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Abstract—The celebrated Smale–Hirsch classification of immersions allows one to obtain sev-
eral nice applications of algebraic topology to differential topology. Unfortunately, these appli-
cations are still not presented in books or survey papers either in Russian or in English. The
purpose of this paper is to expose the most simple and fundamental of these applications: the
Smale–Kaiser theorem on the dimension of spheres that can be turned inside out, the Haefliger–
Hirsch classification of immersions by means of equivariant maps, and its corollary concerning
embeddings of highly connected manifolds (in particular, of spheres).

1. INTRODUCTION

The celebrated Smale–Hirsch classification of immersions allows one to obtain several nice ap-
plications of algebraic topology to differential topology. Unfortunately, these applications are still
not presented in books or survey papers either in Russian or in English. The purpose of this paper
is to expose the simplest and most fundamental of these applications: the Smale–Kaiser theorem on
the dimension of spheres that can be turned inside out, the Haefliger–Hirsch classification of immer-
sions by means of equivariant maps, and the latter’s corollary on embeddings of highly connected
manifolds (in particular, of spheres). Another interesting result is the main lemma in Section 3.

We are working in the smooth category. A mapping f : N → R
m of the manifold N is said

to be an immersion if df(x) �= 0 for each point x ∈ N . Two immersions are said to be regularly
homotopic if they are homotopic by the homotopy that is an immersion itself. The Smale theorem on
immersions of spheres into Euclidean space reduces the classification of immersions to a homotopy
problem (see also [3]).

Theorem 1.1 [21]. There is a 1–1 correspondence between the set of immersions Sn → R
m

up to regular homotopy and the group πn(Vmn).
Note that Vn+1,n = SOn+1. The 1–1 correspondence from Theorem 1.1 is explicitly constructed

in the proof of the main lemma in Section 3. The celebrated corollary to Theorem 1.1 asserts that the
two-dimensional sphere can be turned inside out in the three-dimensional Euclidean space. It was
generalized by U. Kaiser in his diploma thesis written under the supervision of Prof. U. Koschorke.

Theorem 1.2 [11; 13, Problem 4.61]. The sphere Sn can be turned inside out (more exactly,
the standard embedding of Sn into the Euclidean space R

n+1 is regularly homotopic to the com-
position of the standard embedding and of the reflection with respect to an (n − 1)-dimensional
hyperplane) if and only if n ∈ {0, 2, 6}.
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136 J. MALEŠIČ et al.

This result is related to the parallelizability of spheres S1, S3, and S7 [2].
Hirsch generalized Theorem 1.1 to the case of arbitrary manifolds.
Theorem 1.3 [9]. Let N be a smooth n-dimensional manifold and m ≥ n + 1. Then, the

mapping f �→ df induces a 1–1 correspondence between the set of immersions N → R
m up to

regular homotopy and the set of linear monomorphisms Φ: TN → R
m up to the homotopy in the

class of linear monomorphisms.

In the metastable dimension range, Haefliger and Hirsch obtained the following description of
the set of immersions. Let O∆ be a neighborhood of the diagonal set ∆ in the product N × N .
Denote SN = O∆−∆. If N is a polyhedron, then the equivariant homotopy type of the space SN
does not depend on O∆. For an immersion h : N → R

m, the equivariant mapping h̃ : SN → Sm−1 is
well defined by the formula h̃(x, y) = hx−hy

|hx−hy| . If immersions h0 and h1 are regularly homotopic, then
it is clear that h̃0 �eq h̃1. A pair (N, ∂N) is said to be homologically k-connected if Hi(N, ∂N) = 0
for each i = 0, . . . , k.

Theorem 1.4 [6]. Let N be a smooth n-dimensional manifold.

