ON CHARACTERIZATION OF LIPSCHITZ MANIFOLDS

JOŽE MALEŠIČ AND DUŠAN REPOVŠ Institute of Mathematics, Physics and Mechanics University of Ljubljana 1001 Ljubljana, P.O.B. 2964, Slovenia

Abstract. We construct an example of a wild Cantor set in \mathbb{R}^3 which is Lipschitz ambientally homogeneous in \mathbb{R}^3 , thereby showing that Lipschitz homogeneity does not characterize Lipschitz submanifolds od \mathbb{R}^3 (contrary to the smooth homogeneity).

1. Introduction

In 1989, working on a problem of Arnol'd [1] concerning one-parameter group actions on \mathbb{R}^2 , Dimovski, Repovš and Ščepin [4] introduced the concept of C^{∞} -homogeneity for locally compact subsets of \mathbb{R}^2 . This notion was later generalized by Repovš, Skopenkov and Ščepin [8][9] to C^r -homogeneity in an arbitrary smooth manifold:

Definition 1 A subset $K \subset M^n$ is said to be C^r -homogeneous in a smooth n-manifold M^n , r > 0, if for every pair of points $a, b \in K$ there exist neighbourhoods $O_a, O_b \subset M^n$ of a and b, respectively, and a C^r -diffeomorphism

$$h: (O_a, O_a \cap K, a) \longrightarrow (O_b, O_b \cap K, b)$$

It was proved in [9] that this property characterizes the C^r -submanifolds of C^r -manifolds, for every r > 0:

Theorem 1 (Repovš, Skopenkov and Ščepin, 1996) Let K be a locally compact (possibly nonclosed) subset of a smooth n-manifold M^n . Then K is C^r -homogeneous in M^n , r > 0, if and only if K is a C^r -submanifold of M^n .

As an interesting application one obtains a simple geometric proof of the classical result of Bochner and Montgomery [3] that the Hilbert-Smith conjecture is true for actions by diffeomorphisms (for some new results concerning this conjecture see [6] and [10]). Namely, suppose to the contrary, that the group A_p of p-adic integers acted freely on a smooth manifold M by diffeomorphisms. Then every orbit would be diffeomorfic to the group A_p . At the same time, every orbit would also be C^{∞} -homogeneous in M, hence by Theorem 1 itself a smooth manifold. Contradiction.

Obviously Theorem 1 is not valid for topological homogeneity as the example of the standard ternary Cantor set in \mathbb{R}^2 demonstrates. It was expected however, that Theorem 1 could nevertheless be generalized to the case of Lipschitz submanifolds of \mathbb{R}^n (where Lipschitz homogeneity is defined analogously to the C^r -homogeneity in Definition 1).

However, as we prove in the present paper, this is not true already in the plane \mathbb{R}^2 :

Theorem 2 The standard ternary Cantor set, lying on the x-axis in \mathbb{R}^2 , is Lipschitz homogeneous in \mathbb{R}^2 .

In 1995 Ščepin asked whether in \mathbb{R}^3 Lipschitz homogeneity of Cantor sets would imply their tameness. The main result of this paper, stated below, answers his question in the negative:

Theorem 3 There exists a wild Cantor set in \mathbb{R}^3 which is Lipschitz homogeneous in \mathbb{R}^3 .

We believe that our methods can be generalized to higher dimensions, using the techniques of Blankinship [2]:

Conjecture 1 There exists a wild Cantor set in \mathbb{R}^n , for every $n \geq 4$, which is Lipschitz homogeneous in \mathbb{R}^n .

We acknowledge the support by the Ministry of Science and Technology of Republic of Slovenia. We also thank the referee for comments and suggestions.

