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Abstract

For any numerical functiot : RZ — R we give sufficient conditions for resolving the controlled
extension problem for a closed subgebf a normal space&. Namely, if the functionsf : A — R,
g:A — Randh: X — R satisfy the equalitye (f (a), g(a)) = h(a), for everya € A, then we are
interested to find the extensiorfsand$ of f andg, respectively, such that( f(x), §(x)) = h(x),
for everyx € X. We generalize earlier results concernifig:, v) = u - v by using the techniques of
selections of paraconvex-valued LSC mappings and soft single-valued mappings.
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0. Introduction

For a nonnegative continuous functibnX — R on a normal spac& and for any two
nonnegative continuous functiorfs: A — R andg: A — R on a closed subset C X
such thatf (a) - g(a) = h(a), for everya € A, Shchepin [12] proved the existence of their
nonnegative continuous extensions oXerf andg say, W|thf(x) g(x) = h(x), for every
x e X.

Frantz [4] proved the following extension theorem for functions of nhonconstant sign:
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Theorem 0.1. For any closed subset of a compact metric spac¥ and any continu-
ous functionsf : A — R, g: A — [0, 00) and: X — R such thatg=1(0) ¢ f~1(0) and
f - g =h|A, there exist continuous extensiofisX — R andg: X — [0, c0) of f andg
such thatf - ¢ = h.

See also [4] for examples showing the essentiality of the hypotlgesdsandg ~1(0) C
f£~1(0). One can easily find such examples on the unit circle. Barov and Dijkstra [1] have
generalized Theorem 0.1 to arbitrary normal domains, giving a short proof via a direct
analytical expression for the desired extensions.

Having in mind these results we introduce the following definition.

Definition 0.2. Let E : R2 — R andh : X — R be any continuous functions. For any subset
AcCXlet f:A— Randg: A — R be functions which satisfy the equality

E(f@). g@)=h(a), acA.

Then the functions?:x - R andg: X — R are called an(E, h)-controlled extension
of f andg, respectively, iff extendsf, ¢ extends and

E(f(x), () =h(x), xeX.

For a simple example, leE(u,v) =a - v+ b - u. Then one can extenglto g in an
arbitrary manner, applying the Tietze—Urysohn theorem, and then directl§ seth —
bg)/a.More generally, if the equatioBi(u, v) = ¢, ¢ € R, admits an explicit representation
u = ¥ (v, ¢) by a continuous functiorr, then we can simply puf(x) =Y (g(x), h(x)),
using an arbitrary extensighof g.

Clearly, one can rephrase the results above as existence theorgiisApicontrolled
extensions for the multiplication functiofi(«, v) = u - v. Note that Definition 0.2 is a
version of Frantz’s definition [4]. But, as he wrote, ‘there are many other cases, however,
for which the answers are not clear.” The aim of the present paper is to show some ways to
fill this gap.

In Section 1 below we formulate our results and introduce necessary technical notions.
Section 2 presents the proofs: we show general properties of a mappikg— R which
are sufficient for substitution of the multiplication mappi@g v) — u - v in the result. We
propose two variants. One of them, in abstract terms concerning convexity-like properties
of the level sets£~1(r), r € R (cf. Theorem 1.2) and the other one deals with concrete
analytical properties of the functiah (cf. Theorem 1.5).

Note that in Definition 0.2 there is no mention of boundary restrictions of the type
¢~ 1(0) c £~1(0). We consider this more definitely in Section 3. There we also reformulate
the controlled extension problem in termssofft mappings (in the sense of Shchepin [11])
or as a suitable selection problem. Such a general point of view gives various ways for
solving this problem.

In conclusion, we recall that a single-valued mappihd( — Y is said to be &election
of a given multivalued mapping : X — Y if f(x) € F(x) for eachx € X. Furthermore,
thelower semicontinuitpf a multivalued mapping : X — Y between topological spaces
means that for each € X andy € F(x), and each open neighborhobdy) there exists
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an open neighborhodd(x) such thatF (x") N U (y) # @ whenever’ € V (x). For general
facts and references on the selection theory see [5,6,9].

