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a b s t r a c t

In this paper,we consider the fractional Schrödinger–Kirchhoff equationswith electromag-
netic fields and critical nonlinearity{

ε2sM([u]2s,Aε )(−∆)sAεu + V (x)u = |u|2
∗
s −2u + h(x, |u|2)u, x ∈ RN ,

u(x) → 0, as |x| → ∞,

where (−∆)sAε is the fractional magnetic operator with 0 < s < 1, 2∗
s = 2N/(N − 2s),

M : R+

0 → R+ is a continuous nondecreasing function, V : RN
→ R+

0 and A : RN
→ RN

are the electric and magnetic potentials, respectively. By using the fractional version of
the concentration compactness principle and variational methods, we show that the above
problem: (i) has at least one solution provided that ε < E; and (ii) for any m∗

∈ N, has
m∗ pairs of solutions if ε < Em∗ , where E and Em∗ are sufficiently small positive numbers.
Moreover, these solutions uε → 0 as ε → 0.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions for the fractional Schrödinger–
Kirchhoff equations with external magnetic operator and critical nonlinearity{

ε2sM([u]2s,Aε )(−∆)sAεu + V (x)u = |u|2
∗
s −2u + h(x, |u|2)u, x ∈ RN ,

u(x) → 0, as |x| → ∞,
(1.1)

where ε > 0 is a positive parameter, N > 2s, 0 < s < 1,

[u]2s,Aε :=

∫∫
R2N

|u(x) − ei(x−y)·Aε (
x+y
2 )u(y)|2

|x − y|N+2s dxdy,

where 2∗
s =

2N
N−2s is the critical Sobolev exponent, V ∈ C(RN ,R+

0 ) is the electric potential, A ∈ C(RN ,RN ) is a magnetic
potential, and Aε(x) := ε−1A(x). Further assumptions for the functions V (x), M(x) and h(x) will be given in Section 3. If A is a
smooth function, the fractional operator (−∆)sA, which up to normalization constants can be defined on smooth functions u as

(−∆)sAu(x) := 2 lim
ε→0

∫
RN\Bε (x)

u(x) − ei(x−y)·A( x+y
2 )u(y)

|x − y|N+2s dy, x ∈ RN ,
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has recently been introduced in [1]. Hereafter, Bε(x) denotes the ball in RN centered at x ∈ RN and of radius ε > 0. As stated
in [2], up to correcting the operator by the factor (1 − s), it follows that (−∆)sAu converges to −(∇u − iA)2u as s → 1. Thus,
up to normalization, the nonlocal case can be seen as an approximation of the local one. The motivation for its introduction
is described inmore detail in [1,2] and replies essentially on the Lévy–Khintchine formula for the generator of a general Lévy
process. If the magnetic field A ≡ 0, then the operator (−∆)sAε can be reduced to the fractional Laplacian operator (−∆)s,
which is defined as

(−∆)su := P .V .
∫
RN

|u(x) − u(y)|
|x − y|N+2s dy, x ∈ RN ,

where P .V . stands for the principal value. It may be viewed as the infinitesimal generator of a Lévy stable diffusion
processes [3]. This operator arises in the description of various phenomena in applied sciences, such as phase transitions,
materials science, conservation laws, minimal surfaces, water waves, optimization, plasma physics and so on, see [4] and
references therein for more detailed introduction. Indeed, the study of fractional and nonlocal operators of elliptic type has
recently attracted more attention. For example, for the case in which bounded domains and the entire space are involved,
we refer the readers to [5–10] and the references therein for more related results.

The main driving force for the study of problem (1.1) arises in the following time-dependent Schrödinger equation when
s = 1:

ih̄
∂ψ

∂t
=

1
2m

(−ih̄∇ + A(x))2ψ + P(x)ψ − ρ(x, |ψ |)ψ, (1.2)

where h̄ is the Planck constant, m is the particle mass, A : RN
→ RN is the magnetic potential, P : RN

→ RN is the electric
potential, ρ is the nonlinear coupling, andψ is thewave function representing the state of the particle. This equation arises in
quantummechanics and describes the dynamics of the particle in a non-relativistic setting, see for example [11,12]. Clearly,
the form ψ(x, t) = e−iωth̄−1

u(x) is a standing wave solution of (1.2) if and only if u(x) satisfies the following stationary
equation:

(−iε∇ + A)2u + V (x)u = f (x, |u|)u, (1.3)

where ε = h̄, V (x) = 2m(P(x) − ω) and f = 2mρ, see [13–16] and the references cited therein for recent results in this
direction. When A ≡ 0, problem (1.3) becomes the classical Schrödinger equation

− ε2∆u + V (x)u = f (x, u), x ∈ RN . (1.4)

Similarly, we can deduce the following fractional Schrödinger equation:

ε2s(−∆)su + V (x)u = f (x, u), x ∈ RN . (1.5)

Felmer, Quaas and Tan [1] studied the existence and regularity of positive solutions for problem (1.5) with ε = 1 when
f has subcritical growth and satisfies the Ambrosetti–Rabinowitz condition. Secchi [17] obtained the existence of ground
state solutions of (1.5) when V (x) → ∞ as |x| → ∞ and the Ambrosetti–Rabinowitz condition holds. Dong, Xu andWei [18]
obtained the existence of infinitelymanyweak solutions for (1.5) by a variant of the fountain theoremwhen f has subcritical
growth. For the case of critical growth, Shang and Zhang [19] studied the existence andmultiplicity of solutions for the critical
fractional Schrödinger equation:

ε2s(−∆)su + V (x)u = |u|2
∗
s −2u + λf (u) x ∈ RN . (1.6)

Based on variational methods, they showed that problem (1.6) has a nonnegative ground state solution for all sufficiently
large λ and small ε. Moreover, Shen and Gao [20] proved the existence of nontrivial solutions for problem (1.6) under various
assumptions on f and potential function V (x), among which they also assumed the well-known Ambrosetti–Rabinowitz
condition. See also recent papers [21,22,17,23] for more results. Teng and He [24] were concerned with the following
fractional Schrödinger equation involving a critical nonlinearity