2. Preliminaries

Recall that a map $S:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ is said to be Lipschitz if there exists a constant λ such that

$$|S(x) - S(y)| \le \lambda |x - y|$$
 for every $x, y \in \mathbb{R}^n$

and the smallest such λ is called the *Lipschitz constant of S*. In the special case when

$$|S(x) - S(y)| = \lambda |x - y|$$
 for every $x, y \in \mathbb{R}^n$

the map S is called a similarity and the number λ is called the coefficient of similarity. When $\lambda = 1$ the map S is called an isometry.

Let G be a finite index set and let $S = \{S_g : \mathbb{R}^n \longrightarrow \mathbb{R}^n | g \in G\}$ be a set of similarities having the same coefficient of similarities. Additionally, suppose that there exists a compact set $X \subset \mathbb{R}^n$ such that

- (i) $S_g(X) \subset \text{Int}(X)$ for each $g \in G$; and
- (ii) the sets $S_q(X)$ are pairwise disjoint, $g \in G$.

For each multiindex $\gamma = (g_1, g_2, \dots g_k) \in G^k = G \times G \times \dots \times G$ denote:

$$S_{\gamma} = S_{g_1} \circ S_{g_2} \circ \ldots \circ S_{g_k}$$

and

$$X_{\gamma} = S_{\gamma}(X).$$

In particular,

$$X_g = S_g(X)$$
 for $g \in G$.

The number of components of a multiindex γ is called the dimension of γ :

$$\dim(\gamma) = k \text{ if } \gamma \in G^k.$$

Denote

$$X_k = \bigcup_{\dim(\gamma)=k} X_{\gamma}.$$

It is well-known (cf. [5]) that the intersection of the sequence of sets $X \supset X_1 \supset X_2 \supset \ldots$ is a self-similar Cantor set and it does not depend on the choice of X. Therefore it depends only on the set S and so it can be denoted by |S|.

For an infinite multiindex $\gamma = (g_1, g_2, g_3, \ldots) \in G^{\infty}$ denote

$$\gamma^{k} = (g_1, g_2, \dots g_k)$$

and

$$X_{\gamma} = \bigcap_{k=1}^{\infty} X_{\gamma^k}.$$

Obviously, each X_{γ} is a singleton, consisting of a point from the Cantor set $|\mathcal{S}|$ and for each point from $|\mathcal{S}|$ there exists exactly one such multiindex γ . The components of γ are called *coordinates* of the corresponding point from the Cantor set $|\mathcal{S}|$.

3. Sufficient conditions for Lipschitz homogeneity

Let G be a finite cyclic group written additively and let 0 and 1 be the neutral element and the generator of G, respectively.

Lemma 1 Suppose that $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a Lipschitz homeomorphism such that

(i)

$$f|_{\mathbb{R}^n - Int(X)} = id_{\mathbb{R}^n - Int(X)}$$

(ii)

$$f(X_g) = X_{g+1}$$
 for each $g \in G$

and the following diagram commutes

$$egin{array}{cccc} X & & & & & \\ S_g \swarrow & & & \searrow S_{g+1} & & \\ X_g & \stackrel{f}{\longrightarrow} & X_{g+1} & & & \end{array}$$

Then the Cantor set |S| is Lipschitz homogeneous in \mathbb{R}^n .

Proof: Define a juxtaposition of multiindices: if $\delta = (d_1, d_2, \dots d_k)$ is a finite multiindex and $\gamma = (g_1, g_2, \dots)$ is finite or infinite then let

$$\delta\gamma=(d_1,d_2,\ldots d_k,g_1,g_2,\ldots).$$

In the special case when $\dim(\gamma) = 1$, hence $\gamma = g_1$ and

$$\delta g_1 = (d_1, d_2, \dots d_k, g_1).$$

In order to prove Lemma 1 we introduce several homeomorphisms and describe their properties in the subsequent lemmas. For an arbitrary finite multiindex $\gamma = (g_1, g_2, \dots g_k) \in G^k$ define the homeomorphism $f_{\gamma} = S_{\gamma} \circ f \circ S_{\gamma}^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Lemma 2 The homeomorphism f_{γ} is Lipschitz with the Lipschitz constant equal to the Lipschitz constant of f and the following holds:

(i)

$$f_{\gamma}|_{\mathbb{R}^n-Int(X_{\gamma})}=id_{\mathbb{R}^n-Int(X_{\gamma})}$$

(ii) For arbitrary $g_{k+1} \in G$

$$f_{\gamma}(X_{\gamma g_{k+1}}) = X_{\gamma(1+g_{k+1})}$$

and the following diagram commutes:

Therefore, $f_{\gamma}|_{X_{\gamma g_{k+1}}}$ is an isometry.

