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Abstract. We construct an example of a wild Cantor set in IR® which is
Lipschitz ambientally homogeneous in IR3, thereby showing that Lipschitz
homogeneity does not characterize Lipschitz submanifolds od IR® (contrary
to the smooth homogeneity).

1. Introduction

In 1989, working on a problem of Arnol’d [1] concerning one-parameter
group actions on IR?, Dimovski, Repovs and Séepin [4] introduced the con-
cept of C®-homogeneity for locally compact subsets of IR? . This notion was
later generalized by Repovs, Skopenkov and Séepin [8][9] to CT-homogeneity
in an arbitrary smooth manifold:

Definition 1 A subset K C M™ is said to be C"-homogeneous in a smooth
n-manifold M™, r > 0, if for every pair of points a,b € K there exist neigh-
bourhoods Og, Op C M™ of a and b, respectively, and a C"-diffeomorphism

h: (04,0, N K,a) — (Op, 0, N K, b)

It was proved in [9] that this property characterizes the C"-submanifolds
of C"-manifolds, for every r» > 0:

Theorem 1 (Repovs, Skopenkov and Séepin, 1996) Let K be a locally com-
pact (possibly nonclosed) subset of a smooth n-manifold M™. Then K is
C"-homogeneous in M™, r > 0, if and only if K is a C"-submanifold of
M™.

As an interesting application one obtains a simple geometric proof of
the classical result of Bochner and Montgomery [3] that the Hilbert- Smith
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conjecture is true for actions by diffeomorphisms (for some new results
concerning this conjecture see [6] and [10]). Namely, suppose to the contrary,
that the group A, of p-adic integers acted freely on a smooth manifold M
by diffeomorphisms. Then every orbit would be diffeomorfic to the group
Ap. At the same time, every orbit would also be C'*°-homogeneous in M,
hence by Theorem 1 itself a smooth manifold. Contradiction.

Obviously Theorem 1 is not valid for topological homogeneity as the
example of the standard ternary Cantor set in IR? demonstrates. It was
expected however, that Theorem 1 could nevertheless be generalized to
the case of Lipschitz submanifolds of IR® (where Lipschitz homogeneity is
defined analogously to the C"-homogeneity in Definition 1).

However, as we prove in the present paper, this is not true already in
the plane IR?%:

Theorem 2 The standard ternary Cantor set, lying on the z-azis in R?,
is Lipschitz homogeneous in IR%.

In 1995 Scepin asked whether in IR® Lipschitz homogeneity of Cantor
sets would imply their tameness. The main result of this paper, stated
below, answers his question in the negative:

Theorem 3 There ezists a wild Cantor set in IR® which is Lipschitz ho-
mogeneous in IR3.

We believe that our methods can be generalized to higher dimensions,
using the techniques of Blankinship [2]:

Conjecture 1 There erists a wild Cantor set in R™, for everyn > 4, which
is Lipschitz homogeneous in IR™.

We acknowledge the support by the Ministry of Science and Technol-
ogy of Republic of Slovenia. We also thank the referee for comments and
suggestions.

2. Preliminaries

Recall that a map S : R® — R" is said to be Lipschitz if there exists a
constant A such that

|S(z) — S(y)| < Mz —y| for every z,y € R®

and the smallest such X is called the Lipschitz constant of S. In the special
case when
|S(z) — S(y)| = Ajz —y| for every z,y € R”

the map S is called a similarity and the number ) is called the coefficient
of similitude. Finally, when A = 1 the map S is called an isometry.
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Let G be a finite index set and let § = {S; : R" — RR"|g € G} be
a set of similarities having the same coefficient of similitude. Additionally,
suppose that there exists a compact set X C IR" such that

(1) S4(X) C Int(X) for each g € G; and
(ii) the sets Sg(X) are pairwise disjoint, g € G.

For each multiindex v = (g1,92,...9x) € G¥ = G x G x ... x G denote:
Sy =84, 08g,0...08g,
and
X, = 5,(X).

In particular,
Xy =84(X) for g€ G.

The number of components of a multiindex «y is called the dimension of +y:
dim(y) =k if v € G*.