1. Preliminaries

We need some terminology concerning sets with controlled degree of nonconvex-
ity. Let P be a nonempty closed subset of a normed spac&he numbes (P, D) =
supdist(q, P)/r | g € conM P N D)} is a natural upper estimate for a relative measure of
nonconvexity of the intersection of the gewith the open balD of radiusr. The function
of nonconvexity p (-) of the setP associates to each numbrer 0 the supremum of the set
{8(P, D)} over all open balls of the radius Clearly, the identityxp () =0 is equivalent
to the convexity of the sek. If ap (r) < a(r) for all positiver, then the seP is said to be
a-paraconvexThe following selection theorem was proved in [8]:

Theorem 1.1. Leta : (0, c0) — [0, 1) be any increasing continuous function aéd X —

B a lower semicontinuous mapping from a paracompact spadato a Banach space
B with a-paraconvex value® (x), for everyx € X. Then® admits a continuous single-
valued selection.

Theorem 1.1 was proved for constant functientsy Michael [7]. At that time he intro-
duced the notion ak-paraconvexity for theonstanfunctiona.

Below we denote the open upper half-plde v): v > 0} by R2 and the unioRZ U
{(0,0)} by Rio. For any numerical functiong andg on a setA we denote their Cartesian
productby( f, ), thatis(f, g)(a) = (f(a), g(a)), for everya € A. Clearly, the hypotheses
fiA—>R,g:A— [0, 00)andg~1(0) c f~1(0) can be summarized &$, g) : A — Rio.

Theorem 1.2. Leta : (0, o) — [0, 1) be any increasing continuous function. It R2 —
R be an open surjection witlk —1(0) = {(«, v): uv = 0} and such that all intersections
E~1(t) NRRZ, 1 0, area-paraconvex. Let

(a) X be anormal and countably paracompact space dand X any closed subsgor
(b) X be a normal space and C X any compact subset, arid X — R a continuous
function.

Then each continuous mappird, g): A — Rio with E(f(a), g(a)) = h(a), for every
a € A, admits an(E, h)-controlled extensionf, 8):X— Rio.

The situations when all level sefs~1(r) N R2, r # 0, are smooth planar curves are
natural areas for applications of Theorem 1.2. Note that the paraconvexity of the connected
graph I" of a continuous numerical function of one real variable can be derived from a
suitable upper estimate for dig?, I")/r, whereQ is the midpoint of the segmeinP, R]
with P € I', R € I" and of length 2 (see [8]).

Typical examples are connected graphs of monotone continuous or Lipschitz functions.
Other examples of paraconvex subsets of the Euclidean plane will be useful for a more
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Fig. 1.

concrete version of Theorem 1.2, where we shall work with more analytical properties of
the mappingE. In particular, these properties will guarantee the paraconvexity of level
setsE~1(r) N R2, whenever = 0. Note that for normal but not countably paracompact
domainsX (so-calledDowkerspaces [10]) and for their closed subsatsve shall state

our result only for such more specific mappingsR? — R.

Definition 1.3. A function E:R? — R is called apseudomultiplicatiorif E(u,v) =
e(u) - v, where:

(a) e(-) preserves the signs of the arguments;

(b) e(-) is continuously differentiable; and

(c) the derivative’(-) is positive in some neighborhood of zero and in some neighborhood
of the infinity.

For an arbitrary continuously differentiable functipnR — R with positive derivative
o’ for all sufficiently large arguments, one can apply two parallel shifts and obtain the func-
tion e(u) = p(u + ug) — p(ug), with properties (a)—(c) from Definition 1.3. Polynomials
of odd degree provide such examples (see Fig. 1).

We can say in the spirit of [3] that(x) is an asymptotically increasing function and
e(u~1) is an asymptotically decreasing function (see Fig. 2).

Lemma 1.4. Let E :R? — R be a pseudomultiplication and l€ty > 0 be any constant.
Then there exists an increasing continuous functio0, co) — [0, 1) such that all inter-
sectionsE ~1(r) N Ri, 0 < |t] < Co, area-paraconvex subsets of the Euclidean plane.