(a) Suppose that either m ≥ 3n+1
2 or the pair (N, ∂N) is homologically (3n− 2m)-connected. If

there exists an equivariant mapping Φ: SN → Sm−1, then there exists an immersion h : N → R
m

such that h̃ �eq Φ.
(b) Suppose that either m ≥ 3n

2 +1 or the pair (N, ∂N) is homologically (3n−2m+1)-connected.
If a pair of immersions h0, h1 : N → R

m satisfies h̃0 �eq h̃1, then h0 and h1 are regularly homotopic.
It follows from Theorem 1.4(b) that, for m ≥ 3n

2 + 1, each embedding Sn → Sm is regularly
homotopic to the standard embedding (hence, its normal bundle is trivial). This result was obtained
originally by Kervaire with different methods [12]. The restriction on dimensions m ≥ 3n

2 + 1 in
this result (and therefore in Theorem 1.4(b)) cannot be removed: this result is false for n = 4l − 1
and each m = 4l + 2, 4l + 3, . . . , 6l − 1 [5, 6.8]. More generally, if N is a closed homologically
d-connected n-manifold (d ≤ n

2 ), then, for m ≥ 2n − d + 1, any two embeddings N → R
m are

regularly homotopic (and therefore have equal normal bundles). These normal bundles may be
nontrivial even for a 16-dimensional homotopic sphere N and m = 29 [16]. The restriction on
dimensions m ≥ 2n− d + 1 in the Kervaire result cannot be removed essentially since, for each odd
n �= 3, 5, 9, there exists an embedding S2 ×Sn−2 → R

2n−2 that has a nontrivial normal bundle [15].
Theorem 1.4 can also be applied to the proof of the famous Haefliger theorem on embeddings [4].

Analogues of Theorems 1.1, 1.3, and 1.4 for the case of piecewise linear immersions of polyhedra and
piecewise linear manifolds are proved in [7, 8, 19]. For the piecewise linear version of the Haefliger
theorem, see [23, 8, 19, 20, 22, 18].

In Section 2, Theorem 1.4 is proved and proofs of Theorems 1.1 and 1.3 are sketched. In
Section 3, Theorem 1.2 is proved. The proof of Theorem 1.4 is based on Theorem 1.3 and on the
Freudenthal suspension theorem.

Conjecture 1.5. For certain n �≡ −1 mod 4 and for closed manifolds, the conditions on
dimensions in Theorems 1.4(a) and 1.4(b) can be weakened using the strengthened Freudenthal
suspension theorem (“the hard part” of Whitehead, the James theorem on double suspension, and
the ENR-sequence [10]).

2. PROOFS OF THE SMALE–HIRSCH AND THE HAEFLIGER–HIRSCH THEOREMS

Sketch of the proof of Theorem 1.1 [17]. Let m > n + s. Denote by Xm
ns the space of

framed immersions Dn → R
m such that, in a neighborhood of a given point of the boundary ∂Dn,

both the immersion and the framing coincide with the standard ones. Obviously, the space Xm
ns is

contractible. Introduce the space Y m
ns by analogy with Xm

ns, by changing Dn with Sn. Consider the
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ON EVERSION OF SPHERES 137

mapping Xm
ns → Y m

n−1,s+1 that takes an immersion of a disk D to the restriction of that immersion
onto the boundary ∂D, completing the framing of immersion by a vector field oriented from the
boundary of D into its interior. The fibers of this mapping are homeomorphic to Y m

ns . This
mapping is a Serre fibration (this fact is nontrivial, see [3]). The exact homotopy sequence of
this Serre fibration implies that πj(Y m

ns ) ∼= πj+1(Y m
n−1,s+1). Hence, π0(Y m

n0) ∼= πn(Y m
0n) ∼= πn(Vmn).