Denote

X, = U X,.
dim(y)=k

It is well-known (cf. [5]) that the intersection of the sequence of sets X D
X1 D X9 D ... is a self-similar Cantor set and it does not depend on the
choice of X. Therefore it depends only on the set S and so it can be denoted
by |S].

For an infinite multiindex v = (g1, 92,93, .-) € G* denote

v* = (91,92, - - - 9x)

and
o0
Xy =) X
k=1

Obviously, each X, is a singleton, consisting of a point from the Cantor
set |S| and for each point from |S| there exists exactly one such multiindex
~. The components of « are called coordinates of the corresponding point
from the Cantor set |S|.

3. Sufficient conditions for Lipschitz homogeneity

Let G be a finite cyclic group written additively and let 0 and 1 be the
neutral element and the generator of GG, respectively.
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Lemma 1 Suppose that f : R® — R" is a Lipschitz homeomorphism such
that

()
FIR" - Ing(xy = R~ Int(x)
(1)
f(Xg) =Xg41 for eachg e G

and the following diagram commutes

X
So e Sgit
Then the Cantor set |S| is Lipschitz homogeneous in R™.
Proof: Define a juxtaposition of multiindices: if § = (d1,ds,. .. dk) is a finite

multiindex and v = (g1, 92, .. .) is finite or infinite then let

67 = (dl,d2, . -dkagl’g2a o )

In the special case when dim(y) = 1, hence ¥ = ¢g; and

6g1 = (d1,ds,...dk,01)-

In order to prove Lemma 1 we introduce several homeomorphisms and
describe their properties in the subsequent lemmas. For an arbitrary finite
multiindex v = (g1, g2, --9gx) € G¥ define the homeomorphism f, = S, o
fOS,;1 :R" — R™.

Lemma 2 The homeomorphism f., is Lipschitz with the Lipschitz constant
equal to the Lipschitz constant of f and the following holds:

() ,
AR - Intx.) = YR - Int(x,)
(1) For arbitrary gx4+1 € G

f’Y (X’79k+1 ) = X’Y(1+gk+1)

and the following diagram commutes:

X
Svgksr ; hY S’7(1+9k+1)
X‘ng+1 = X7(9+1k+1)

Therefore, fy is an isometry.

|X79k+1
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(15i) For arbitrary indices gri1, Jk+2, Jk+3,-- -

f’Y(X(gl 92,9k ,9k+1,yk+2,9k+3,~-')) = X(gl ,921"'gk)1+gk+1’gk+2)gk+3a"') *

Proof: Proposition (i) follows directly from the condition (i) of Lemma 1.
Proposition (ii) follows from condition (ii). Finally, (ii) implies (iii). O
For an arbitrary pair of points a, b € |S| we now construct a homeomor-
phism
h:(R™ |S], a) — (RR", |S], b)

and we prove that h and ™! are Lipschitz maps.
Let a = (a1,a2,...) € G*, B = (b1,b2,...) € G*™ be coordinates of the
points a, b, respectively. Introduce infinite sequences of homeomorphisms

{f : R® — R™k € N}, {gx : R® — R"|k € N}, {hs : R® — R"|k € N}
given by
Fo= 170 B fa = S fee = fg T

where f® %= fofo...of (b— a times),

— -1 _ . bi—a _ b2—a _ b3—a _ o bkt1—0k41
9=F"91=9""", 92=da; s 93 = 9(a, ay) I+l = Gk

hit = fxo fr—10...0 fao fi

Lemma 3 The homemomorphisms hy possess the following properties:
(1)
hi'=g10g20...0gk 100k
(1)
hi(Xox) = Xge and, moreover hi(Xqk,) = Xgr,
for arbitrary multiindex v, finite or infinite.

(ii)

The restriction hg|x_,  Xokay,, — Xpr s an isometry.

a
ap41 k+1

(wv) The following restrictions coincide:

hk,lR"—IntXak = hi1|R" ot X6 hict2l R™ ot Xp
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Proof: Property (i) can be proved directly by examining the construction of
hy. Property (ii) follows from Lemma 2, (ii) and (iii). Property (iii) holds
since fy|x, opy1 18 an isometry. Property (iv) holds because of Lemma 2 (i).
|

Lemma 4 The homeomorphisms hy and h,:l are Lipschitz maps with equal
Lipschitz constants for all values of k.