ε2s(−∆)su + u = Q (x)|u|2
∗
s −2u + P(x)|u|p−2u, x ∈ RN , (1.7)

where 2 < p < 2∗
s and potential functions P(x) and Q (x) satisfy certain hypotheses. Using the s-harmonic extension

technique of Caffarelli and Silvestre [25], the concentration-compactness principle of Lions [26] and methods of Brézis and
Nirenberg [27], they proved the existence of ground state solutions. On the other hand, Feng [28] investigated the following
fractional Schrödinger equation

(−∆)su + V (x)u = λ|u|pu, x ∈ RN , (1.8)

where 2 < p < 2∗
s and V (x) is a positive continuous function. By using the fractional version of concentration compactness

principle of Lions [26], he obtained the existence of ground state solutions to problem (1.8) for some λ > 0. By applying
another fractional version of concentration compactness principle and radially decreasing rearrangements, Zhang et al. [29]



1780 S. Liang et al. / Computers and Mathematics with Applications 75 (2018) 1778–1794

proved the existence of a ground state solutions for problem (1.6) with V (x) = 1 for large enough λ > 0, see [30] for related
result with application of the same method.

Another important reason for studying problem (1.1) lies in the following feature of the Kirchhoff problems. More
precisely, Kirchhoff proposed the following model in 1883

ρ
∂2u
∂t2

−

(
p0
λ

+
E
2L

∫ L

0

⏐⏐⏐⏐∂u∂x
⏐⏐⏐⏐2dx

)
∂2u
∂x2

= 0 (1.9)

as a generalization of thewell-knownD’Alembert’s wave equation for free vibrations of elastic strings. Here, L is the length of
the string, h is the area of the cross section, E is the Young modulus of the material, ρ is the mass density and p0 is the initial
tension. Essentially, Kirchhoff’s model takes into account the changes in the length of the string produced by transverse
vibrations. For recent results in this direction, for example, we refer the reader to [31,32] and references therein. Recently,
Fiscella and Valdinoci [33] first deduced a stationary fractional Kirchhoff model which considered the nonlocal aspect of the
tension arising from nonlocal measurements of the fractional length of the string, see the Appendix of [33] for more details.
Moreover, they investigated in [33] also the following Kirchhoff type problem involving critical exponent:{

M([u]2s )(−∆)su = λf (x, u) + |u|2
∗
s −2u in Ω

u = 0 in RN
\Ω

(1.10)

where Ω is an open bounded domain in RN . By using the mountain pass theorem and the concentration compactness
principle, together with a truncation technique, they obtained the existence of non-negative solutions for problem (1.10),
see for example [34–36] for more recent results. For the results on the entire space, see for instance [37–39].

Mingqi et al. [40] first studied the following Schrödinger–Kirchhoff type equation involving the fractional p-Laplacian
and the magnetic operator

M([u]2s,A)(−∆)sAu + V (x)u = f (x, |u|)u in RN , (1.11)

where the right-hand term in (1.11) satisfies the subcritical growth. By using variational methods, they obtained several
existence results for problem (1.11). Following similar methods, for M(t) = a + bt with a ∈ R+

0 and p = 2, Wang
and Xiang [41] proved the existence of two solutions and infinitely many solutions for fractional Schrödinger–Choquard–
Kirchhoff type equations with external magnetic operator and critical exponent in the sense of the Hardy–Littlewood–
Sobolev inequality. Binlin et al. [42] first considered the following fractional Schrödinger equations:

ε2s(−∆)sAεu + V (x)u = f (x, |u|)u + K (x)|u|2
∗
α−2u in RN , (1.12)

where V (x) satisfies the assumption (V ) which will be introduced in Section 3. By using variational methods, they proved
the existence of ground state solution (mountain pass solution) uε which tends to the trivial solution as ε → 0. Moreover,
they proved the existence of infinite many solutions and sign-changing solutions for problem (1.12) under some additional
assumptions.

Inspired by the above works, in particular by [42,43,40,30], we consider in this article the existence and multiplicity of
semiclassical solutions of the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinear-
ity in RN . It is worthwhile to remark that in the arguments developed in [42,43], one of the key points is to prove the (PS)c
condition. Here we use the fractional version of Lions’ second concentration compactness principle to prove that the (PS)c
condition holds, which is different from methods used in [42,43]. Some difficulties arise when dealing with this problem,
because of the appearance of the magnetic field and the critical frequency, and of the nonlocal nature of the fractional
Laplacian. Therefore, we need to develop new techniques to overcome difficulties induced by these new features. As far
as we know, this is the first time that the fractional version of the concentration compactness principle and variational
methods have been combined to get the multiplicity of solutions for the fractional Schrödinger–Kirchhoff equations with
electromagnetic fields and critical nonlinearity.We believe that the ideas used here can be applied in other situations to deal
with similar potentials.

The paper is organized as follows. In Section 2, we will introduce the working space and give some necessary definitions
and properties, which will be used in the sequel. In Section 3, we will give an equivalent form of problem (1.1). In Section 4,
we will use the fractional version of Lions’ second concentration compactness principle to prove that the (PS)c condition
holds true. In Section 5, using the critical point theory, we will prove the main result (see Section 3).

2. Preliminaries

For the convenience of the reader, we recall in this part some definitions and basic properties of fractional Sobolev spaces
Hs

Aε (R
N ,C). For a deeper treatment of the (magnetic) fractional Sobolev spaces and their applications to fractional Laplacian

problems of elliptic type, we refer to [42,4,44,40,45–47] and the references therein.
For any s ∈ (0, 1), the fractional Sobolev space Hs

Aε (R
N ,C) is defined by

Hs
Aε (R

N ,C) =
{
u ∈ L2(RN ,C) : [u]s,Aε < ∞

}
,
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where [u]s,Aε denotes the so-called Gagliardo semi-norm, that is

[u]s,Aε =

(∫∫
R2N

|u(x) − ei(x−y)·Aε (
x+y
2 )u(y)|2

|x − y|N+2s dxdy

)1/2

and Hs
Aε (R

N ,C) is endowed with the norm

∥u∥Hs
Aε

(RN ,C) =
(
[u]2s,Aε + ∥u∥2

L2
) 1

2 .