Theorem 1.1 is proved. �
Theorem 1.3 can be proved by induction on the number of handles of the handlebody decom-

position of the manifold N . To this end, a relative version of the Smale theorem should be applied.
Proof of Theorem 1.4 [6]. Introduce the equivariant Stiefel manifold V eq

mn as the space of
equivariant mappings Sn−1 → Sm−1 with respect to the antipodal involution. A bundle φ with
fibers V eq

mn over N can be associated with the tangential bundle TN . There is a 1–1 correspondence
between the sections of the bundle φ up to fiber-preserving homotopy and the equivariant mappings
Φ: SN → Sm−1 up to equivariant homotopy. By Theorem 1.3, there is a 1–1 correspondence
between immersions N → R

m up to regular homotopy and sections of the Vmn-subbundle of the
bundle φ. The obstructions to a deformation of sections of the V eq

mn-bundle φ to sections of the
Vmn-subbundle are elements of

H i(N,πi(V eq
mn, Vmn)T ) ∼= Hn−i(N, ∂N, πi(V eq

mn, Vmn))

(the coefficients are twisted corresponding to the orienting double cover of N ; it is possible that
∂N = ∅). By the universal coefficient theorem, it suffices to prove that πi(V

eq
mn, Vmn) = 0 for

0 ≤ i ≤ 2(m−n)−1. The last fact follows from Lemma 2.1 and from the exact homotopy sequence
of the pair V eq

mn ⊃ Vmn. �
Lemma 2.1 [6, (1.1)]. The homomorphism ρi : πi(Vmn) → πi(V

eq
mn) induced by the inclusion

is an isomorphism for 0 ≤ i ≤ 2(m − n) − 2 and is an epimorphism for i = 2(m − n) − 1.
Proof [6, (1.1)]. Apply induction on n. For n = 1, the assertion of the lemma is true since

Vm1
∼= V eq

m1
∼= Sm−1. Now, let n ≥ 2. It is known that there exists a Serre bundle Sm−n →

Vmn
r−→ Vm,n−1, where r stands for the restriction map. It is easy to verify that there exists a Serre

bundle Ωn−1S
m−1 → V eq

mn
r2−→ V eq

m,n−1, where r2 stands for the restriction map (it can be proved by
induction on n that the fiber of the mapping r2 is homeomorphic to Ωn−1S

m−1). It is clear that
rρn = ρn−1r2 and that the homomorphism

πi(Sm−n) Σn−1

−−−→ πi+n−1(Sm−1) ∼= πi(Ωn−1S
m−1)

is induced by ρn. Hence, the mapping ρn induces homomorphisms between the following exact
homotopy sequences:

πi+1(Vm,n−1) −−−→ πi(Sm−n) −−−→ πi(Vmn) −−−→ πi(Vm,n−1) −−−→ πi−1(Sm−n)�ρn−1

�Σn−1

�ρn

�ρn−1

�Σn−1

πi+1(V
eq
m,n−1) −−−→ πi+n−1(Sm−1) −−−→ πi(V

eq
mn) −−−→ πi(V

eq
m,n−1) −−−→ πi+n−2(Sm−1)

Suppose first that i ≥ 1. ρn−1 is an isomorphism by the inductive assumption. Σn−1 is an isomor-
phism by the Freudenthal suspension theorem. For i ≤ 2(m − n) − 2, ρn is an isomorphism by the
five-lemma; analogously, ρn is an isomorphism for i = 2(m − n) − 1. For i = 0, the proof is the
same except that the right column consists of zeroes since r and r2 are mappings onto. �

Note that, in [6], the roles of m and n are interchanged. There are some misprints in [6]: when
expressing condition (1.1n−1) and when proving assertion (1.2), the equality πi(V

eq
mn, Vmn) = 0

should hold for 0 ≤ i ≤ 2(m − n) − 1 rather than only for 0 < i < 2(m − n) − 1 as in [6].
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138 J. MALEŠIČ et al.