As a corollary of Theorem 1.2 and Lemma 1.4 we obtain:

Theorem 1.5. Let E :R? — R be a pseudomultiplication. Lét: X — R be a continuous
function on a normal spack, andA a closed subset of. Then each continuous mapping
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Fig. 2.

(f,g):A— Rio such thatE(f (a), g(a)) = h(a), a € A, admits an(E, h)-controlled ex-
tension(f, §): X — R2,,.

Observe that the pseudomultiplicatiéi{u, v) = e(u) - v iS an open surjection, while
the functionu — e(u) is not open at its points of extrema. Pseudomultiplications have an
advantage in comparison with open surjections because there is a continuous flow on their
level sets. Moreover, all level sets are connected graphs of smooth functions of one real
variable. So one can continuously move points along level sets of pseudomultiplications.
One way to find a nonparaconvex variant can be described as follows7 LR&t—
Homea.(R) be a continuous mapping into the set of all sign-preserving homeomor-
phisms of the real line, endowed with the topology of uniform convergence. For a function
E:R? — R we naturally define another functiafiy : R2 — R, by setting Ey (u, v) =
E(u, H,(v)).

Lemma 1.6. The existence ofE, h)-controlled extensions implies the existence of
(E g, h)-controlled extensions.

Shortly, the existence of controlled extensions is a stable property under an action of
pointwise (with respect to the first coordinate) homeomorphisms. The leveESéts)
in this lemma can clearly be more complicated than paraconvex sets. So on the one hand
it generalizes Theorem 1.5. However, in the simplest cases, for exanple) = u3 - v,
Lemma 1.6 is not applicable, while Theorem 1.5 works.

2. Proofs
Proof of Lemma 1.4. We begin by determining the functien Letv(u) = 1/e(u), u > 0.

Pick 0< m < M so that on the segmept:, M] the graph of the function(.) lies inside
the rectanglém, M| x [v(m), v(M)] andv is decreasing otD, m) and(M, co). By setting
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a(r,t) = max{ %2 sin(arctar(t -max{ v (u)|:

v_l(v(m) + 2r) <u<M+ 2r})>}

we obtain a function which is increasing and continuous with respect to both variables
andt. Hence, the functiom(r) = a(r, Co) majorates each functiom(r, r). So we only
need to check that the functia-, ) majorates the function of nonconvexity of the curve
E~1()NR3.

To this end we first note that this intersection is the graph of a continuous function on
the positiveu-ray:

ElnR2 = {(u, V) w0, v L}
e(u)
So by [8], we only need to estimate the distances disE ~1(r)) for the midpointsQ of
the segmenttP, R] with endpoints in the sef ~1(r) "R2 and of length 2. Letr1: R? —
R be the projection onto the first factor.
(1) If 71 (R) < m or m1(P) > M, then the functiorv = t/e(u) is decreasing on the
segmentry(P), r1(R)]. Hence (see [8]),
: -1
dist(Q, E~1(1)) - V2 <at).
r 2
(2) If m < m1(P) < m1(R) < M, then the function = r/e(u) is Lipschitz on the seg-
ment[71(P), 71(R)] with the constant less than or equaktamax|v'(u)|: m < u < M}.
Hence (see [8]),

dist(Q, E~1(1))
r

(3) If m1(R) > M > m1(P), thenmi(R) < M + 2r andr1(P) > v~ (v(m) + 2r) be-
cause the length gfP, R] is 2r. Hence we obtain for dié@, E~1(r))/r an upper estimate
as in the case (2) above with the substitution of the segmend/] by the segment
[v~Y(v(m) + 2r), M + 2r] (see Fig. 3).

(4) The caser1(P) < m < m1(R) and the case of negative parametean be treated
analogously. O

< sin(arctar(t -max{|v'(u)|: m <u < M})) <ar).

Observe that for pseudomultiplicatiods (and for surjectionsE from Theorem 1.2
as well) the intersectioi ~1(0) N Rﬁ is the open ray{(0, v): v > 0} and the closure
of this intersection is paraconvex (since it is convex). We pass now to generalizations of
Theorem 0.1.

