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Abstract

For any numerical functionE :R2 → R we give sufficient conditions for resolving the controll
extension problem for a closed subsetA of a normal spaceX. Namely, if the functionsf :A→ R,
g :A→ R andh :X → R satisfy the equalityE(f (a), g(a)) = h(a), for everya ∈ A, then we are
interested to find the extensionŝf and ĝ of f andg, respectively, such thatE(f̂ (x), ĝ(x))= h(x),
for everyx ∈X. We generalize earlier results concerningE(u,v)= u · v by using the techniques o
selections of paraconvex-valued LSC mappings and soft single-valued mappings.
 2003 Elsevier Inc. All rights reserved.
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0. Introduction

For a nonnegative continuous functionh :X→ R on a normal spaceX and for any two
nonnegative continuous functionsf : A→ R andg :A→ R on a closed subsetA ⊂ X
such thatf (a) · g(a)= h(a), for everya ∈A, Shchepin [12] proved the existence of th
nonnegative continuous extensions overX, f̂ andĝ say, withf̂ (x) · ĝ(x)= h(x), for every
x ∈X.

Frantz [4] proved the following extension theorem for functions of nonconstant sig
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J. Malešič et al. / J. Math. Anal. Appl. 285 (2003) 62–73 63

have
direct

set

n

er,
ays to

otions.

erties
rete

type
ulate
1])
ys for

,
s

Theorem 0.1. For any closed subsetA of a compact metric spaceX and any continu-
ous functionsf :A→ R, g :A→ [0,∞) andh :X→ R such thatg−1(0)⊂ f−1(0) and
f · g = h|A, there exist continuous extensionsf̂ :X→ R and ĝ :X→ [0,∞) of f andg
such thatf̂ · ĝ = h.

See also [4] for examples showing the essentiality of the hypothesesg � 0 andg−1(0)⊂
f−1(0). One can easily find such examples on the unit circle. Barov and Dijkstra [1]
generalized Theorem 0.1 to arbitrary normal domains, giving a short proof via a
analytical expression for the desired extensions.

Having in mind these results we introduce the following definition.

Definition 0.2. LetE :R2 → R andh :X→ R be any continuous functions. For any sub
A⊂X let f :A→ R andg :A→ R be functions which satisfy the equality

E
(
f (a), g(a)

) = h(a), a ∈A.
Then the functionsf̂ :X → R and ĝ :X → R are called an(E,h)-controlled extension
of f andg, respectively, iff̂ extendsf , ĝ extendsg and

E
(
f̂ (x), ĝ(x)

) = h(x), x ∈X.

For a simple example, letE(u,v) = a · v + b · u. Then one can extendg to ĝ in an
arbitrary manner, applying the Tietze–Urysohn theorem, and then directly setf̂ = (h −
bĝ)/a. More generally, if the equationE(u,v)= c, c ∈ R, admits an explicit representatio
u = ψ(v, c) by a continuous functionψ , then we can simply put̂f (x)= ψ(ĝ(x),h(x)),
using an arbitrary extension̂g of g.

Clearly, one can rephrase the results above as existence theorems for(E,h)-controlled
extensions for the multiplication functionE(u,v) = u · v. Note that Definition 0.2 is a
version of Frantz’s definition [4]. But, as he wrote, “. . .there are many other cases, howev
for which the answers are not clear.” The aim of the present paper is to show some w
fill this gap.

In Section 1 below we formulate our results and introduce necessary technical n
Section 2 presents the proofs: we show general properties of a mappingE :R2 → R which
are sufficient for substitution of the multiplication mapping(u, v) �→ u · v in the result. We
propose two variants. One of them, in abstract terms concerning convexity-like prop
of the level setsE−1(t), t ∈ R (cf. Theorem 1.2) and the other one deals with conc
analytical properties of the functionE (cf. Theorem 1.5).