3. THE PROOF OF THE SMALE–KAISER THEOREM

Proof that the spheres S0, S2, and S6 can be turned inside out. By the Smale Theo-
rem 1.1, it suffices to prove that π0(SO1) = π2(SO3) = π6(SO7) = 0. First, π0(SO1) = π0(pt) = 0.
Furthermore, π2(SO3) = π2(RP3) = π2(S3) = 0. Note that it is obvious how to turn S0 inside
out in R

1, but the explicit turning of S2 inside out in R
3 is far from being trivial. To prove that

π6(SO7) = 0, consider the standard bundle SO7 → S6 with the fiber SO6. Consider a segment of
the homotopy exact sequence corresponding to this bundle:

π6(SO6) → π6(SO7) → π6(S6) → π5(SO6) → π5(SO7).

The unitary Bott periodicity and Spin6 = SU4 [2] imply

π6(SO6) = π6(Spin6) = π6(SU4) = π6(U4) = π6(U) = 0.

Furthermore, π5(SO6) = π5(U) = Z. By the orthogonal Bott periodicity, π5(SO7) = 0. Since
π6(S6) = Z, we obtain the exact sequence 0 → π6(SO7) → Z → Z → 0; hence, π6(SO7) = 0. Note
that an explicit turning of S6 inside out in R

7 is unknown. �
For the sake of completeness, let us state the results on πn(SOn+1) (in other words, on the

groups of immersions Sn → R
n+1) for some small values of n:

π3(SO4) = π3(S3 × RP3) = Z ⊕ Z, π4(SO5) = π4(Spin5) = π4(Sp2) = π4(S3) = Z2,

π5(SO6) = π5(Spin6) = π5(SU4) = π5(U4) = π5(U) = Z.

All these calculations are well known. Since π4(SO5) = Z2, each immersion S4 → R
5 is regularly

homotopic to either the standard embedding or the standard embedding composed with a reflection.
The results on πn(SOn+1) for arbitrary values of n are unknown (it is known that all of them are
unstable).

Now, prove that the sphere Sn cannot be turned inside out for n �= 0, 2, 6: three different proofs
will be given. In the first proof, the Smale Theorem 1.1 is not applied; in the second and the third
ones, only the trivial part of that theorem is applied, namely, that if immersions of spheres are
regularly homotopic, then the corresponding spheroids are homotopic.

An idea of the first proof that the sphere Sn cannot be turned inside out for n �= 0, 2, 6.
Consider a regular homotopy F : Sn × I → R

n+1 × I between the standard embedding and the
standard embedding composed with the reflection with respect to a hyperplane. Take a unit normal
vector field v corresponding to the immersion F such that v(x, 0) ∈ R

n×0 is oriented outward from
the sphere F (Sn × 0) ⊂ R

n × 0 and v(x, 1) = −v(x, 0) ∈ R
n × 1 for arbitrary x ∈ Sn. Now, we have

Sn+1 = Dn+1
+

⋃
∂Dn+1

+ =Sn×1

Sn × I
⋃

∂Dn+1
− =Sn×0

Dn+1
− .

Extend F over Dn+1
+ ∪Dn+1

− to get the immersion F : Sn+1 → R
n+1 (symmetrically over Dn+1

+ and
Dn+1

− ) so that the field v is extended over Dn+1
− ∪Dn+1

+ (symmetrically over Dn+1
+ and Dn+1

− ) and the
vector v(y) is not oriented upward for any y ∈ Sn+1. Consider the Gauss mapping G : Sn+1 → Sn+1

corresponding to the immersion F : Sn+1 → R
n+1 × R. The range of G is a subset of R

n+1 =
Sn+1 \ (the north pole). Take a set of n + 1 linearly independent tangential vector fields on R

n+1.
For each point x ∈ Sn+1, we obtain a set of n + 1 linearly independent vectors at the point
G(x) ∈ R

n+1. These vectors are tangential since G is a Gauss mapping. Hence, the sphere Sn+1 is
parallelizable; therefore, by the Adams theorem on the Hopf invariant, n = 0, 2, 6 �

The degree of a normal (Gauss) mapping distinguishes the standard embedded sphere from
the reflected one; therefore, this degree is an obstruction to turning the spheres inside out. The
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ON EVERSION OF SPHERES 139

development of this idea serves as a second proof that the sphere Sn cannot be turned inside out
for n �= 0, 2, 6.