Proof of Theorem 1.2. The multivalued mapping ~1 o 7: X — R? is LSC due to the
openness of. and the continuity of:. The intersection with the open sﬁﬁ and the
pointwise closure operation preserve the LSC property (see [5]).#dr the intersection
E~1(r)NRZ is closed because of taeparaconvexity assumption and(€-1(0) NR?2 ) is
simply a vertical closed ray. So the multivalued mappingX — R2, defined by (x) =
CH{E~1(h(x)) NRZ}, is an LSC mapping witkx-paraconvex values.
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The assumed equalit¥ ( f (a), g(a)) = h(a), for everya € A, means precisely that
the single-valued mappinga) = (f(a), g(a)), for everya € A, is a partial continuous
selection of¥| 4. Hence the multivalued mappirg: X — R?, defined by® (a) = {s(a)},
for everya € A, and® (x) = ¥ (x), foreveryx € X \ A, is also an LSC mapping and also
hasw-paraconvex values.

For paracompact domair we can simply use Theorem 1.1 and extertd a selec-
tion § of @ over the entireX. Clearly, the coordinate projectioffs= 710§ andg = 720§
of such an extension give the desired controlled extensiorfsavfdg.

However, for normal domains we must be more careful. In fact, we prove an analogue
of Theorem 1.1 for normal domains by using local compactness of the Bfane

In case(a) we pick arbitrary continuous extensiornfs and go of f and g and de-
fine so: X — R2 by the equalityso(x) = (fo(x), go(x)). Observe thatsg(a) = s(a),
for all a € A. The distance function digb(x), @(x)), for every x € X, is an upper
semicontinuous numerical function on the normal and countably paracompactpace
Due to the Dowker separation theorem it admits a continuous strong majorant func-
tion r: X — (0, 00). So in our case we have some continuetselectionsg of @, i.e.,
dist(so(x), @ (x)) < r(x), for everyx € X. We now inductively proceed with improvement
of the precision, (x) ~ @ (x).

Choosex(-) < B(-) < 1 with some continuous increasing functig) and define the
multivalued mappingp : X — R? by

®1(x) = Cl(conv{qb(x) N D (so(x), r(x))}).

Clearly, @1 is LSC with nonempty, convex armbmpactvalues. So by the Michael selec-
tion theorem fonormaldomains (see [5] and [9, Part B]), it admits a selectipnk — R2.
Then thex-paraconvexity guarantees that

dist(s1(x), @ (x)) < a(r(x)) - r(x) < B(r(x)) - r(x) =ri(x) <r(x),
diSt(so(x), sl(x)) <r(x).



J. Malesc et al. / J. Math. Anal. Appl. 285 (2003) 62—-73 69

The functionr : X — (0, oo) is continuous. So we can find a selectigrof the mapping

®o(x) = Cl(conv{qb(x) N D(s1(x), rl(x))}>
for which

dist(s2(x), @ (x)) < a(r1(x)) - ri(x) < B(r1(x)) - r1(x) < B(r(x)) - r1(x)
= B2(r(x)) - r(x) = ra(x) < ra(x),
diSt(sl(x), sz(x)) <ri1(x).

The obvious continuation of such a procedure yields a sequence of mappirigs> R?
with

dist(s, (x), @ (x)) < B"(r(x)) - r(x), dist(sy—1(x), sp(x)) < ﬁ"_l(r(x)) -r(x).

For eachr € X the continuous function8(r(-)) < 1 andr(-) are bounded on some neigh-
borhood ofx. So the sequencg,} is locally uniformly fundamental and hence it has a
limit §: X — R2 which clearly is a continuous selection &f

In case (b) we first consider the situation whenX — R is bounded. The mapping
t > C{E~1(r) NR3}, r € R, admits a continuous selection, due to the cases already stud-
ied above. The values of such a selection constitute a bounded set when the parameter
changes frona to b with [a, b] D h(X). This means that there exists a poing R2 and a
positiver such that the open bal), centered ap meets with each value @f (x), for every
x € X. The given continuous mappind, g) is bounded om because of the compactness
of A. Hence we can assume that the (sétg)(A) lies insideD,.. So the constant mapping
so(-) = p is ther-selection of the mapping . Now we repeat the improvement procedure
from case (a).