Note that in Definition 0.2 there is no mention of boundary restrictions of the
g−1(0)⊂ f−1(0). We consider this more definitely in Section 3. There we also reform
the controlled extension problem in terms ofsoftmappings (in the sense of Shchepin [1
or as a suitable selection problem. Such a general point of view gives various wa
solving this problem.

In conclusion, we recall that a single-valued mappingf :X→ Y is said to be aselection
of a given multivalued mappingF :X→ Y if f (x) ∈ F(x) for eachx ∈X. Furthermore
thelower semicontinuityof a multivalued mappingF :X→ Y between topological space
means that for eachx ∈X andy ∈ F(x), and each open neighborhoodU(y) there exists
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an open neighborhoodV (x) such thatF(x ′)∩U(y) �= ∅ wheneverx ′ ∈ V (x). For genera
facts and references on the selection theory see [5,6,9].

1. Preliminaries

We need some terminology concerning sets with controlled degree of nonco
ity. Let P be a nonempty closed subset of a normed spaceB. The numberδ(P,D) =
sup{dist(q,P )/r | q ∈ conv(P ∩D)} is a natural upper estimate for a relative measur
nonconvexity of the intersection of the setP with the open ballD of radiusr. The function
of nonconvexityαP (·) of the setP associates to each numberr > 0 the supremum of the se
{δ(P,D)} over all open balls of the radiusr. Clearly, the identityαP (·)≡ 0 is equivalent
to the convexity of the setP . If αP (r)� α(r) for all positiver, then the setP is said to be
α-paraconvex. The following selection theorem was proved in [8]:

Theorem 1.1. Letα : (0,∞)→ [0,1) be any increasing continuous function andΦ :X→
B a lower semicontinuous mapping from a paracompact spaceX into a Banach space
B with α-paraconvex valuesΦ(x), for everyx ∈X. ThenΦ admits a continuous single
valued selection.

Theorem 1.1 was proved for constant functionsα by Michael [7]. At that time he intro
duced the notion ofα-paraconvexity for theconstantfunctionα.

Below we denote the open upper half-plane{(u, v): v > 0} by R
2+ and the unionR2+ ∪

{(0,0)} by R
2+0. For any numerical functionsf andg on a setA we denote their Cartesia

product by(f, g), that is(f, g)(a)= (f (a), g(a)), for everya ∈A. Clearly, the hypothese
f :A→ R, g :A→ [0,∞) andg−1(0)⊂ f−1(0) can be summarized as(f, g) :A→ R

2+0.

Theorem 1.2. Letα : (0,∞)→ [0,1) be any increasing continuous function. LetE :R2 →
R be an open surjection withE−1(0) = {(u, v): uv = 0} and such that all intersection
E−1(t)∩ R

2+, t �= 0, areα-paraconvex. Let:

(a) X be a normal and countably paracompact space andA⊂X any closed subset; or
(b) X be a normal space andA ⊂ X any compact subset, andh :X→ R a continuous

function.

Then each continuous mapping(f, g) :A→ R
2+0 with E(f (a), g(a)) = h(a), for every

a ∈A, admits an(E,h)-controlled extension(f̂ , ĝ) :X→ R
2+0.

The situations when all level setsE−1(t) ∩ R
2+, t �= 0, are smooth planar curves a

natural areas for applications of Theorem 1.2. Note that the paraconvexity of the con
graphΓ of a continuous numerical function of one real variable can be derived fro
suitable upper estimate for dist(Q,Γ )/r, whereQ is the midpoint of the segment[P,R]
with P ∈ Γ , R ∈ Γ and of length 2r (see [8]).

Typical examples are connected graphs of monotone continuous or Lipschitz fun
Other examples of paraconvex subsets of the Euclidean plane will be useful for a
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concrete version of Theorem 1.2, where we shall work with more analytical propert
the mappingE. In particular, these properties will guarantee the paraconvexity of
setsE−1(t) ∩ R

2+, whenevert �= 0. Note that for normal but not countably paracomp
domainsX (so-calledDowkerspaces [10]) and for their closed subsetsA we shall state
our result only for such more specific mappingsE :R2 → R.