Main lemma. Consider the standard bundle SOn+2 → Sn+1 (that assigns the last column to
a matrix ) with fiber SOn+1 and consider a segment of the exact homotopy sequence corresponding
to this bundle (for simplicity, the base points are neglected):

πn+1(SOn+2)
α−→ πn+1(Sn+1)

β−→ πn(SOn+1). (1)

Then, the element of the group πn(SOn+1) corresponding by the Smale Theorem 1.1 to the standard
embedding i : Sn → R

n+1 is the zero element. The element of the group πn(SOn+1) corresponding
to the standard embedding composed with the reflection with respect to a hyperplane is the element
β(1) ∈ πn(SOn+1), where 1 denotes the generator of the group πn+1(Sn+1) ∼= Z.

The second proof that the sphere Sn cannot be turned inside out for n �= 0, 2, 6.
For α entering the exact sequence (1), it is true that 1 ∈ im α if and only if the sphere Sn+1 is
parallelizable. Since the sequence is exact, it follows from the Adams theorem on the Hopf invariant
that β(1) = 0 if and only if n differs from 0, 2, and 6. By the Main lemma, the sphere Sn cannot
be turned inside out for n �= 0, 2, 6.

Let us prove the above assertion concerning im α and the parallelizability [1]. If the sphere Sn+1

is parallelizable, one can choose an orthonormal frame in the tangent space at each point x ∈ Sn+1

such that it depends on x continuously. Extend this frame to an orthonormal frame in the tangent
space of R

n+2 by adding the normal vector to the sphere as the last vector. This construction gives
a mapping Sn+1 → SOn+2 such that, composed by the natural bundle mapping SOn+2 → Sn+1,
it results in the identical mapping Sn+1 → Sn+1. Now, suppose that 1 ∈ im α. Take a mapping
h : Sn+1 → SOn+2 such that the composition Sn+1 h−→ SOn+2 → Sn+1 has degree 1. By the
covering homotopy theorem, the mapping h is homotopic to a mapping ĥ such that the composition
Sn+1 ĥ−→ SOn+2 → Sn+1 is the identity mapping. Hence, the first n + 1 columns in the matrix ĥ(x)
give an orthonormal frame in TxSn+1. �

Proof of the Main lemma. First, for each immersion f : Sn → R
n+1, construct a spheroid

σf : Sn → SOn+1 such that the spheroids corresponding to regularly homotopic immersions are
homotopic. Consider the standard sphere Sn ⊂ R

n+1 given by the equation
∑

x2
i = 1. The

direct sum TSn ⊕ ν of its tangent bundle TSn and its normal bundle ν is a trivial bundle. Fix a
trivialization of the tangent bundle TR

n+1 = R
n+1 ×R

n+1 taking vectors parallel to the coordinate
vectors as an oriented base in the tangent space. The obtained trivialization of TR

n+1 induces a
trivialization of TSn ⊕ ν → Sn. Denote by e(x) the unit normal vector at the point x ∈ Sn and by
R

n+1(x) the fiber of the bundle TSn ⊕ ν → Sn at the point x ∈ Sn.
Take an immersion f : Sn → R

n+1. Extend the differential df(x) : TxSn → Tf(x)R
n+1 = R

n+1 to
a linear operator Σf (x) : R

n+1(x) → R
n+1 by the following construction. Let Σf (x) coincide with

the differential df(x) on the subspace TxSn ⊂ R
n+1(x). Let Σf (x) map the vector e(x) to a vector

that is orthogonal to df(x) and is such that the determinant corresponding to the operator Σf (x)
equals 1. The operator Σf (x) is well defined since the range of the differential df(x) is a hyperplane
(this follows from the fact that f is an immersion). The determinant of the operator Σf (x) is
determined uniquely since the trivialization is fixed. Since Σf (x) ∈ SLn+1, we have a mapping
Σf : Sn → SLn+1 that takes a point x ∈ Sn into an operator Σf (x). Now, there is a natural
retraction SLn+1 → SOn+1 induced by the Gram–Schmidt orthogonalization (each operator in
SLn+1 is factorized uniquely into a product of an upper triangular operator having positive diagonal
elements with an operator in SOn+1). Denote by σf the composition Sn → SLn+1 → SOn+1.