If A = 0, then Hs
Aε (R

N ,C) reduces to the well-known space Hs(RN ) with the norm [u]s := [u]s,0. The space Hs
Aε (R

N ,C) is also
a Hilbert space with the real scalar product

⟨u, v⟩s,Aε := ⟨u, v⟩L2 + Re
∫∫

R2N

(u(x) − ei(x−y)·Aε (
x+y
2 )u(y))(v(x) − ei(x−y)·Aε (

x+y
2 )v(y))

|x − y|N+2s dxdy,

for any u, v ∈ Hs
Aε (R

N ,C). The operator ((−∆)sAε ) : Hs
Aε (R

N ,C) → H−s
Aε (R

N ,C) is defined by

⟨(−∆)sAεu, v⟩ := Re
∫∫

R2N

(u(x) − ei(x−y)·Aε (
x+y
2 )u(y))(v(x) − ei(x−y)·Aε (

x+y
2 )v(y))

|x − y|N+2s dxdy,

via duality.
We recall the following embedding theorem:

Proposition 2.1 (See [1, Lemma 3.5]). Let A ∈ C(RN ,RN ). Then the embedding

Hs
Aε (R

N ,C) ↪→ Lθ (RN ,C),

is continuous for any θ ∈ [2, 2∗
s ]. Moreover, the embedding

Hs
Aε (R

N ,C) ↪→↪→ Lθloc(R
N ,C)

is compact for any θ ∈ [1, 2∗
s ).

In this paper, we will use the following subspace of Hs
Aε (R

N ,C) defined by

E =

{
u ∈ Hs

Aε (R
N ,C) :

∫
RN

V (x)|u|2dx < ∞

}
with the norm

∥u∥E :=

(
[u]2s,Aε +

∫
RN

V (x)|u|2dx
) 1

2

,

where V is non-negative. By the assumption (V ) (see Section 3), we know that the embedding E ↪→ Hs
Aε (R

N ,C) is continuous.
Note that the norm ∥ · ∥E is equivalent to the norm ∥ · ∥ε defined by

∥u∥ε :=

(
[u]2s,Aε + ε−2s

∫
RN

V (x)|u|2dx
) 1

2

,

for each ε > 0. It is obvious that for each θ ∈ [2, 2∗
s ], there is cθ > 0, independent of 0 < ε < 1, such that

∥u∥Lθ ≤ cθ∥u∥E ≤ cθ∥u∥ε. (2.1)

We have the following diamagnetic inequality:

Lemma 2.1. For every u ∈ Hs
Aε (R

N ,C), we get |u| ∈ Hs(RN ). More precisely,

[|u|]s ≤ [u]s,Aε .

Proof. The assertion follows directly from the pointwise diamagnetic inequality

∥u(x)|−|u(y)∥ ≤ |u(x) − ei(x−y)·Aε (
x+y
2 )u(y)|,

for a.e. x, y ∈ RN , see [1, Lemma 3.1, Remark 3.2]. □

By Proposition 3.6 in [4], we have

[u]s = ∥(−∆)
s
2 u∥L2
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for any u ∈ Hs(RN ), i.e.∫∫
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy =

∫
RN

|(−∆)
s
2 u(x)|

2
dx.

Thus ∫∫
R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy =

∫
RN

(−∆)
s
2 u(x) · (−∆)

s
2 v(x)dx.

3. The main result

Throughout the paper, without explicit mention, we suppose that the functions V (x), M(x) and h(x) satisfy the following
conditions:

(V ) V (x) ∈ C(RN ,R), minx∈RNV (x) = 0 and there is τ0 > 0 such that the set V τ0 = {x ∈ RN
: V (x) < τ0} has finite

Lebesgue measure;
(M) (m1)M : R+

0 → R+ is a continuous nondecreasing function. Furthermore, there existsα0 > 0 such that andM(t) ≥ α0
for all t ∈ R+

0 ;
(m2) there exists σ ∈ (2/2∗

s , 1] satisfying M̃(t) ≥ σM(t)t for all t ≥ 0, where M̃(t) =
∫ t
0 M(s)ds;

(H) (h1) h ∈ C(RN
× R,R) and h(x, t) = o(|t|) uniformly in x as t → 0;

(h2) there exist c0 > 0 and q ∈ (2, 2∗
s ) such that |h(x, t)| ≤ c0(1 + t

q−1
2 );

(h3) there exist l0 > 0, 2/σ < r and 2/σ < µ < 2∗
s such that H(x, t) ≥ l0|t|r/2 and µH(x, t) ≤ 2h(x, t)t for all

(x, t) ∈ RN
× R, where H(x, t) =

∫ t
0 h(x, s)ds.

To obtain the solution of problem (1.1), we will use the following equivalent form{
M
(
[u]2s,Aε

)
(−∆)sAεu + ε−2sV (x)u = ε−2s

|u|2
∗
s −2u + ε−2sh(x, |u|2)u, x ∈ RN ,

u(x) → 0, as |x| → ∞,
(3.1)

for ε → 0.
The energy functional Jε : E → R associated with problem (3.1)

Jε(u) :=
1
2
M̃
(
[u]2s,Aε

)
+
ε−2s

2

∫
RN

V (x)|u|2dx −
ε−2s

2∗
s

∫
RN

|u|2
∗
s dx −

ε−2s

2

∫
RN

H(x, |u|2)dx

is well defined. Define the Nehari manifold

N =
{
u ∈ E : ⟨J ′ε(u), u⟩E = 0

}
.

Under the assumptions, it is easy to check that as shown in [48,49], Jε ∈ C1(E,R) and its critical points are weak solutions of
problem (3.1).

We recall that u ∈ E is a weak solution of problem (3.1), if

M
(
[u]2s,Aε

)
Re
∫∫

R2N

(u(x) − ei(x−y)·Aε (
x+y
2 )u(y))(v(x) − ei(x−y)·Aε (

x+y
2 )v(y))

|x − y|N+2s dxdy

+ ε−2sRe
∫
RN

V (x)uv̄dx = ε−2sRe
∫
RN

(
|u|2

∗
s −2u + h(x, |u|2)u

)
v̄dx,

where v ∈ E.
The following is the main result of the present paper. It will be proved in Section 5.