(iii) For arbitrary indices g_{k+1} , g_{k+2} , g_{k+3} ,...

$$f_{\gamma}(X_{(g_1,g_2,\dots g_k,g_{k+1},g_{k+2},g_{k+3},\dots)}) = X_{(g_1,g_2,\dots g_k,1+g_{k+1},g_{k+2},g_{k+3},\dots)}.$$

Proof: Proposition (i) follows directly from the condition (i) of Lemma 1. Proposition (ii) follows from condition (ii). Finally, (ii) implies (iii). □

For an arbitrary pair of points $a, b \in |\mathcal{S}|$ we now construct a homeomorphism

$$h: (\mathbb{R}^n, |\mathcal{S}|, a) \longrightarrow (\mathbb{R}^n, |\mathcal{S}|, b)$$

and we prove that h and h^{-1} are Lipschitz maps.

Let $\alpha = (a_1, a_2, \ldots) \in G^{\infty}$, $\beta = (b_1, b_2, \ldots) \in G^{\infty}$ be coordinates of the points a, b, respectively. Introduce infinite sequences of homeomorphisms

$$\{f_k: \mathbb{R}^n \longrightarrow \mathbb{R}^n | k \in \mathbb{N}\}, \{g_k: \mathbb{R}^n \longrightarrow \mathbb{R}^n | k \in \mathbb{N}\}, \{h_k: \mathbb{R}^n \longrightarrow \mathbb{R}^n | k \in \mathbb{N}\}$$

given by

$$f_1 = f^{b_1-a_1}, \ \ f_2 = f^{b_2-a_2}_{b_1}, \ \ f_3 = f^{b_3-a_3}_{(b_1,b_2)}, \ \ f_{k+1} = f^{b_{k+1}-a_{k+1}}_{eta^k}$$

where $f^{b-a} = f \circ f \circ \ldots \circ f$ (b-a times),

$$g = f^{-1}, \ g_1 = g^{b_1 - a_1}, \ g_2 = g^{b_2 - a_2}_{a_1}, \ g_3 = g^{b_3 - a_3}_{(a_1, a_2)}, \ g_{k+1} = g^{b_{k+1} - a_{k+1}}_{\alpha^k}$$

$$h_k = f_k \circ f_{k-1} \circ \ldots \circ f_2 \circ f_1$$

Lemma 3 The homemomorphisms h_k possess the following properties:

(i)

$$h_k^{-1} = g_1 \circ g_2 \circ \ldots \circ g_{k-1} \circ g_k$$

(ii) $h_k(X_{\alpha^k}) = X_{\beta^k} \ \ and, \ moreover \ \ h_k(X_{\alpha^k\gamma}) = X_{\beta^k\gamma}$

for arbitrary multiindex γ , finite or infinite.

(iii)

The restriction $h_k|_{X_{\alpha^k a_{k+1}}}: X_{\alpha^k a_{k+1}} \longrightarrow X_{\beta^k a_{k+1}}$ is an isometry.

(iv) The following restrictions coincide:

$$h_k|_{\mathbb{R}^n-\operatorname{Int} X_{\alpha^k}}=h_{k+1}|_{\mathbb{R}^n-\operatorname{Int} X_{\alpha^k}}=h_{k+2}|_{\mathbb{R}^n-\operatorname{Int} X_{\alpha^k}}=\dots$$

Proof: Property (i) can be proved directly by examining the construction of h_k . Property (ii) follows from Lemma 2, (ii) and (iii). Property (iii) holds since $f_{\gamma}|_{X_{\gamma g_{k+1}}}$ is an isometry. Property (iv) holds because of Lemma 2 (i).