Now, the Smale Theorem 1.1 can be formulated more precisely. Immersions f, g : Sn → R
n+1

are regularly homotopic if and only if the corresponding spheroids σf and σg (Σf and Σg) are
homotopic.
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140 J. MALEŠIČ et al.

Let i : Sn → R
n+1 be the standard embedding. Then, the corresponding σi is the constant

mapping that takes an arbitrary point on the sphere to the unit matrix in SOn+1. (Note that,
in the case n = 1, the spheroid σf corresponding to an immersion f with the index equal to k is
homotopic to the (k − 1)-multiple of the generator of the group π1(SO2) = Z.)

Now, let H be a hyperplane in R
n+1 that passes through the origin. Denote by S the reflection

with respect to H. Investigate the spheroid σ = σS◦i corresponding to the embedding S ◦ i. Note
that the fibers of the bundle TSn ⊕ ν → Sn, as well as the fibers of the tangent bundle to R

n+1,
can be identified with R

n+1.
Assertion. The operator σ(x) maps a vector v into the vector Sv when v is tangential at the

point x ∈ Sn and maps a vector u into the vector −Su when u is normal :

(v ∈ TxSn)
σ(x)−−−→ Sv, (u ⊥ TxSn)

σ(x)−−−→ −Su. (∗)

Proof. Since S ◦ i is an isometry, σ(x) coincides with ΣS◦i(x); hence, σ(x) acts as d(S ◦ i)(x)
on the tangent space TxSn. Furthermore, d(S ◦ i)(x) coincides with S on TxSn. Since the deter-
minant of the operator ΣS◦i(x) equals 1, a vector u, which is perpendicular to TxSn, is mapped to
−Su (each reflection changes the orientation). �

Proof of the Main lemma continued. Consider the space R
n+2 equipped with orthogonal

coordinates (x1, . . . , xn+2). Let the subspace R
n+1 ⊂ R

n+2 be defined by the equation xn+2 = 0.
Introduce the hyperplane Γ defined by the equation x1 = 0 and denote by H the intersection
Γ ∩ R

n+1. Denote by Ŝ the reflection of the space R
n+2 with respect to the hyperplane Γ, and

denote by S the reflection of the space R
n+1 with respect to the hyperplane H. Let Sn+1 and Sn

be unit spheres in the spaces R
n+2 and R

n+1, respectively (see figure).
Identify the space SOn+1 with the preimage of the vector (0, . . . , 0, 1) under the bundle pro-

jection SOn+2 → Sn+1. Therefore, we can assume that the spheroid σ = σS◦i lies in the space
SOn+2.

Consider the spheroid σŜ◦i : Sn+1 → SOn+2 corresponding to the immersion Ŝ◦i : Sn+1 → R
n+2.

The restriction of σ
Ŝ◦i onto Sn coincides with σ. Indeed, the restriction of Ŝ onto the subspace

R
n+1 coincides with S, and a vector normal to Sn in the space R

n+1 is a normal vector to Sn+1.
Therefore, the operators σ(x) ∈ SOn+2 and σ

Ŝ◦i(x) ∈ SOn+2 coincide for all x ∈ Sn; they are
defined by the same formula (∗) (note that σ