Theorem 3.1. Let the conditions (V ), (M) and (H) be satisfied. Then the following statements hold: (1) For any κ > 0, there is
Eκ > 0 such that if 0 < ε < Eκ , then problem (3.1) has at least one solution uε satisfying

σµ− 1
2

∫
RN

H(x, |uε|2)dx +

(
2
σ

−
1
2∗
s

)∫
RN

|uε|2
∗
s dx ≤ κεN , (3.2)

(
σ

2
−

1
µ

)
α0ε

2s
[uε]2s,A +

(
1
2

−
1
µ

)∫
RN

V (x)|uε|2dx ≤ κεN . (3.3)

Moreover, uε → 0 in E as ε → 0.
(2) For any m ∈ N and κ > 0, there is Emκ > 0 such that if 0 < ε < Emκ , then problem (3.1) has at least m pairs of solutions uε,i,
uε,−i, i = 1, 2, . . . ,mwhich satisfy the estimates (3.2) and (3.3). Moreover, uε,i → 0 in E as ε → 0, i = 1, 2, . . . ,m.



S. Liang et al. / Computers and Mathematics with Applications 75 (2018) 1778–1794 1783

4. Behavior of (PS) sequences

In this section, we recall the fractional version of concentration compactness principle in the fractional Sobolev space,
see [50,51,29] for more details. Note that Prokhorov theorem (see Theorem 8.6.2 in [52]) ensures that bounded sequences
{un}n are relatively sequentially compact in Hs(RN ) if and only if the sequence is tight in the sense that for any ε > 0,
there exists a compact subsetΩ ⊆ RN such that supn

∫
RN\Ω

|un|dx < ε.

Lemma 4.1 ([50, Theorem 1.5]). Let Ω ⊆ RN be an open subset and let {un}n be a weakly convergent sequence in Hs(RN ), weakly
converging to u as n → ∞ and such that |un|

2∗
s ⇀ ν and |(−∆)

s
2 un|

2
⇀ η in the sense of measures. Then either un → u in

L2
∗
s

loc(R
N ) or there exist a (at most countable) set of distinct points {xj}j∈I ⊆ Ω and positive numbers {νj}j∈I such that

ν = |u|2
∗
s +

∑
j∈I

δxjνj, νj > 0.

If, in addition,Ω is bounded, then there exist a positive measure η̃ ∈ M(RN ) with supp η̃ ⊆ Ω and positive numbers {ηj}j∈I such
that

η = |(−∆)
s
2 u|

2
+ η̃ +

∑
j∈I

δxjηj, ηj > 0

and

νj ≤ (S−1η({xj}))
2∗s
2 ,

where S is the best Sobolev constant, i.e.

S = inf
u∈Hs(RN )

∫
RN |(−∆)

s
2 u|

2
dx∫

RN |u|2∗
s dx

,

xj ∈ RN , δxj are Dirac measures at xj, and µj, νj are constants.

Remark 4.1. In the caseΩ = RN , the above principle of concentration compactness does not provide any information about
the possible loss of mass at infinity. The following result expresses this fact in quantitative terms.

Lemma 4.2 ([29, Lemma 3.5]). Let {un}n ⊂ Hs(RN ) be such that un ⇀ u weakly converges in Hs(RN ), |un|
2∗
s ⇀ ν and

|(−∆)
s
2 un|

2
⇀ η weakly-∗ converges in M(RN ) and define

(i) η∞ = limR→∞lim supn→∞

∫
{x∈RN :|x|>R} |(−∆)

s
2 un|

2dx,
(ii) ν∞ = limR→∞lim supn→∞

∫
{x∈RN :|x|>R} |un|

2∗
s dx.

Then the quantities ν∞ and η∞ exist and satisfy the following

(iii) lim supn→∞

∫
RN |(−∆)

s
2 un|

2dx =
∫
RN dη + η∞,

(iv) lim supn→∞

∫
RN |un|

2∗
s dx =

∫
RN dν + ν∞,

(v) ν∞ ≤ (S−1η∞)
2∗s
2 .

We recall that a C1 functional J on Banach space X is said to satisfy the Palais–Smale condition at level c ((PS)c in short)
if every sequence {un}n ⊂ X satisfying limn→∞Jλ(un) = c and limn→∞∥J ′λ(un)∥X∗ = 0 has a convergent subsequence.

Lemma 4.3. Suppose that conditions (V ), (M) and (H) hold. Then any (PS)c sequence {un}n is bounded in E and c ≥ 0.

Proof. Let {un}n be a (PS) sequence in E. Then

c = Jε(un)

=
1
2
M̃
(
[un]

2
s,Aε

)
+
ε−2s

2

∫
RN

V (x)|un|
2dx −

ε−2s

2∗
s

∫
RN

|un|
2∗
s dx −

ε−2s

2

∫
RN

H(x, |un|
2)dx, (4.1)

⟨J ′ε(un), v⟩ = Re

⎧⎨⎩M
(
[un]

2
s,Aε

) ∫∫
R2N

(un(x) − ei(x−y)·Aε (
x+y
2 )un(y))(v(x) − ei(x−y)·Aε (

x+y
2 )v(y))

|x − y|N+2s dxdy

+ ε−2s
∫
RN

V (x)unv̄dx − ε−2s
∫
RN

|un|
2∗
s −2unv̄dx − ε−2s

∫
RN

h(x, |un|
2)unv̄dx

}
= o(1)∥un∥ε. (4.2)
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By (4.1), (4.2), (M) and condition (h3), we have

c + o(1)∥un∥ε = Jε(un) −
1
µ

⟨J ′ε(un), un⟩ =
1
2
M̃
(
[un]

2
s,Aε

)
−

1
µ
M
(
[un]

2
s,Aε

)
[un]

2
s,Aε

+

(
1
2

−
1
µ

)
ε−2s

∫
RN

V (x)|un|
2dx +

(
1
µ

−
1
2∗
s

)
ε−2s

∫
RN

|un|
2∗
s dx

+ ε−2s
∫
RN

[
1
µ
h(x, |un|

2)u2
n −

1
2
H(x, |un|

2)
]
dx

≥

(
σ

2
−

1
µ

)
α0[un]

2
s,Aε +

(
1
2

−
1
µ

)
ε−2s

∫
RN

V (x)|un|
2dx. (4.3)

Therefore, (4.3) implies that {un}n is bounded in E. Passing to the limit in (4.3) shows that c ≥ 0. This completes the proof. □

The main result in this section is the following compactness result:

Theorem 4.1. Suppose that conditions (V ), (M) and (H) hold. Then for any 0 < ε < 1, Jε satisfies (PS)c condition, for all c ∈(
0, σ0εN−2s

)
, where σ0 :=

(
1
µ

−
1
2∗
s

)
(α0S)N/(2s), that is, any (PS)c-sequence {un}n ⊂ E has a strongly convergent subsequence

in E.