Proof: Having fixed the sequence a = (a1, as,...) of coordinates of the point
a € |S| introduce the notion of degree of a point z € R™:

degz =j if € Xy — Int(Xi+1).
Additionally, let
degz =0 if z € X —Int(X,,) and degz = —1 if z € R™ — Int(X).

For arbitrary points z,y € IR™ we now estimate the expression hy(z)—hg(y).

Step 1 Let the Lipschitz constant of the homeomorphism f be denoted
by A. Hence the Lipschitz constants of the homeomorphisms fi, fo,...,
91,92, - .. do not exceed the number M G!, where |G| denotes the number of
elements of G. Let |degz — degy| <1, i.e.

degz € {.7’.7 +1}, degy =j +1

for some j € IN. By Lemma, 3, (iii) and (iv), and because of the construction
of hk,

k() — hi(y)| = |fi+1 0 £i(x) = fi41 0 Fi(@)] < NNz — y).

Step 2 Let now | deg z—degy| > 2. First let the degrees be nonnegative,
ie.
degz =37 >0 and degy >j+2

for some j € IN. Then
z € Xy — Int(X+1), y € Xpive.
For arbitrary disjoint compact sets C;,C2 C R™ denote:
dmin(C1,C2) = min{|z — y|;z € Cy, y € Ca}

and
dmax(CI,CZ) = ma.x{lm - yl?‘” € Cl’ ye CZ}
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The sets X — Int(X;) and X5 are compact and disjoint, hence the numbers
dx = dmin(X - Int(X1)7X2)

and

Dx = dpax(X ~ Int(X;), X2)

exist. Since the similarity S,» maps the triple (X, Xq,, X(4, 4,)) Onto the
triple (X, Xokq, s Xak(a;,05))s fOr each k € N, the following holds:

dmax(Xgx — IntXakalaXak(al,az)) < Dx
dmin (Xor — Int Xoig,, Xok(a,00)) ~ dx

Hence 5
X
|hr(z) — he(y)| < ol yl.
X

Finally, let degz = —1 and degy > 1, ie. z € R" —Int X and y € X;.
Then hy(z) = z and

P () — P (y)]

diam X,
e
|z -yl

o —yl+ly—m@)l _ |

<
|z -yl m

where
m=inf{lz —y;z € R" —Int X, y € X;}

(it is easy to show that m > 0). To conclude, denote

di
)\2'Gl, %i{_, 14+ 1amX1}

L = max{ —

Then
|hi(z) — hi(y)| < Lz — y|

for an arbitrary k¥ € IN and z,y € R™.
The estimate
|k () — hg'(y)] < Lz -y

can be proved analogously, using Lemma 3 (i). O

It follows immediately by Lemma 3 (iv) that the sequences of home-
omorphisms hi,hg,... and hy 1 hy 1 ... converge pointwisely at all points
different from the point a and b, respectively. The convergence of the se-
quences at the point a and at the point b follows from Lemma 3, (ii). Denote
the limits of the sequences by k : R® — IR™ and h : R — RR", respec-
tively. It also follows from Lemma 3 that h(a) = b, that h(|S|) = |S|, and
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that hoh = hoh = idg». It follows from Lemma 4 that h and h are
Lipschitz. Thus Lemma 1 is proved. O

4. Proofs of Theorems 2 and 3

Proof of Theorem 2: Set G = Z3 = {0,1} and consider the similarities
1
NOE R2 — R? defined by (z,y) — —?;(:c,y)

and
Sa) : R? — R? defined by (z,y) — (0, g) + %(z,y).