Ŝ◦i(x) maps the vector (0, . . . , 0, 1) to itself).
The sphere Sn+1 and the half-space xn+2 ≥ 0 intersect in a closed disk Dn+1. Consider the

restriction F : Dn+1 → SOn+2 of the mapping σŜ◦i : Sn+1 → SOn+2 on the disk Dn+1. It coincides
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with σ on the boundary ∂Dn+1 = Sn. The mapping F , composed with the bundle projection
SOn+2 → Sn+1, maps the whole sphere ∂Dn+1 = Sn to the point (0, . . . , 0, 1) ∈ Sn+1. To prove the
lemma, it suffices to prove that the mapping F : (Dn+1, Sn) → (Sn+1, (0, . . . , 0, 1)) provides a gen-
erator of the group πn+1(Sn+1, (0, . . . , 0, 1)). Indeed, in this case, the group element corresponding
to the spheroid σ is equal to the image of the generator of the group πn+1(Sn+1, (0, . . . , 0, 1)) by the
homomorphism β [2]. To prove that F provides a generator of the group πn+1(Sn+1, (0, . . . , 0, 1)),
it suffices to prove that the degree of the mapping F equals ±1.

To this end, it suffices to prove that F maps bijectively Dn+1 \ Sn onto Sn+1 \ {(0, . . . , 0, 1)}.
Calculate the image F (x). Taking v = (0, . . . , 0, 1) in (∗), we obtain

F (x) = σŜ◦i(x)v = −Ŝ
(
〈v, e(x)〉e(x)

)
+ Ŝ

(
v − (〈v, e(x)〉e(x))

)
= Ŝ

(
v − 2(〈v, e(x)〉e(x))

)
,

where e(x) = x denotes the unit normal vector to Sn+1 at the point x. In our coordinates, we
obtain

F (x1, . . . , xn+2) = (−2xn+2x1,−2xn+2x2, . . . ,−2xn+2xn+1, 1 − 2x2
n+2).

The equation

(−2xn+2x1,−2xn+2x2, . . . ,−2xn+2xn+1, 1 − 2x2
n+2) = (y1, . . . , yn+2)

has obviously a unique solution lying in the half-space xn+2 > 0 for given (y1, . . . , yn+2) ∈ Sn+1 \
{(0, . . . , 0, 1)}. This solution lies in the disk Dn+1. Indeed, putting x2

i = y2
i

4x2
n+2

for i = 1, . . . , n + 1

and x2
n+2 = 1−yn+2

2 , we get

x2
1 + . . . + x2

n+2 =
y2
1

2(1 − yn+2)
+ . . . +

y2
n+1

2(1 − yn+2)
+

1 − yn+2

2
=

1 − y2
n+2

2(1 − yn+2)
+

1 − yn+2

2
= 1.

We proved that F maps Dn+1 \ Sn bijectively onto Sn+1 \ {(0, . . . , 0, 1)}. Hence, by the Sard
theorem, there exists a point having exactly one regular preimage (moreover, the restriction of F
on the set Dn+1 \ Sn is a diffeomorphism; however, it takes more effort to verify this fact). �

It can be proved that the degree of the mapping Sn σ−→ SOn+1 → Sn equals 0 for n even and
equals ±2 for n odd (see the remark before the Main lemma).

Idea of the third proof that the sphere Sn cannot be turned inside out for n �= 0, 2, 6.
Let Σ: π2n+1(Sn+1) → π2n+2(Sn+2) be the suspension homomorphism. Denote by ∗ the north
pole of the sphere Sn+1. Let Fn+1 be the space {f : Sn+1 = Sn+1 | f(∗) = ∗} and let
η : πn(Fn+1) → π2n+1(Sn+1) be the Hurewicz isomorphism [10]. It can be proved analogously [10,
§ 3] that a Hopf homomorphism H1 : ker Σ → πn(SOn+1) ∼= πn(SOn+1, SO1) can be defined such
that η ◦ ιn+1 ◦ H1 = id; hence, H1 is a monomorphism. Applying the geometric interpretation of
the ENR-sequences [14], one can prove that H1[ιn+1, ιn+1] = σ. Therefore, σ �= 0 if and only if
[ιn+1, ιn+1] �= 0. By a corollary to the Adams theorem, this is valid if and only if n = 0, 2, 6. �
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