Definition 1.3. A function E :R2 → R is called apseudomultiplicationif E(u,v) =
e(u) · v, where:

(a) e(·) preserves the signs of the arguments;
(b) e(·) is continuously differentiable; and
(c) the derivativee′(·) is positive in some neighborhood of zero and in some neighbor

of the infinity.

For an arbitrary continuously differentiable functionρ :R → R with positive derivative
ρ′ for all sufficiently large arguments, one can apply two parallel shifts and obtain the
tion e(u)= ρ(u+ u0)− ρ(u0), with properties (a)–(c) from Definition 1.3. Polynomia
of odd degree provide such examples (see Fig. 1).

We can say in the spirit of [3] thate(u) is an asymptotically increasing function a
e(u−1) is an asymptotically decreasing function (see Fig. 2).

Lemma 1.4. LetE :R2 → R be a pseudomultiplication and letC0 > 0 be any constant
Then there exists an increasing continuous functionα : (0,∞)→ [0,1) such that all inter-
sectionsE−1(t)∩ R

2+, 0< |t| � C0, areα-paraconvex subsets of the Euclidean plane.

As a corollary of Theorem 1.2 and Lemma 1.4 we obtain:

Theorem 1.5. LetE :R2 → R be a pseudomultiplication. Leth :X→ R be a continuous
function on a normal spaceX, andA a closed subset ofX. Then each continuous mappin
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(f, g) :A→ R
2+0 such thatE(f (a), g(a))= h(a), a ∈A, admits an(E,h)-controlled ex-

tension(f̂ , ĝ) :X→ R
2+0.

Observe that the pseudomultiplicationE(u,v) = e(u) · v is an open surjection, whil
the functionu �→ e(u) is not open at its points of extrema. Pseudomultiplications hav
advantage in comparison with open surjections because there is a continuous flow o
level sets. Moreover, all level sets are connected graphs of smooth functions of o
variable. So one can continuously move points along level sets of pseudomultiplicat

One way to find a nonparaconvex variant can be described as follows. LetH :R →
Homeo+(R) be a continuous mapping into the set of all sign-preserving homeo
phisms of the real line, endowed with the topology of uniform convergence. For a fun
E :R2 → R we naturally define another functionEH :R2 → R, by settingEH(u, v) =
E(u,Hu(v)).

Lemma 1.6. The existence of(E,h)-controlled extensions implies the existence
(EH ,h)-controlled extensions.

Shortly, the existence of controlled extensions is a stable property under an ac
pointwise (with respect to the first coordinate) homeomorphisms. The level setsE−1(t)

in this lemma can clearly be more complicated than paraconvex sets. So on the on
it generalizes Theorem 1.5. However, in the simplest cases, for exampleE(u,v)= u3 · v,
Lemma 1.6 is not applicable, while Theorem 1.5 works.

2. Proofs

Proof of Lemma 1.4. We begin by determining the functionα. Let v(u)= 1/e(u), u > 0.
Pick 0<m<M so that on the segment[m,M] the graph of the functionv(·) lies inside
the rectangle[m,M]×[v(m), v(M)] andv is decreasing on(0,m) and(M,∞). By setting
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α(r, t)= max

{√
2

2
,sin

(
arctan

(
t · max

{∣∣v′(u)
∣∣:

v−1(v(m)+ 2r
)
� u�M + 2r

}))}

we obtain a function which is increasing and continuous with respect to both variar
and t . Hence, the functionα(r) = α(r,C0) majorates each functionα(r, t). So we only
need to check that the functionα(·, t) majorates the function of nonconvexity of the cur
E−1(t)∩ R

2+.
To this end we first note that this intersection is the graph of a continuous functi

the positiveu-ray:

E−1(t) ∩ R
2+ =

{
(u, v): u > 0, v = t

e(u)

}
.