Proof. Let {un}n be a (PS)c sequence. By Lemma 4.3, {un}n is bounded in E. Hence, by diamagnetic inequality, {|un|}n is
bounded in Hs(RN ). Then, for some subsequence, there is u ∈ E such that un ⇀ u in E. We claim that as n → ∞∫

RN
|un|

2∗
s dx →

∫
RN

|u|2
∗
s dx. (4.4)

In order to prove this claim, we invoke Prokhorov’s Theorem (see Theorem 8.6.2 in [52]) to conclude that there exist
η, ν ∈ M(RN ) such that

|(−∆)
s
2 un|

2 ⇀ η (weak*-sense of measures),
|un|

2∗
s ⇀ ν (weak*-sense of measures),

whereµ and ν are nonnegative boundedmeasures onRN . For this,wehave to show the tightnessof sequences {|(−∆)s/2un|
2
}n

and {|un|
2∗
s }n, which follows easily from theboundedness of {|un|}n inHs(RN ) and absolute continuity of the Lebesgue integral.

Then, in viewof Lemma4.1,we know that either un → u in L2
∗
s

loc(R
N ) or ν = |u|2

∗
s +
∑

j∈Iδxjνj, as n → ∞, where I is a countable
set, {νj}j ⊂ [0,∞), {xj}j ⊂ RN .

Take φ ∈ C∞

0 (RN ) such that 0 ≤ φ ≤ 1; φ ≡ 1 in B(xj, ρ), φ(x) = 0 in RN
\ B(xj, 2ρ). For any ρ > 0, define φρ = φ

(
x−xj
ρ

)
,

where j ∈ I . It follows that∫∫
R2N

|un(x)φρ(x) − un(y)φρ(y)|2

|x − y|N+2s dxdy

≤ 2
∫∫

R2N

|un(x) − un(y)|2φ2
ρ(y)

|x − y|N+2s dxdy + 2
∫∫

R2N

|φρ(x) − φρ(y)|2|un(x)|2

|x − y|N+2s dxdy

≤ 2
∫∫

R2N

|un(x) − un(y)|2

|x − y|N+2s dxdy + 2
∫∫

R2N

|φρ(x) − φρ(y)|2|un(x)|2

|x − y|N+2s dxdy. (4.5)

Similar to the proof of Lemma 3.4 in [30], we have∫∫
R2N

|φρ(x) − φρ(y)|2|un(x)|2

|x − y|N+2s dxdy ≤ Cρ−2s
∫
B(xi,Kρ)

|un(x)|2dx + CK−N , (4.6)

where K > 4. In fact, we notice that

RN
× RN

= ((RN
\ B(xj, 2ρ)) ∪ B(xj, 2ρ)) × ((RN

\ B(xj, 2ρ)) ∪ B(xj, 2ρ))
= ((RN

\ B(xj, 2ρ)) × (RN
\ B(xj, 2ρ))) ∪ (B(xj, 2ρ) × RN )

∪ ((RN
\ B(xj, 2ρ)) × B(xj, 2ρ)).
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Then we have∫∫
R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy =

∫∫
B(xj,2ρ)×RN

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy

+

∫∫
(RN\B(xj,2ρ))×B(xj,2ρ)

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy

≤ Cρ−2s
∫
B(xj,Kρ)

|un(x)|2dx + CK−N

(∫
RN\B(xj,Kρ)

|un(x)|2
∗
s dx

)2/2∗
s

≤ Cρ−2s
∫
B(xj,Kρ)

|un(x)|2dx + CK−N .

Since {un}n is bounded in E, it follows from (4.5) and (4.6) that {unφρ}n is bounded in E. Then ⟨J ′ε(un), unφρ⟩ → 0, which
implies

M
(
[un]

2
s,Aε

) ∫∫
R2N

|un(x) − ei(x−y)·Aε (
x+y
2 )un(y)|

2
φρ(y)

|x − y|N+2s dxdy + ε−2s
∫
RN

V (x)|un|
2φρ(x)dx

= −Re

{
M
(
[un]

2
s,Aε

) ∫∫
R2N

(un(x) − ei(x−y)·Aε (
x+y
2 )un(y))un(x)(φρ(x) − φρ(y))
|x − y|N+2s dxdy

}
+ ε−2s

∫
RN

|un|
2∗
s φρdx + ε−2s

∫
RN

h(x, |un|
2)|un|

2φρ(x)dx + on(1). (4.7)

It follows from
∫
RN

|un(x)−un(y)|2

|x−y|N+2s dy⇀ η weakly * in M(RN ) that

lim
n→∞

∫
RN

∫
RN

|un(x) − un(y)|2φρ(y)
|x − y|N+2s dydx =

∫
RN
φρdη.

By the diamagnetic inequality in Lemma 2.1, we have∫∫
R2N

| |un(x)| − |un(y)| |2φρ(y)
|x − y|N+2s dxdy ≤

∫
RN
φρdη,

as n → ∞ and∫
RN
φρdµ → η({xi})

as ρ → 0. Note that the Hölder inequality implies⏐⏐⏐⏐⏐Re
{
M
(
[un]

2
s,Aε

) ∫∫
R2N

(un(x) − ei(x−y)·Aε (
x+y
2 )un(y))un(x)(φρ(x) − φρ(y))
|x − y|N+2s dxdy

}⏐⏐⏐⏐⏐
≤ C

∫∫
R2N

|un(x) − ei(x−y)·Aε (
x+y
2 )un(y)| · |φρ(x) − φρ(y)| · |un(x)|

|x − y|N+2s dxdy

≤ C
(∫∫

R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy
)1/2

. (4.8)