Lemma 4 The homeomorphisms h_k and h_k^{-1} are Lipschitz maps with equal Lipschitz constants for all values of k.

Proof: Having fixed the sequence $\alpha = (a_1, a_2, ...)$ of coordinates of the point $a \in |\mathcal{S}|$ introduce the notion of degree of a point $x \in \mathbb{R}^n$:

$$\deg x = j \text{ if } x \in X_{\alpha^j} - \operatorname{Int}(X_{\alpha^{j+1}}).$$

Additionally, let

$$\deg x = 0$$
 if $x \in X - \operatorname{Int}(X_{a_1})$ and $\deg x = -1$ if $x \in \mathbb{R}^n - \operatorname{Int}(X)$.

For arbitrary points $x, y \in \mathbb{R}^n$ we now estimate the expression $h_k(x) - h_k(y)$.

Step 1 Let the Lipschitz constant of the homeomorphism f be denoted by λ . Hence the Lipschitz constants of the homeomorphisms $f_1, f_2, \ldots, g_1, g_2, \ldots$ do not exceed the number $\lambda^{|G|}$, where |G| denotes the number of elements of G. Let $|\deg x - \deg y| \leq 1$, i.e.

$$\deg x \in \{j, j+1\}, \ \deg y = j+1$$

for some $j \in \mathbb{N}$. By Lemma 3, (iii) and (iv), and because of the construction of h_k ,

$$|h_k(x) - h_k(y)| = |f_{j+1} \circ f_j(x) - f_{j+1} \circ f_j(y)| \le \lambda^{2|G|} |x - y|.$$

Step 2 Let now $|\deg x - \deg y| \ge 2$. First let the degrees be nonnegative, i.e.

$$\deg x = j \geq 0 \ \text{ and } \ \deg y \geq j+2$$

for some $j \in \mathbb{N}$. Then

$$x \in X_{\alpha^j} - \operatorname{Int}(X_{\alpha^{j+1}}), \ \ y \in X_{\alpha^{j+2}}.$$

For arbitrary disjoint compact sets $C_1, C_2 \subset \mathbb{R}^n$ denote:

$$d_{\min}(C_1, C_2) = \min\{|x - y|; x \in C_1, \ y \in C_2\}$$

and

$$d_{\max}(C_1, C_2) = \max\{|x - y|; x \in C_1, y \in C_2\}.$$

The sets $X - Int(X_1)$ and X_2 are compact and disjoint, hence the numbers

$$d_X = d_{\min}(X - \operatorname{Int}(X_1), X_2)$$

and

$$D_X = d_{\max}(X - \operatorname{Int}(X_1), X_2)$$

exist. Since the similarity S_{α^k} maps the triple $(X, X_{a_1}, X_{(a_1, a_2)})$ onto the triple $(X_{\alpha^k}, X_{\alpha^k a_1}, X_{\alpha^k (a_1, a_2)})$, for each $k \in \mathbb{N}$, the following holds:

$$\frac{\mathrm{d}_{\max}(X_{\alpha^k} - \operatorname{Int} X_{\alpha^k a_1}, X_{\alpha^k (a_1, a_2)})}{\mathrm{d}_{\min}(X_{\alpha^k} - \operatorname{Int} X_{\alpha^k a_1}, X_{\alpha^k (a_1, a_2)})} \leq \frac{\mathrm{D}_X}{\mathrm{d}_X}.$$