So by [8], we only need to estimate the distances dist(Q,E−1(t)) for the midpointsQ of
the segment[P,R] with endpoints in the setE−1(t)∩ R

2+ and of length 2r. Letπ1 :R2 →
R be the projection onto the first factor.

(1) If π1(R) � m or π1(P ) �M, then the functionv = t/e(u) is decreasing on th
segment[π1(P ),π1(R)]. Hence (see [8]),

dist(Q,E−1(t))

r
�

√
2

2
� α(r).

(2) If m� π1(P ) � π1(R)�M, then the functionv = t/e(u) is Lipschitz on the seg
ment[π1(P ),π1(R)] with the constant less than or equal tot · max{|v′(u)|: m� u�M}.
Hence (see [8]),

dist(Q,E−1(t))

r
� sin

(
arctan

(
t · max

{∣∣v′(u)
∣∣: m� u�M

}))
� α(r).

(3) If π1(R) �M � π1(P ), thenπ1(R) �M + 2r andπ1(P ) � v−1(v(m) + 2r) be-
cause the length of[P,R] is 2r. Hence we obtain for dist(Q,E−1(t))/r an upper estimat
as in the case (2) above with the substitution of the segment[m,M] by the segmen
[v−1(v(m)+ 2r),M + 2r] (see Fig. 3).

(4) The caseπ1(P ) �m � π1(R) and the case of negative parametert can be treated
analogously. ✷

Observe that for pseudomultiplicationsE (and for surjectionsE from Theorem 1.2
as well) the intersectionE−1(0) ∩ R

2+ is the open ray{(0, v): v > 0} and the closure
of this intersection is paraconvex (since it is convex). We pass now to generalizati
Theorem 0.1.

Proof of Theorem 1.2. The multivalued mappingE−1 ◦ h :X→ R
2 is LSC due to the

openness ofE and the continuity ofh. The intersection with the open setR
2+ and the

pointwise closure operation preserve the LSC property (see [5]). Fort �= 0 the intersection
E−1(t)∩R

2+ is closed because of theα-paraconvexity assumption and Cl(E−1(0)∩R
2+) is

simply a vertical closed ray. So the multivalued mappingΨ :X→ R
2, defined byΨ (x)=

Cl{E−1(h(x))∩ R
2 }, is an LSC mapping withα-paraconvex values.
+0
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The assumed equalityE(f (a), g(a)) = h(a), for everya ∈ A, means precisely tha
the single-valued mappings(a) = (f (a), g(a)), for everya ∈ A, is a partial continuou
selection ofΨ |A. Hence the multivalued mappingΦ :X→ R

2, defined byΦ(a)= {s(a)},
for everya ∈A, andΦ(x)= Ψ (x), for everyx ∈X \A, is also an LSC mapping and al
hasα-paraconvex values.

For paracompact domainsX we can simply use Theorem 1.1 and extends to a selec-
tion ŝ of Φ over the entireX. Clearly, the coordinate projectionŝf = π1 ◦ ŝ andĝ = π2 ◦ ŝ
of such an extension give the desired controlled extensions off andg.

However, for normal domainsX we must be more careful. In fact, we prove an analo
of Theorem 1.1 for normal domains by using local compactness of the planeR

2.
In case(a) we pick arbitrary continuous extensionsf0 and g0 of f and g and de-

fine s0 :X → R
2 by the equalitys0(x) = (f0(x), g0(x)). Observe thats0(a) = s(a),

for all a ∈A. The distance function dist(s0(x),Φ(x)), for every x ∈ X, is an upper
semicontinuous numerical function on the normal and countably paracompact spX.
Due to the Dowker separation theorem it admits a continuous strong majorant
tion r :X → (0,∞). So in our case we have some continuousr-selections0 of Φ, i.e.,
dist(s0(x),Φ(x)) < r(x), for everyx ∈X. We now inductively proceed with improveme
of the precisionsn(x)≈Φ(x).