For X = circular disk {(z,y)|(z — %)2 +4? < (%)2} and for the disks
X(0) = S(0)(X) and X(1) = §1)(X) the conditions

X0 € Int(X), X(3) C Int(X), XoyNXy =0

are satisfied (see figure 1). Hence |S| = |[{Sg), S(1)}| is the standard ternary
Cantor set [5].
A diffeomorphism f : R? — IR? can be constructed such that

(1)
FIR? _Int(x) = 19R? _Int(x)
(if)
f(Xg) = Xg41 for each g € {0,1}

and the following diagram commutes

X
Sg N Sg+1

x, L X4

To construct the diffeomorphism f, introduce the polar coordinate system
with the point (%,0) as the center and with the z-axis as the polar axis. In

polar coordinates 7 and ¢ the set X is given by the equation r < %. Take
a smooth function ® : R — IR such that

<I>(r)={0’ 2

T, r<

00j U

and introduce a diffeomorphism f : IR? — R? by:

f(r,¢) = (r,¢ + &(r)).
Then obviously,
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> T

Figure 1. First three steps in the construction of the ternary Cantor set

(i) 5
FIR? _Int(x) = 9R? _Int(x)

(ii) .
f(X,y) = X441 for each g € {0,1}.

However, the following diagram

X
Sg \/ : \l Sg+1

does not commute.
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Introduce the homeomorphisms f(o), f(l) : IR? — IR? defined as follows:

fo=S8g0f0S8;', geG
Then the diffeomorphism f : IR? — IR? given by:

IR _x-x0) = TR - x0)-x0

and o
flx,=fgoflx,, 9€G

satisfies all the conditions requested in Lemma 1. Hence, the standard
ternary Cantor set is indeed Lipschitz homogeneous in IR%.00

Proof of Theorem 3: Let n be an even number and let
G=Z,={0,1,2,...,n—1}

Let {cq|g € G} be the vertices of a regular n-gon C C IR® having its centre
at the origin O. Let R, : IR® — IR? be the rotation by angle 5 about the
axis of symmetry of n-gon C which is perpendicular to the vector c,. Choose
a positive number A and for each g € G introduce a map S : R?® — R3
defined for each x € IR? as follows:

_ cg + Az ,g even
Sg 12 { cg + ARg(z) ,g odd

Then S, is a similarity with A as the coefficient of similitude.

Let D be a circular disc D with center c(g), parallel to the vector ¢(q)
and orthogonal to C. Let X C R? be the solid torus obtained by rotation
of the disk D about the axis through the origin and orthogonal to C. The
diameter of D is called the thickness of the solid torus X. It can be verified
by elementary calculations that for all sufficiently big numbers n, there exist
values of A - not too big and not too small - and corresponding thicknesses
of X such that

(i) Xg = Sg(X) C Int(X) for each g € G and
(i) tori X, are pairwise disjoint and mutually linked as shown in figure 2.

Hence |S| = |{Salg € G}| is Cantor set in R3. Since it is an example of
the Antoine necklace it is wild [9].

A diffeomorphism f : IR® — R? can be constructed such that

(i)

FIR® “Int(x) = Y9R* _Int(xy 2nd
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X

Figure 2. First two steps in the construction of the Antoine necklace
(ii)
f(Xy) =X441 foreachge G

and the following diagram commutes

X
Sg \/ \1 Sg+1
x, L x4,

To construct the diffeomorphism f, introduce the torical coordinate system
in the solid torus X, defined as follows. Let the point z € X come from a
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point zg € D by rotation by an angle 3 and let r and ¢ be polar coordinates
of the point zy. Then 7, ¢ and 1 are torical coordinates of the point z.
Suppose w.l.o.g. that » = 1 for the points lying on the boundary of the
solid torus X. Choose a real number 0 < 7y < 1 such that r < 7y for all
points in the solid tori X;, g € G. Take smooth functions ®,¥ : R — R

such that
B(r) = { 0, r>1

12[, r grO
and 0
>1
U(r) = { » 7=
%’ r < ro.

Introduce the diffeomorphism f : IR® — RR® by:

f||R3~X =idlgs_x
and 3
f(r,¢,9) = (r, ¢ + ®(r), v + ¥(r))

where 7, ¢ and ¥ are toric coordinates of a point in X. :
Similarly as in the proof of Theorem 2, but with much more labor, f

can be improved to obtain a diffeomorphism f : IR} — IR® which satisfies
the conditions:

(i)

fIR* _Int(x) = 1R _Int(xy 20d
(ii)

f(Xy) = X441 foreach g€ G

and the following diagram commutes

X
Sg \/ \1 Sg+1
x, L X,

Then by Lemma 1, the Antoine necklace |S| is indeed Lipschitz homoge-
neous in IR3. O
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