Now, we claim that

lim
ρ→0

lim
n→∞

∫∫
R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy = 0. (4.9)

Note that un ⇀ u weakly converges in E. By Proposition 2.1 we obtain that un → u in Ltloc(R
N ), 1 ≤ t < 2∗

s , which implies
in (4.6)

Cρ−2s
∫
B(xi,Kρ)

|un(x)|2dx + CK−N
→ Cρ−2s

∫
B(xi,Kρ)

|u(x)|2dx + CK−N ,

as n → ∞. Then the Hölder inequality yields

Cρ−2s
∫
B(xi,Kρ)

|u(x)|2dx + CK−N
≤ CK 2s

(∫
B(xi,Kρ)

|u(x)|2
∗
s dx
)2/2∗

s

+ CK−N
→ CK−N
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as ρ → 0. Furthermore, by (4.6) we have

lim sup
ρ→0

lim sup
n→∞

∫∫
R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy

= lim
K→∞

lim sup
ρ→0

lim sup
n→∞

∫∫
R2N

|un(x)|2|φρ(x) − φρ(y)|2

|x − y|N+2s dxdy = 0.

Hence the claim is proved.
It follows from the definition of φρ and un → u in Ltloc(R

N ), 1 ≤ t < 2∗
s , that

lim
ρ→0

lim
n→∞

∫
RN

h(x, |un|
2)|un|

2φρ(x)dx = 0, (4.10)

and

lim
ρ→0

lim
n→∞

∫
RN

V (x)|un|
2φρ(x)dx = 0. (4.11)

Since φρ has compact support, letting n → ∞ in (4.7), we can deduce from (4.8)–(4.11) and the diamagnetic inequality
that

α0η({xj}) ≤ ε−2sνj.

Combining this fact with Lemma 4.1, we obtain νj ≥ α0ε
2sSν2/2

∗
s

j . This result implies that

(I) νj = 0 or (II) νj ≥ (α0S)
N
2s εN .

To obtain the possible concentration of mass at infinity, we similarly define a cutoff function φR ∈ C∞

0 (RN ) such that
φR(x) = 0 on |x| < R and φR(x) = 1 on |x| > R + 1. We can verify that {unφR}n is bounded in E, hence ⟨J ′ε(un), unφR⟩ → 0, as
n → ∞, which implies

M
(
[un]

2
s,Aε

) ∫∫
R2N

|un(x) − ei(x−y)·Aε (
x+y
2 )un(y)|

2
φR(y)

|x − y|N+2s dxdy + ε−2s
∫
RN

V (x)|un|
2φR(x)dx

= −Re

{
M
(
[un]

2
s,Aε

) ∫∫
R2N

(un(x) − ei(x−y)·Aε (
x+y
2 )un(y))un(x)(φR(x) − φR(y))
|x − y|N+2s dxdy

}
+ ε−2s

∫
RN

|un|
2∗
s φRdx + ε−2s

∫
RN

h(x, |un|
2)|un|

2φR(x)dx + on(1). (4.12)

It is easy to verify that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

∥un(x)|−|un(y)∥2φR(y)
|x − y|N+2s dxdy = η∞

and ⏐⏐⏐⏐⏐Re
{
M
(
[un]

2
s,Aε

) ∫∫
R2N

(un(x) − ei(x−y)·Aε (
x+y
2 )un(y))un(x)(φR(x) − φR(y))
|x − y|N+2s dxdy

}⏐⏐⏐⏐⏐
≤ C

(∫∫
R2N

|un(x)|2|φR(x) − φR(y)|2

|x − y|N+2s dxdy
)1/2

.

Note that

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|2|φR(x) − φR(y)|2

|x − y|N+2s dxdy

= lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|2|(1 − φR(x)) − (1 − φR(y))|2

|x − y|N+2s dxdy.

Similar to the proof of Lemma 3.4 in [30], we have

lim sup
R→∞

lim sup
n→∞

∫∫
R2N

|un(x)|2|(1 − φR(x)) − (1 − φR(y))|2

|x − y|N+2s dxdy = 0. (4.13)

It follows from the definition of φR that

lim
R→∞

lim
n→∞

∫
RN

h(x, |un|
2)|un|

2φR(x)dx = 0 (4.14)
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and

lim
R→∞

lim
n→∞

∫
RN

V (x)|un|
2φR(x)dx = 0. (4.15)

It follows from (4.13)–(4.15) that

α0µ∞ ≤ ε−2sν∞

as R → ∞ in (4.12). By Lemma 4.2, we obtain ν∞ ≥ α0ε
2sSν2/2

∗
s

∞ . This result implies that

(III) ν∞ = 0 or (IV) ν∞ ≥ (α0S)
N
2s εN .

Next, we claim that (II) and (IV ) cannot occur. If the case (IV ) holds for some j ∈ I , then by Lemma 4.2, (M) and (H), we have

c = lim
n→∞

(
Jε(un) −

1
µ

⟨J ′ε(un), un⟩

)
≥

(
σ

2
−

1
µ

)
M
(
[un]

2
s,Aε

)
[un]

2
s,Aε +

(
1
2

−
1
µ

)
ε−2s

∫
RN

V (x)|un|
2dx

+

(
1
µ

−
1
2∗
s

)
ε−2s

∫
RN

|un|
2∗
s dx + ε−2s

∫
RN

[
1
µ
h(x, |un|

2)|un|
2
−

1
2
H(x, |un|

2)
]
dx

≥

(
1
µ

−
1
2∗
s

)
ε−2s

∫
RN

|un|
2∗
s dx ≥

(
1
µ

−
1
2∗
s

)
ε−2sν∞ ≥ σ0ε

N−2s,

where σ0 =

(
1
µ

−
1
2∗
s

)
(α0S)N/(2s), which contradicts the condition c ∈

(
0, σ0εN−2s

)
. Consequently, νj = 0 for all j ∈ I .