Chooseα(·) < β(·) < 1 with some continuous increasing functionβ(·) and define the
multivalued mappingΦ1 :X→ R

2 by

Φ1(x)= Cl
(
conv

{
Φ(x)∩D(

s0(x), r(x)
)})
.

Clearly,Φ1 is LSC with nonempty, convex andcompactvalues. So by the Michael sele
tion theorem fornormaldomains (see [5] and [9, Part B]), it admits a selections1 :X→ R

2.
Then theα-paraconvexity guarantees that

dist
(
s1(x),Φ(x)

)
� α

(
r(x)

) · r(x) < β(
r(x)

) · r(x)= r1(x) < r(x),
dist

(
s0(x), s1(x)

)
� r(x).
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The functionr1 :X→ (0,∞) is continuous. So we can find a selections2 of the mapping

Φ2(x)= Cl
(
conv

{
Φ(x)∩D(

s1(x), r1(x)
)})

for which

dist
(
s2(x),Φ(x)

)
� α

(
r1(x)

) · r1(x) < β
(
r1(x)

) · r1(x) < β
(
r(x)

) · r1(x)
= β2(r(x)) · r(x)= r2(x) < r1(x),

dist
(
s1(x), s2(x)

)
� r1(x).

The obvious continuation of such a procedure yields a sequence of mappingssn :X→ R
2

with

dist
(
sn(x),Φ(x)

)
< βn

(
r(x)

) · r(x), dist
(
sn−1(x), sn(x)

)
� βn−1(r(x)) · r(x).

For eachx ∈X the continuous functionsβ(r(·)) < 1 andr(·) are bounded on some neig
borhood ofx. So the sequence{sn} is locally uniformly fundamental and hence it has
limit ŝ :X→ R

2 which clearly is a continuous selection ofΦ.
In case (b) we first consider the situation whenh :X → R is bounded. The mappin

t �→ Cl{E−1(t)∩ R
2+}, t ∈ R, admits a continuous selection, due to the cases already

ied above. The values of such a selection constitute a bounded set when the parat
changes froma to b with [a, b] ⊃ h(X). This means that there exists a pointp ∈ R

2 and a
positiver such that the open ballDr centered atp meets with each value ofΨ (x), for every
x ∈X. The given continuous mapping(f, g) is bounded onA because of the compactne
of A. Hence we can assume that the set(f, g)(A) lies insideDr . So the constant mappin
s0(·)≡ p is ther-selection of the mappingΦ. Now we repeat the improvement procedu
from case (a).

Leth be unbounded onX. Define a strongly increasing sequence{Xn} of closed subset
of X by settingXn = {x ∈X: |h(x)| � n}. Then

X1 ⊂ intX2 ⊂X2 ⊂ intX3 ⊂X3 ⊂ · · · ,
⋃
Xn =X.

Apply the first case to the pair(X1,X1 ∩ A) and the corresponding restrictions of t
functionsf , g andh. We obtain an(E,h)-controlled extension(f1, g1) :X1 → R

2+0 of
f |X1∩A andg|X1∩A. Hence the case of the bounded functionh is applicable to the pai
(X2,X1 ∪ (X2 ∩A)) and so on. Each pointx ∈X lies in someXn with its own neighbor-
hood. Thus we obtain a continuous mappings over the whole domainX. ✷
Proof of Theorem 1.5. The mappingt �→ Cl{E−1(t) ∩ R

2+}, −1 � t � 1, admits a se
lection due to Lemma 1.4 and Theorem 1.1. Applying the same results for−2 � t � 2,
we extend such a selection onto the segment[−2,2]. A continuation gives a selectio
φ :R → R

2 of the mappingt �→ Cl{E−1(t)∩ R
2+}, for everyt ∈ R.