Leth be unbounded o . Define a strongly increasing sequer&g} of closed subsets
of X by settingX,, = {x € X: |h(x)| <n}. Then

X1CintXoCc XoCintXsC X3C---, Ux.=x.

Apply the first case to the paitX1, X1 N A) and the corresponding restrictions of the
functions f, ¢ andh. We obtain an(E, h)-controlled extensiort f1, g1) : X1 — Rio of
flx;na andglx,;na. Hence the case of the bounded functiois applicable to the pair
(X2, X1 U (X2N A)) and so on. Each pointe X lies in someX,, with its own neighbor-
hood. Thus we obtain a continuous mappings over the whole dokhairo

Proof of Theorem 1.5. The mapping — C{E~1(r) N Ri}, —-1<t <1, admits a se-
lection due to Lemma 1.4 and Theorem 1.1. Applying the same resultsZat ¢ < 2,
we extend such a selection onto the segnjetf, 2]. A continuation gives a selection
¢ :R — R? of the mapping — CI{E~1(t) N R?}, for everyr € R.

For a pseudomultiplicatioft, its level setsE ~1(r) = {(u, v): v =1/e(u)} look as as-
ymptotically hyperbolic-type curves after intersecting V\mﬁ So on the normal space
X we have the mapping o h: X — R2 with values on the curves @ ~1(h(x)) NR2}
and on the closed subsatc X we haves:a — (f(a), g(a)) with values on the curves
CHE~(h(a)) NRZ}. In general, these mappings are differentAyi.e., s(a) # ¢ (h(a)).
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Fig. 4.

But we can assume that all curveg Et1(r) N Ri}, t € R, are endowed with the common
direction induced by an arbitrary fixed direction on the unique cunf&c(1) N R%r}.
Next, we can simply move points(i(a)) to pointss(a) along the corresponding curve
CHE~Y(h(a)) N RZ}. All others pointsg (h(x)) will be transferred continuously on the
curves C{E~1(h(x)) NR2}.

More precisely, for each € A we calculate the signed length of the segment of the
curve CLE~L(h(a)) N Ri} between the point$ (2(a)) ands(a). Consideringp (h(a)) as
the starting point, we obtain the numerical functiom — R. It is clearly continuous. We
extend it to some continuous functidbnX — R and then move each poiath(x)) along
the curve JE~L(h(x)) N Ri} exactly for the signefi(x) length (see Fig. 4). The result
gives a selection of — CI{E~1(h(x)) NR2} which extends. O

Proof of Lemma 1.6. Let(f,g):A — Rio andEgy (f(a), g(a)) = h(a), foreverya € A.
This means thak (f(a), Hyw)(g(a))) = h(a), for everya € A. Define the continuous
mappinggy (a) = Hy)(g(a)). Clearly, if gy (a) =0, theng(a) = 0. So f(a) =0 and
hence(f, grz) mapsA into the seﬁRio. By our assumption it admits &, i)-controlled

extension(f, gx): X — R2 .
Now, putg(x) = Hf?&)(gH(x)) >0. If 3(x) =0, thengy (x) =0 and hencef (x) = 0.

Therefore(f, §): X — R2, and
En(f().8(0) = E(F ). Hy o (H7E (1)) = E(F0). 81 () = hw),

becauseﬁf, gn) isan(E, h)-controlled extension. O

3. Extensionsand selections

Continuous extensions are special cases of continuous selections. In this section we
show that this is also true for controlled extensions. So in this section we shall forget about
specifics of the upper half plane and shall take a more general point of view.
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Definition 3.1. For any mappingE : R" — R and any open subsét ¢ R” the closure of
G with respect taE is defined as

CleG=JC(E~ ) nG)).
teR

Definition 3.2. Let X be a topological space} its subset ands an open subset dk”.
A mappingE :R" — R is said to bg X, A)-suitable for extensions t@ if for each con-
tinuous functiom: X — Rand f = (f1, f2,..., fu): A — Clg G with E o f = h|4 there
exists an(E, h)-controlled extension, i.e., an extensigr= (f1, fo, ..., fu): X — Clg G
of f such thatt o f = h.

