Bol. Soc. Mat. Mexicana (3) Vol. 9, 2003

ON INCOMPLETENESS OF THE DELETED PRODUCT
OBSTRUCTION FOR EMBEDDABILITY

J. MALESIC, D. REPOVS AND A. SKOPENKOV

ABSTRACT. Let N = N x N\ (AN), where AN denotes the diagonal.
The purpose of this paper is to construct counterexamples to the deleted
product criterion for embeddability into R™ for certain dimensions. Two
counterexamples are constructed: (1) an example of a 3—dimensional man-
ifold N with boundary which is not embeddable in R3, but for which there
exists an equivariant mapping ¢: XN — ¥£52 and (2) an example of a
closed smooth 4k—dimensional manifold N which does not smoothly embed
into R6*—1 but for which there exists an equivariant mapping N — §6k—2,

1. Introduction

Recall that the deleted product of a space N is N = N x N\ (AN), where
AN is the diagonal. If f: N < R™ is an embedding, then define the mapping
f: N = 8™ by the formula

7 flz) - f(y)

(1) 1e9) = 1@ = fw)l

The mapping f is equivariant with respect to the action of Zs:

e on N, acting as the symmetry (z,y) = (y, ), and

e on the sphere S™~!, taking a point into its antipode.

Consider the following assertion (for PL or DIFF categories):

(*) For a smooth n-manifold or an n-polyhedron N, if there exists an equi-
variant map N — S™ ', then N piecewise-linearly or smoothly embeds into
R™.

The existence of an equivariant map N — S™~1 can be checked for many
cases ([2, beginning of §2], [4], [5, 1.7.1], [1, 7.1], [17]). Thus if the assertion
(*) is true, the embedding problem is reduced to manageable (although not
trivial) algebraic problems. Therefore a problem appeared in the 1960’s to find
conditions under which the asserion (*) above is true.

The assertion (¥*) is true for:

em =2,n=1 (see [9], [24]);

o m > 2 (see [4], [23]); and

em >n+3,aPL (3n — 2m + 2)-connected closed n-manifold N and in the
PL category (see [21], [22]).
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However, in general, the assertion (*) above is false when the dimension m is
too low. More precisely, it is known to be false in the following cases:

e in the PL case for max(4,n) < m < 3(’12—4'1) (see [7], [3], [12], [19], [20]);

e in the smooth case for m = n + 3 € {11,12,13,19} and certain homotopy
n-sphere N (see [6], [10]).

The only open cases for the PL version of the assertion (*) are m = 3 and
n = 2,3. The counterexamples to the assertion (*) for m = n > 4 and m =
n+1 >4 ([12], [7]) cannot be directly extended to m = 3 because they use the
m-dimensional Mazur contractible manifolds, whose analogues do not exist for
m=3.

The first main result of this paper gives a weaker counterexample for m =
n =3 (up to a desuspension):

THEOREM (1.2). There exists a manifold N® with boundary (a certain punc-
tured homology 3-sphere) such that N* is not embeddable into R®, but there exists
an equivariant mapping

@: TN - %52

Theorem (1.2) also holds if one replaces N3 by its special spine P?. Note that
it would be easier to construct a desuspension of a map ¥P? — S3 than that of
YN? - 83

Our second main result shows that the smooth case of the assertion (*) above
is false for m < 3n/2:

THEOREM (1.3). For each k > 1 there exists a closed smooth 4k-manifold
M** which PL embeds into R**+2 (hence there exists an equivariant map M** —
SAk+l c §6%=2 ) bhut does not smoothly embed into RSF—1.

Theorem (1.3) is also true for k = 1, but this case is not interesting because
4-1+42>6-1-1.

2. Proof of Theorem (1.2)

Proof of Theorem (1.2) is based on the following classical result [13]:

LEMMA (2.1). (Mazur) There exists a contractible 4-manifold M, embeddable
into R* and such that OM* is a nontrivial homology 3—sphere.