For a pseudomultiplicationE, its level setsE−1(t) = {(u, v): v = t/e(u)} look as as-
ymptotically hyperbolic-type curves after intersecting withR

2+. So on the normal spac
X we have the mappingφ ◦ h :X→ R

2 with values on the curves Cl{E−1(h(x)) ∩ R
2+}

and on the closed subsetA ⊂ X we haves :a �→ (f (a), g(a)) with values on the curve
Cl{E−1(h(a))∩ R

2+}. In general, these mappings are different onA, i.e.,s(a) �= φ(h(a)).
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But we can assume that all curves Cl{E−1(t)∩ R
2+}, t ∈ R, are endowed with the commo

direction induced by an arbitrary fixed direction on the unique curve Cl{E−1(1) ∩ R
2+}.

Next, we can simply move pointsφ(h(a)) to pointss(a) along the corresponding curv
Cl{E−1(h(a)) ∩ R

2+}. All others pointsφ(h(x)) will be transferred continuously on th
curves Cl{E−1(h(x))∩ R

2+}.
More precisely, for eacha ∈ A we calculate the signed length of the segment of

curve Cl{E−1(h(a))∩ R
2+} between the pointsφ(h(a)) ands(a). Consideringφ(h(a)) as

the starting point, we obtain the numerical functionl :A→ R. It is clearly continuous. We
extend it to some continuous functionl̂ :X→ R and then move each pointφ(h(x)) along
the curve Cl{E−1(h(x)) ∩ R

2+} exactly for the signed̂l(x) length (see Fig. 4). The resu
gives a selection ofx �→ Cl{E−1(h(x))∩ R

2+} which extendss. ✷
Proof of Lemma 1.6. Let (f, g) :A→ R

2+0 andEH (f (a), g(a))= h(a), for everya ∈A.
This means thatE(f (a),Hf (a)(g(a))) = h(a), for everya ∈ A. Define the continuou
mappinggH (a) = Hf(a)(g(a)). Clearly, if gH (a) = 0, theng(a) = 0. Sof (a) = 0 and
hence(f, gH ) mapsA into the setR2+0. By our assumption it admits an(E,h)-controlled

extension(f̂ , ĝH ) :X→ R
2+0.

Now, putĝ(x)=H−1
f̂ (x)

(ĝH (x))� 0. If ĝ(x)= 0, thenĝH (x)= 0 and hencef̂ (x)= 0.

Therefore(f̂ , ĝ) :X→ R
2+0 and

EH
(
f̂ (x), ĝ(x)

) =E
(
f̂ (x),H

f̂ (x)

(
H−1
f̂ (x)

(
ĝH (x)

))) =E(
f̂ (x), ĝH (x)

) = h(x),
because(f̂ , ĝH ) is an(E,h)-controlled extension. ✷
3. Extensions and selections

Continuous extensions are special cases of continuous selections. In this sec
show that this is also true for controlled extensions. So in this section we shall forget
specifics of the upper half plane and shall take a more general point of view.
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Definition 3.1. For any mappingE :Rn → R and any open subsetG⊂ R
n theclosure of

G with respect toE is defined as

ClE G=
⋃
t∈R

Cl
(
E−1(t) ∩G)).

Definition 3.2. Let X be a topological space,A its subset andG an open subset ofRn.
A mappingE :Rn → R is said to be(X,A)-suitable for extensions toG if for each con-
tinuous functionh :X→ R andf = (f1, f2, . . . , fn) :A→ ClE G with E ◦ f = h|A there
exists an(E,h)-controlled extension, i.e., an extensionf̂ = (f̂1, f̂2, . . . , f̂n) :X→ ClE G
of f such thatE ◦ f = h.

Proofs from Section 2 show that we really used only a topological or convexity
property of the family{Cl(E−1(t) ∩ G)}t∈R. So as a purely topological version of t
results we state the following:

Theorem 3.3. Let E :R2 → R be an open surjection andG an open subset ofR2 such
that {Cl(E−1(t) ∩G)}t∈R is an ELC0-family, consisting of arcs and singletons. ThenE is
(X,A)-suitable for extensions toG for an arbitrary paracompact spaceX and its closed
subsetsA.