Proofs from Section 2 show that we really used only a topological or convexity-like
property of the family{CI(E~1(r) N G)};cr. SO as a purely topological version of the
results we state the following:

Theorem 3.3. Let E:R2 — R be an open surjection an@ an open subset ak? such
that {CI(E~1(t) N G)},er is an ELC-family, consisting of arcs and singletons. Thelis

(X, A)-suitable for extensions tG@ for an arbitrary paracompact spack and its closed
subsetsA.

Proof. The key point of the proof is a recent selection theorem of Cauty [2]. He proved
that each LSC mapping on a paracompact space admits a continuous selection whenever
its values are arcs or singletons and the family of all valu€&4.ig° in some metric space.
Therefore, one can repeat the proof of Theorem 1.2 to the point before the proof of case (a)
and then use Cauty’s theoremo

Clearly one can apply Cauty’s theorem for a mapping fi®hto R” 1.

Question 3.4. Does Theorem 3.3 remain valid for normal, or even for normal countably
paracompact domains?

Recall from [11], that a mapping:Y — Z is said to besoft with respect to the pair
(X, A) if for each continuous mappings: A — Y andh: X — Z with ¢ o f = h|A there
exists an extensiofi: X — Y of f such thatpo f =h.

A mapping which is soft with respect to any pair from a cladsf topological
spaces is said to bé-soft Considering the classes efdimensional paracompact, finite-
dimensional paracompact, all paracompact spaces and so on, we obtain the notions of
n-soft, co-soft, absolutely soft, etc. mappings. For the case of compact domains there are
many different facts concerning soft mappings. For details see [11] and [9, Part C].

Clearly, theL-softness oy means that the multivalued mappings

P@={f@}, aed, P =¢1(h(x), xeX\A,

admit a selection for angX, A) € £ and arbitraryf andh.
So if one substitute¥ by R”, Z by R and¢ by E, then one gets Definition 3.2.
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Theorem 3.5. LetClz G be the closure of an open s@tc R” with respect to an open sur-
jection E:R" — R. Then softness with respect to a pé¥, A) of the restricted mapping
E|ci,c implies thatE is (X, A)-suitable for extensions to G.

Using Theorem 3.5, each theorem on softness (or each theorem on continuous selections
of LSC mappings) gives us a theorem on existence of controlled extensions. For example,
if for any function £ :R" — R, any open setG C R"” and any functiomz: X — R on
any at mostn + 1)-dimensional paracompact spakethe family CLE~1(h(x)) N G}rex
is ELC" and all its values ar€” then each:-tuple of functions(f1, f2,..., fu) such
that (f1(A), f2(A), ..., fu(A)) C Clg G and E(fi(a), f2(a), ..., fu(@)) = h(a),a € A,
adn)its anAextensiorl(#l, f2, ..., fn) such that( f1(X), f2(X), ..., f(X)) c ClgG and
E(f1(x), fa(x), ..., fu(x)) =h(x), x € X.

Our final remark deals witmequalitiesrather than equalities in basic Definitions 0.2
and 3.2.

Lemma 3.6. Let X be any normal and countably paracompact space Arclosed subset
of X. Let E:R" — R be a continuous function which {&, A)-suitable for extensions to
an open seG C R". Then for each continuous: X — R and f = (f1, f2,..., fn) 1A —
Clg G with

E(f1(a), f2(a), ..., fu(@) <h(a), acA,
there exists a continuous extensifr= ( 1, fo, ..., f»): X — Clg G of f such that

E(fi(x). fo(x)..... fu(®)) <h(x), x€X.

Proof. The equality
E(f1(a), f2(a). ..., fu(@)) =ho(a), a€ A,

defines the continuous functidy: A — R such thathg(a) € (—o0, h(a)]. The Dowker
separation theorem guarantees the existence of an extensian— R of kg such that
ho(x) € (—o0, h(x)]. The (X, A)-suitability for extensions t@; means precisely that we
can extend all functiong; so that

E(fi(x), fo(x), ..., fu@) =ho(x) Sh(x), xe€X. O

Question 3.7. Does Lemma 3.6 also hold for normal domains?
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