Hence

$$|h_k(x) - h_k(y)| \le \frac{\mathrm{D}_X}{\mathrm{d}_X} |x - y|.$$

Finally, let $\deg x = -1$ and $\deg y \geq 1$, i.e. $x \in \mathbb{R}^n - \operatorname{Int} X$ and $y \in X_1$. Then $h_k(x) = x$ and

$$\frac{|h_k(x) - h_k(y)|}{|x - y|} \le \frac{|x - y| + |y - h_k(y)|}{|x - y|} \le 1 + \frac{\operatorname{diam} X_1}{m}$$

where

$$m = \inf\{|x - y|; x \in \mathbb{R}^n - \operatorname{Int} X, y \in X_1\}$$

(it is easy to show that m > 0). To conclude, denote

$$L = \max\{\lambda^{2|G|}, rac{\mathrm{D}_X}{\mathrm{d}_X}, 1 + rac{\mathrm{diam}\, X_1}{m}\}$$

Then

$$|h_k(x) - h_k(y)| \le L|x - y|$$

for an arbitrary $k \in \mathbb{N}$ and $x, y \in \mathbb{R}^n$.

The estimate

$$|h_k^{-1}(x) - h_k^{-1}(y)| \le L|x - y|$$

can be proved analogously, using Lemma 3 (i). □

It follows immediately by Lemma 3 (iv) that the sequences of homeomorphisms h_1, h_2, \ldots and $h_1^{-1}, h_2^{-1}, \ldots$ converge pointwisely at all points different from the point a and b, respectively. The convergence of the sequences at the point a and at the point b follows from Lemma 3, (ii). Denote the limits of the sequences by $h: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and $\tilde{h}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, respectively. It also follows from Lemma 3 that h(a) = b, that $h(|\mathcal{S}|) = |\mathcal{S}|$, and

that $h \circ \tilde{h} = \tilde{h} \circ h = \mathrm{id}_{\mathbb{R}^n}$. It follows from Lemma 4 that h and \tilde{h} are Lipschitz. Thus Lemma 1 is proved. \square

4. Proofs of Theorems 2 and 3

Proof of Theorem 2: Set $G = \mathbb{Z}_2 = \{0,1\}$ and consider the similarities

$$S_{(0)}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 defined by $(x,y) \mapsto \frac{1}{3}(x,y)$

and

$$S_{(1)}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 defined by $(x,y) \mapsto (0,\frac{2}{3}) + \frac{1}{3}(x,y)$.

For X= circular disk $\{(x,y)|(x-\frac12)^2+y^2\leq (\frac34)^2\}$ and for the disks $X_{(0)}=S_{(0)}(X)$ and $X_{(1)}=S_{(1)}(X)$ the conditions

$$X_{(0)} \subset \text{Int}(X), \ X_{(1)} \subset \text{Int}(X), \ X_{(0)} \cap X_{(1)} = \emptyset$$

are satisfied (see figure 1). Hence $|S| = |\{S_{(0)}, S_{(1)}\}|$ is the standard ternary Cantor set [5].

A diffeomorphism $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ can be constructed such that

(i)

$$f|_{\mathbb{R}^2-\mathrm{Int}(X)}=\mathrm{id}_{\mathbb{R}^2-\mathrm{Int}(X)}$$

(ii)

$$f(X_g) = X_{g+1} \quad \text{for each } g \in \{0,1\}$$

and the following diagram commutes

$$egin{array}{cccc} X & & & & & \\ S_g \swarrow & & \searrow S_{g+1} & & & \\ X_g & \stackrel{f}{\longrightarrow} & X_{g+1} & & & \end{array}$$

To construct the diffeomorphism f, introduce the polar coordinate system with the point $(\frac{1}{2},0)$ as the center and with the x-axis as the polar axis. In polar coordinates r and ϕ the set X is given by the equation $r \leq \frac{3}{4}$. Take a smooth function $\Phi: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$\Phi(r) = \left\{ egin{array}{ll} 0, & r \geq rac{3}{4} \ \pi, & r < rac{5}{8} \end{array}
ight.$$

and introduce a diffeomorphism $\tilde{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by:

$$\tilde{f}(r,\phi) = (r,\phi + \Phi(r)).$$

Then obviously,

Figure 1. First three steps in the construction of the ternary Cantor set

(i)
$$\tilde{f}|_{\mathbb{R}^2-\mathrm{Int}(X)}=\mathrm{id}_{\mathbb{R}^2-\mathrm{Int}(X)}$$