Construction of M. The manifold M is obtained by gluing a 4-cell I* to a
solid 4-torus S* x I*® along a solid 3—torus 8I? x I?, identified with a tubular
neighborhood of S* x 0 in the boundary 9(S* x I*) = S x S? of a knotted circle
depicted in Figure 1. A meridian of 8I? x I? is identified with any longitude of
the knot in S? x S*. O
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Proof of Theorem (1.2). Take the manifold M** given by Lemma (2.1). Let
B? be a 3-cell lying in OM*. Define the manifold N* with boundary by N? =
OM*\ B®. The manifold N cannot be embedded into S® since the embeddability
of N3 into S? would imply that S®\ [ N3 = B3.

In order to construct the required equivariant map ¢, we begin by an embed-
ding

f: N* = oM*c M* c R

Since M* is contractible, there exists a homotopy fi: N® — M*, ¢t € I, such that

fo = f and f; is a constant mapping. Using a collar, the homotopy f;: N3 — M*

can be modified in such a way that f(z) # fi(y), for all z #y € N®, t € I.
Define a homotopy g;: N3 — S3 by the formula:

gt(xay)_M ar;éyGN3, tel.

@) = AW

Then the mapping go: N® — 53 coincides with the equivariant mapping f:N3 >
S3, defined in the formula (1.1). The mapping g;: N® — S? is given by the for-
mula

_ f@)—pt
g1(z,y) = ma z,y € N*

hence it depends only to the variable z. Since N? is a 3-manifold with bound-
ary, it collapses to a 2-dimensional polyhedron. Therefore g; is nullhomotopic.
By composing both homotopies, we obtain a homotopy between f and a con-
stant mapping, which enables us to construct the required equivariant mapping
@: BN3 = 83 = %52 (cf. Figure 2). O



4 J. MALESIC, D. REPOVS AND A. SKOPENKOV

3. Proof of Theorem (1.3)

Proof of Theorem (1.3) is based on the following classical result — for complete-
ness we have included its proof, because the paper [14] is not easily accessible
(cf. [11, Corollary 1.17], [8], [14, Lemma 7.4]):

LEMMA (3.1). (Kervaire-Milnor) For each k there exists a closed smooth al-
most parallelizable 4k-manifold M** with pp(M** R) # 0.

Proof. Consider the J-homomorphism J: 74,—1(SO) — wfk_l. Take a non-
zero element o € ker J and an integer N > 4k. Take a framing of the normal
bundle of the standard sphere S*—1 c SN+4k—1 corresonding to a.

By Pontryagin construction, the standard sphere with this framing represents
an element in Wfkil. Clearly, this element is Ja. Since Ja = 0, by Pontryagin
construction the framed submanifold S**~1 c SN+4k—1 ig the boundary of a
framed manifold Mgk c DN+4k=1,

Let M* be the union of M{* and D** along their boundaries. Since MG*
has a trivial stable normal bundle, it follows that M** is almost parallelizable.
By [14, Lemmata 1 and 2] (see also [11, §1]), pr(M**,R) equals to a multiple of
a and hence is non-zero. O

Proof of Theorem (1.3). Take the manifold M** given by Lemma (3.1). We
can modify it by surgery (cf. [11]) to obtain a (2k — 1)-connected manifold with
the same properties. This new manifold will be denoted by the same letter M**.
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By the duality theorem for the real Pontryagin classes ([24], cf. also [15]),
Pr(M** R) # 0. Hence M** does not smoothly embed (it even does not im-
merse) into R*~1 ([16], [24]).

Let Mg* be the complement in M** of an open 4k-ball. Then M¢* is par-
allelizable and hence there is an immersion f: Mg* — R*+!. Since k > 1 and
MF is (2k — 1)-connected, it follows that it possesses a 2k-dimensional spine
P2k C Mgk,

By general position the restriction of f to this spine is an embedding. Hence
the restriction of f onto a neighborhood of this spine P?* is an embedding. This
neighborhood is homeomorphic to Mg*. So there is an embedding g: M3* —
R**+1. By extending the embedding g|, Mg as a cone in R*+2 we obtain a PL

embedding of M** into R*+2, O

Note that the smooth embedding glgpa : S*71 — R**! is non-trivial as

immersion, even after composing with the inclusion R*+1 C R*=1 (cf. [5]).

Note that embeddability of M** into R**+1 also follows from [18, Corollary
A3]. In the proof of this corollary one should apply the cone construction as
above, rather than the Penrose-Whitehead-Zeeman trick (as was suggested in
[18]), because the Penrose-Whitehead-Zeeman trick works only in codimension
> 3.
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