Proof. The key point of the proof is a recent selection theorem of Cauty [2]. He pr
that each LSC mapping on a paracompact space admits a continuous selection w
its values are arcs or singletons and the family of all values isELC0 in some metric space
Therefore, one can repeat the proof of Theorem 1.2 to the point before the proof of c
and then use Cauty’s theorem.✷

Clearly one can apply Cauty’s theorem for a mapping fromR
n to R

n−1.

Question 3.4. Does Theorem 3.3 remain valid for normal, or even for normal count
paracompact domains?

Recall from [11], that a mappingφ :Y → Z is said to besoft with respect to the pai
(X,A) if for each continuous mappingsf :A→ Y andh :X→Z with φ ◦ f = h|A there
exists an extension̂f :X→ Y of f such thatφ ◦ f̂ = h.

A mapping which is soft with respect to any pair from a classL of topological
spaces is said to beL-soft. Considering the classes ofn-dimensional paracompact, finit
dimensional paracompact, all paracompact spaces and so on, we obtain the no
n-soft,∞-soft, absolutely soft, etc. mappings. For the case of compact domains the
many different facts concerning soft mappings. For details see [11] and [9, Part C].

Clearly, theL-softness ofφ means that the multivalued mappings

Φ(a)= {
f (a)

}
, a ∈A, Φ(x)= φ−1(h(x)), x ∈X \A,

admit a selection for any(X,A) ∈L and arbitraryf andh.
So if one substitutesY by R

n, Z by R andφ byE, then one gets Definition 3.2.
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Theorem 3.5. LetClEG be the closure of an open setG⊂ R
n with respect to an open su

jectionE :Rn → R. Then softness with respect to a pair(X,A) of the restricted mapping
E|ClEG implies thatE is (X,A)-suitable for extensions to G.

Using Theorem 3.5, each theorem on softness (or each theorem on continuous se
of LSC mappings) gives us a theorem on existence of controlled extensions. For ex
if for any functionE :Rn → R, any open setG ⊂ R

n and any functionh :X → R on
any at most(n+ 1)-dimensional paracompact spaceX, the family Cl{E−1(h(x))∩G}x∈X
is ELCn and all its values areCn then eachn-tuple of functions(f1, f2, . . . , fn) such
that (f1(A),f2(A), . . . , fn(A)) ⊂ ClE G andE(f1(a), f2(a), . . . , fn(a)) = h(a), a ∈ A,
admits an extensions(f̂1, f̂2, . . . , f̂n) such that(f1(X),f2(X), . . . , fn(X)) ⊂ ClEG and
E(f̂1(x), f̂2(x), . . . , f̂n(x))= h(x), x ∈X.

Our final remark deals withinequalitiesrather than equalities in basic Definitions 0
and 3.2.

Lemma 3.6. LetX be any normal and countably paracompact space andA a closed subse
ofX. LetE :Rn → R be a continuous function which is(X,A)-suitable for extensions t
an open setG⊂ R

n. Then for each continuoush :X→ R andf = (f1, f2, . . . , fn) :A→
ClE G with

E
(
f1(a), f2(a), . . . , fn(a)

)
� h(a), a ∈A,

there exists a continuous extensionf̂ = (f̂1, f̂2, . . . , f̂n) :X→ ClE G of f such that

E
(
f̂1(x), f̂2(x), . . . , f̂n(x)

)
� h(x), x ∈X.

Proof. The equality

E
(
f1(a), f2(a), . . . , fn(a)

) = h0(a), a ∈A,
defines the continuous functionh0 :A→ R such thath0(a) ∈ (−∞, h(a)]. The Dowker
separation theorem guarantees the existence of an extensionĥ0 :X → R of h0 such that
ĥ0(x) ∈ (−∞, h(x)]. The (X,A)-suitability for extensions toG means precisely that w
can extend all functionsfi so that

E
(
f̂1(x), f̂2(x), . . . , f̂n(x)

) = ĥ0(x)� h(x), x ∈X. ✷
Question 3.7. Does Lemma 3.6 also hold for normal domains?
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