(ii)
$$\tilde{f}(X_g) = X_{g+1} \ \ \text{for each} \ g \in \{0,1\}.$$

However, the following diagram

$$egin{array}{cccc} X & & & & & & \\ S_g \swarrow & & \searrow S_{g+1} & & & & & \\ X_g & \stackrel{ ilde{f}}{\longrightarrow} & X_{g+1} & & & & & \end{array}$$

does not commute.

Introduce the homeomorphisms $\tilde{f}_{(0)}, \tilde{f}_{(1)} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined as follows:

$$ilde f_g = S_g \circ ilde f \circ S_g^{-1}, \quad g \in G$$

Then the diffeomorphism $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by:

$$f|_{\mathbb{R}^2 - X_{(0)} - X_{(1)}} = \tilde{f}|_{\mathbb{R}^2 - X_{(0)} - X_{(1)}}$$

and

$$f|_{X_g} = \tilde{f}_g \circ \tilde{f}|_{X_g}, \quad g \in G$$

satisfies all the conditions requested in Lemma 1. Hence, the standard ternary Cantor set is indeed Lipschitz homogeneous in \mathbb{R}^2 .

Proof of Theorem 3: Let n be an even number and let

$$G = \mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

Let $\{c_g|g\in G\}$ be the vertices of a regular n-gon $C\subset \mathbb{R}^3$ having its centre at the origin O. Let $R_g:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ be the rotation by angle $\frac{\pi}{2}$ about the axis of symmetry of n-gon C which is perpendicular to the vector c_g . Choose a positive number λ and for each $g\in G$ introduce a map $S_g:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ defined for each $x\in\mathbb{R}^3$ as follows:

$$S_g: x \mapsto \left\{ egin{array}{ll} c_g + \lambda x & ,g ext{ even} \ c_g + \lambda R_g(x) & ,g ext{ odd} \end{array}
ight.$$

Then S_g is a similarity with λ as the coefficient of similitude.

Let D be a circular disc D with center $c_{(0)}$, parallel to the vector $c_{(0)}$ and orthogonal to C. Let $X \subset \mathbb{R}^3$ be the solid torus obtained by rotation of the disk D about the axis through the origin and orthogonal to C. The diameter of D is called the *thickness* of the solid torus X. It can be verified by elementary calculations that for all sufficiently big numbers n, there exist values of λ - not too big and not too small - and corresponding thicknesses of X such that

- (i) $X_g = S_g(X) \subset \operatorname{Int}(X)$ for each $g \in G$ and
- (ii) tori X_g are pairwise disjoint and mutually linked as shown in figure 2.

Hence $|S| = |\{S_d | g \in G\}|$ is Cantor set in \mathbb{R}^3 . Since it is an example of the Antoine necklace it is wild [9].

A diffeomorphism $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ can be constructed such that

(i)
$$f|_{\mathbb{R}^3-\mathrm{Int}(X)}=\mathrm{id}_{\mathbb{R}^3-\mathrm{Int}(X)}\quad\text{and}\quad$$

Figure 2. First two steps in the construction of the Antoine necklace

(ii)
$$f(X_g) = X_{g+1} \ \ \text{ for each } g \in G$$

and the following diagram commutes

$$egin{array}{cccc} X & & & & & \\ S_g \swarrow & & \searrow S_{g+1} & & & \\ X_g & \stackrel{f}{\longrightarrow} & X_{g+1} & & & \end{array}$$