Similarly, we can prove that (II) cannot occur for any j. Thus∫
RN

|un|
2∗
s dx →

∫
RN

|u|2
∗
s dx, (4.16)

as n → ∞. Since |un − u|2
∗
s ≤ 22∗

s (|un|
2∗
s + |u|2

∗
s ), it follows from the Fatou lemma that∫

RN
22∗

s +1
|u|2

2∗s dx =

∫
RN

lim inf
n→∞

(22∗
s |un|

22
∗
s

+ 22∗
s |u|2

2∗s
− |un − u|2

2∗s )dx

≤ lim inf
n→∞

∫
RN

(22∗
s |un|

22
∗
s

+ 22∗
s |u|2

2∗s
− |un − u|2

2∗s )dx

=

∫
RN

22∗
s +1

|u|2
2∗s dx − lim sup

n→∞

∫
RN

|un − u|2
2∗s dx,

which implies that lim supn→∞

∫
RN |un − u|2

∗
s dx = 0. Then

un → u in L2
∗
s (RN ) as n → ∞.

By the weak lower semicontinuity of the norm, condition (m1) and the Brézis–Lieb lemma, we have

o(1)∥un∥ = ⟨J ′ε(un), un⟩ = M
(
[un]

2
s,Aε

)
[un]

2
s,Aε + ε−2s

∫
RN

V (x)|un|
2dx

− ε−2s
∫
RN

|un|
2∗(s)dx − ε−2s

∫
RN

h(x, |un|
2)|un|

2dx

≥ α0
(
[un]

2
s,Aε − [u]2s,Aε

)
+ ε−2s

∫
RN

V (x)(|un|
2
− |u|2)dx + M

(
[u]2s,Aε

)
[u]2s,Aε

+ ε−2s
∫
RN

V (x)|u|2dx − ε−2s
∫
RN

|u|2
∗
s dx − ε−2s

∫
RN

h(x, |u|2)|u|2dx

≥ min{α0, 1}∥un − u∥2
ε + o(1)∥u∥ε.

Here we use the fact that J ′ε(u) = 0. Thus we have proved that {un}n strongly converges to u in E. Hence the proof is
complete. □

5. Proof of Theorem 3.1

In the following, we will always consider 0 < ε < 1. By the assumptions (V ), (M) and (H), one can see that Jε(u) has the
mountain pass geometry.
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Lemma 5.1. Assume that conditions (V ), (M) and (H) hold. Then there exist αε, ϱε > 0 such that Jε(u) > 0 if u ∈ Bϱε \ {0} and
Jε(u) ≥ αε if u ∈ ∂Bϱε , where Bϱε = {u ∈ E : ∥u∥ε ≤ ϱε}.

Proof. By (H), for 0 < ξ ≤
(
2min

{
σα0
2 ,

1
2

}
c22
)−1
ε2s, there is Cξ > 0 such that

1
2∗
s

∫
RN

|u|2
∗
s dx +

1
2

∫
RN

H(x, |u|2)dx ≤ ξ∥u∥2
L2 + Cξ∥u∥

2∗
s

L2
∗
s
,

where c2 is the embedding constant in (2.1) with θ = 2. It follows from (V ), (M) and (H), that

Jε(u) =
1
2
M̃
(
[u]2s,Aε

)
+
ε−2s

2

∫
RN

V (x)|u|2dx −
ε−2s

2∗
s

∫
RN

|u|2
∗
s dx −

ε−2s

2

∫
RN

H(x, |u|2)dx

≥ min
{
σα0

2
,
1
2

}
∥u∥2

ε − ε−2sξ∥u∥2
L2 − ε−2sCξ∥u∥

2∗
s

L2
∗
s

≥
1
2
min

{
σα0

2
,
1
2

}
∥u∥2

ε − ε−2sCξ∥u∥
2∗
s

L2
∗
s

≥
1
2
min

{
σα0

2
,
1
2

}
∥u∥2

ε − ε−2sCξ c
2∗
s

2∗
s
∥u∥2∗

s
ε .

Then, for all u ∈ E, with ∥u∥ε = ρε, ρε ∈ (0, 1) sufficiently small so that

1
2
min

{
σα0

2
,
1
2

}
− ε−2sCξ c

2∗
s

2∗
s
ρ
2∗
s −2
ε > 0.

Thus, the lemma is proved by taking

αε =
1
2
min

{
σα0

2
,
1
2

}
ρ2
ε − ε−2sCξ c

2∗
s

2∗
s
ρ
2∗
s
ε .

The proof is finished. □

Lemma 5.2. Under the assumptions of Lemma 5.1, for any finite dimensional subspace F ⊂ E,

Jε(u) → −∞ as ∥u∥ε → ∞ with u ∈ F .

Proof. By integrating (m2), we obtain

M̃(t) ≤
M̃(t0)

t1/σ0

t1/σ = C0t1/σ for all t ≥ t0 > 0. (5.1)

Using conditions (V ) and (H), we can get

Jε(u) ≤
C0

2
∥u∥

2
σ
ε +

1
2
∥u∥2

ε −
ε−2s

2∗
s

∥u∥2∗
s

L2
∗
s

− ε−2sl0∥u∥r
Lr

for all u ∈ F . Since all norms in a finite-dimensional space are equivalent and 2 ≤ 2/σ < 2∗
s , we conclude that Jε(u) → −∞

as ∥u∥ε → ∞. The proof is thus complete. □

Note that Jε(u) does not satisfy (PS)c condition for any c > 0. Thus, in the sequel we will find a special finite-dimensional
subspace by which we will construct sufficiently small minimax levels.

Recall that the assumption (V ) implies that there is x0 ∈ RN such that V (x0) = minx∈RNV (x) = 0. Without loss of
generality we can assume from now on that x0 = 0. We first notice that condition (h3) implies

ε−2s

2∗
s

∫
RN

|u|2
∗
s dx +

ε−2s

2

∫
RN

H(x, |u|2)dx ≥ l0ε−2s
∫
RN

|u|rdx.

Define the functional Iε ∈ C1(E,R) by

Iε(u) :=
1
2
M
(
[u]2s,Aε

)
+
ε−2s

2

∫
RN

V (x)|u|2dx − l0ε−2s
∫
RN

|u|rdx.

Then Jε(u) ≤ Iε(u) for all u ∈ E and it suffices to construct small minimax levels for Iε .
Note that

inf
{∫∫

R2N

|φ(x) − φ(y)|2

|x − y|N+2s dxdy : φ ∈ C∞

0 (RN ), |φ|q = 1
}

= 0,
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see [42, Theorem 3.2] for this proof. For any 0 < ζ < 1 one can choose φζ ∈ C∞

0 (RN ) with ∥φζ∥Lq = 1 and suppφζ ⊂ Brζ (0)
so that∫∫

R2N

|φζ (x) − φζ (y)|2

|x − y|N+2s dxdy ≤ Cζ
2N−(N−2s)q

q .

