
Slovenia. 5Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 December 2019 Accepted: 26 February 2020

References
1. Ait Dads, E.H., Ezzinbi, K., Miraoui, M.: (μ,ν)-Pseudo almost automorphic solutions for some nonautonomous

differential equations. Int. J. Math. 26(11), Article ID 1550090 (2015)
2. Alimi, A.M., Aouiti, C., Chérif, F., M’hamdi, M.S.: Dynamics and oscillations of generalized high-order Hopfield neural

networks with mixed delays. Neurocomputing 321, 274–295 (2018)
3. Aouiti, C., M’hamdi, M.S., Chérif, F.: The existence and the stability of weighted pseudo almost periodic solution of

high-order Hopfield neural network. In: International Conference on Artificial Neural Networks, pp. 478–485 (2016)
4. Arbi, A., Chérif, F., Aouiti, C., Touati, A.: Dynamics of new class of Hopfield neural networks with time-varying and

distributed delays. Acta Math. Sci. 36(3), 891–912 (2016)
5. Blot, J., Cieutat, P., Ezzinbi, K.: New approach for weighted pseudo almost periodic functions under the light of

measure theory, basic result and applications. Appl. Anal. 92(3), 493–526 (2013)
6. Bochner, S.: Continuous mappings of almost automorphic and almost periodic functions. Proc. Natl. Acad. Sci. USA

52, 907–910 (1964)



Miraoui and Repovš Boundary Value Problems         (2020) 2020:54 Page 17 of 17

7. Brahmi, H., Ammar, B., Chérif, F., Alimi, A.M.: Stability and exponential synchronization of high-order Hopfield neural
networks with mixed delays. Cybern. Syst. 48(1), 49–69 (2016)

8. Chérif, F., Miraoui, M.: New results for a Lasota–Wazewska model. Int. J. Biomath. 12(2), Article ID 1950019 (2019)
9. Cieutat, P., Fatajou, S., N’Guérékata, G.M.: Composition of pseudo almost periodic and pseudo almost automorphic

functions and applications to evolution equations. Appl. Anal. 89(1), 11–27 (2010)
10. Diagana, T.: Weighted pseudo almost periodic solution to some differentiable equations. Nonlinear Anal. 68,

2250–2260 (2008)
11. Diagana, T., Ezzinbi, K., Miraoui, M.: Pseudo almost periodic and pseudo-almost automorphic solutions to some

evolution equations involving theoretical measure theory. CUBO 16(2), 1–31 (2014)
12. Ezzinbi, K., Miraoui, M.: μ-Pseudo almost periodic and automorphic solutions in the α-norm for some partial

functional differential equations. Numer. Funct. Anal. Optim. 36(8), 991–1012 (2015)
13. Ezzinbi, K., Miraoui, M., Rebey, A.: Measure pseudo-almost periodic solutions in the α-norm to some neutral partial

differential equations with delay. Mediterr. J. Math. 13(5), 3417–3431 (2016)
14. M’hamdi, M.S., Aouiti, C., Touati, A., Alimi, A.M., Snasel, V.: Weighted pseudo almost-periodic solutions of shunting

inhibitory cellular neural networks with mixed delays. Acta Math. Sci. 36(6), 1662–1682 (2016)
15. Miraoui, M.: Existence of μ-pseudo almost periodic solutions to some evolution equations. Math. Methods Appl. Sci.

40(13), 4716–4726 (2017)
16. Miraoui, M.: Pseudo almost automorphic solutions for some differential equations with reflection of the argument.

Numer. Funct. Anal. Optim. 38(3), 376–394 (2017)
17. Miraoui, M., Yaakoubi, N.: Measure pseudo almost periodic solutions of shunting inhibitory cellular neural networks

with mixed delays. Numer. Funct. Anal. Optim. 40(5), 571–585 (2019)
18. N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Academic, New

York (2001)
19. Papageorgiou, N.S., Radulescu, V.D., Repovš, D.D.: Periodic solutions for a class of evolution inclusions. Comput. Math.

Appl. 75, 3047–3065 (2018)
20. Papageorgiou, N.S., Radulescu, V.D., Repovš, D.D.: Periodic solutions for implicit evolution inclusions. Evol. Equ. Control

Theory 8(3), 621–631 (2019)
21. Papageorgiou, N.S., Radulescu, V.D., Repovš, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in

Mathematics. Springer, Cham (2019)
22. Qiu, F., Cui, B., Wu, W.: Global exponential stability of high order recurrent neural network with time-varying delays.

Appl. Math. Model. 33, 198–210 (2009)
23. Radulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. Variational Methods and

Qualitative Analysis. Chapman & Hall/CRC, Boca Raton (2015)
24. Xiao, B., Meng, H.: Existence and exponential stability of positive almost-periodic solutions for high-order Hopfield

neural networks. Appl. Math. Model. 33, 532–542 (2009)
25. Yu, Y., Cai, M.: Existence and exponential stability of almost periodic solutions for high-order Hopfield neural

networks. Math. Comput. Model. 47, 943–951 (2008)
26. Zhang, C.Y.: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 151, 62–76 (1994)
27. Zhao, H.Y.: Pseudo almost periodic solutions for a class of differential equation with delays depending on state. Adv.

Nonlinear Anal. 9, 1251–1258 (2020)


	Dynamics and oscillations of models for differential equations with delays
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Double measure pseudo almost periodic solutions
	An application to neural networks
	Funding
	List of abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