To construct the diffeomorphism f, introduce the torical coordinate system in the solid torus X, defined as follows. Let the point $x \in X$ come from a

point $x_0 \in D$ by rotation by an angle ψ and let r and ϕ be polar coordinates of the point x_0 . Then r, ϕ and ψ are torical coordinates of the point x. Suppose w.l.o.g. that r=1 for the points lying on the boundary of the solid torus X. Choose a real number $0 < r_0 < 1$ such that $r < r_0$ for all points in the solid tori X_g , $g \in G$. Take smooth functions $\Phi, \Psi : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$\Phi(r) = \left\{ egin{array}{ll} 0, & r \geq 1 \ rac{\pi}{2}, & r \leq r_0 \end{array}
ight.$$

and

$$\Psi(r) = \left\{ egin{array}{ll} 0, & r \geq 1 \ rac{\pi}{n}, & r \leq r_0. \end{array}
ight.$$

Introduce the diffeomorphism $\tilde{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by:

$$\tilde{f}|_{\mathbb{R}^3 - X} = \mathrm{id}|_{\mathbb{R}^3 - X}$$

and

$$ilde{f}(r,\phi,\psi) = (r,\phi+\Phi(r),\psi+\Psi(r))$$

where r, ϕ and ψ are toric coordinates of a point in X.

Similarly as in the proof of Theorem 2, but with much more labor, \tilde{f} can be improved to obtain a diffeomorphism $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ which satisfies the conditions:

(i)
$$f|_{\mathbb{R}^3 - \operatorname{Int}(X)} = \operatorname{id}_{\mathbb{R}^3 - \operatorname{Int}(X)} \quad \text{and} \quad$$

(ii)
$$f(X_g) = X_{g+1} \ \ \text{for each} \ g \in G$$

and the following diagram commutes

$$\begin{array}{ccc} & X & \\ S_g \swarrow & \searrow S_{g+1} \\ X_g & \xrightarrow{f} & X_{g+1} \end{array}$$

Then by Lemma 1, the Antoine necklace |S| is indeed Lipschitz homogeneous in \mathbb{R}^3 . \square

References

- 1. Arnol'd, V.I. Differential equations (in Russian), Mir, Moscow, (1972).
- 2. Blankinship, W.A. Generalization of a construction of Antoine, Ann. of Math. Vol. 53, No. 2 (1951)
- 3. Bochner, S. and Montgomery, D. Locally compact groups of differentiable transformations, Ann. of Math. (2) Vol. no. 47 (1946)

- 4. Dimovski, D., Repovš, D. and Ščepin, C[∞]-homogeneous curves on orientable closed surfaces, Geometry and Topology (G. M. Rassias and G. M. Stratopoulos, eds.), World, Singapore, (1989), pp. 100-104.
- 5. Hutchinson, J.E. Fractals and self-similarity, *Indiana Univ. Math. J.* Vol. no. 30 (1981), pp. 713-747.
- 6. Malešič, J. Hilbert-Smith conjecture for Hölder actions (in Russian), Uspehi Mat. Nauk Vol. no. 52:2 (1997)
- 7. Montgomery, D. and Zippin, L. Topological transformation groups, Interscience Tracts in Pure and Appl. Math., vol. 1, Interscience, New York, (1955).
- 8. Repovš, D., Skopenkov, A.B. and Ščepin, E.V. A characterization of C¹-homogeneous subsets of the plane, *Boll. Un. Mat. Ital. Ser. A* Vol. no. 7 (1993)
- 9. Repovš, D., Skopenkov, A.B. and Ščepin, E.V. C^1 -homogeneous compacta in \mathbb{R}^n are C^1 -submanifolds of \mathbb{R}^n , Proc. Amer. Math. Soc. Vol. no. 124 (1996)
- 10. Repovš, D. and Ščepin, E.V. A proof of the Hilbert-Smith conjecture for Lipschitz maps, *Math. Ann.* Vol. no. 308 (1997)
- 11. Rushing, T.B. Topological embeddings, Pure and Applied Mathematics: a series of monographs and textbooks; 52, Academic Press, New York, (1973)