Set

ψζ (x) = eiA(0)xφζ (x) (5.2)

and

ψε,ζ (x) = ψζ (ε−1x). (5.3)

By condition (5.1), we get for any t > 0,

Iε(tψε,ζ ) ≤
C0

2
t

2
σ

⎛⎝∫∫
R2N

|ψε,ζ (x) − ei(x−y)·Aε (
x+y
2 )ψε,ζ (y)|

2

|x − y|N+2s dxdy

⎞⎠1/σ

+
t2

2
ε−2s

∫
RN

V (x)|ψε,ζ |2dx − t r l0ε−2s
∫
RN

|ψε,ζ |
rdx

≤ εN−2s

⎡⎢⎣C0

2
t

2
σ

⎛⎝∫∫
R2N

|ψζ (x) − ei(x−y)·A( εx+εy2 )ψζ (y)|
2

|x − y|N+2s dxdy

⎞⎠1/σ

+
t2

2

∫
RN

V (εx) |ψζ |2dx − t r l0

∫
RN

|ψζ |
rdx
]

= εN−2sΨε(tψζ ),

where Ψε ∈ C1(E,R) defined by

Ψε(u) :=
C0

2

⎛⎝∫∫
R2N

|u(x) − ei(x−y)·A( εx+εy2 )u(y)|
2

|x − y|N+2s dxdy

⎞⎠1/σ

+
1
2

∫
RN

V (εx) |u|2dx − l0

∫
RN

|u|rdx.

Since r > 2/σ , there exists a finite number t0 ∈ [0,+∞) such that

max
t≥0

Ψε(tψζ ) =
C0

2
t2/σ0

⎛⎝∫∫
R2N

|ψζ (x) − ei(x−y)·A( εx+εy2 )ψζ (y)|
2

|x − y|N+2s dxdy

⎞⎠1/σ

+
t20
2

∫
RN

V (εx) |ψζ |2dx − t r0l0

∫
RN

|ψζ |
rdx

≤
C0

2
t2/σ0

⎛⎝∫∫
R2N

|ψζ (x) − ei(x−y)·A( εx+εy2 )ψζ (y)|
2

|x − y|N+2s dxdy

⎞⎠1/σ

+
t20
2

∫
RN

V (εx) |ψζ |2dx.

Let ψζ (x) = eiA(0)xφζ (x), where φζ (x) is as defined above. We have the following lemma.

Lemma 5.3. For any ζ > 0 there exists ε0 = ε0(ζ ) > 0 such that∫∫
R2N

|ψζ (x) − ei(x−y)·A( εx+εy2 )ψζ (y)|
2

|x − y|N+2s dxdy ≤ Cζ
2N−(N−2s)q

q +
1

1 − s
ζ 2s +

4
s
ζ 2s,

for all 0 < ε < ε0 and some constant C > 0 depending only on [φζ ]s,0.
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Proof. For any ζ > 0, we have∫∫
R2N

|ψζ (x) − ei(x−y)·A( εx+εy2 )ψζ (y)|
2

|x − y|N+2s dxdy

≤

∫∫
R2N

|eiA(0)·xφζ (x) − ei(x−y)·A( εx+εy2 )eiA(0)·yφζ (y)|
2

|x − y|N+2s dxdy

≤ 2
∫∫

R2N

|φζ (x) − φζ (y)|2

|x − y|N+2s dxdy + 2
∫∫

R2N

|φζ (y)|2|ei(x−y)·(A(0)−A( εx+εy2 ))
− 1|

2

|x − y|N+2s dxdy.

Next, we will estimate the second term in the above inequality. Notice that⏐⏐⏐ei(x−y)·(A(0)−A( εx+εy2 ))
− 1

⏐⏐⏐2 = 4sin2

[
(x − y) · (A(0) − A( εx+εy2 ))

2

]
. (5.4)

For any y ∈ Brζ , if |x − y| ≤
1
ζ
∥φζ∥

1/α
L2

, then |x| ≤ rζ +
1
ζ
∥φζ∥

1/α
L2

. Hence, we have⏐⏐⏐⏐εx + εy
2

⏐⏐⏐⏐ ≤
ε

2

(
2rζ +

1
ζ

∥φζ∥
1/α
L2

)
.

Since A : RN
→ RN is continuous, there exists ε0 > 0 such that for any 0 < ε < ε0, we have⏐⏐⏐⏐A(0) − A

(
εx + εy

2

)⏐⏐⏐⏐ ≤ ζ∥φζ∥
−1/α
L2

for |y| ≤ rζ and |x| ≤ rζ +
1
ζ

∥φζ∥
1/α
L2
,

which implies⏐⏐⏐ei(x−y)·(A(0)−A( εx+εy2 ))
− 1

⏐⏐⏐2 ≤ |x − y|2ζ 2∥φζ∥
−2/α
L2

.

For all ζ > 0 and y ∈ Brζ , let us define

Nζ ,y :=

{
x ∈ RN

: |x − y| ≤
1
ζ

∥φζ∥
1/α
L2

}
.

Then together with the above facts, we have for all 0 < ε < ε0∫∫
R2N

|φζ (y)|2|ei(x−y)·(A(0)−A( εx+εy2 ))
− 1|2

|x − y|N+2s dxdy

=

∫
Brζ

|φζ (y)|2dy
∫
Nζ ,y

⏐⏐⏐ei(x−y)·(A(0)−A( εx+εy2 ))
− 1

⏐⏐⏐2
|x − y|N+2s dx +

∫
Brζ

|φζ (y)|2dy
∫
RN\Nζ ,y

⏐⏐⏐ei(x−y)·(A(0)−A( εx+εy2 ))
− 1

⏐⏐⏐2
|x − y|N+2s dx

≤

∫
Brζ

|φζ (y)|2dy
∫
Nζ ,y

|x − y|2

|x − y|N+2s ζ
2
|φζ |

−
2
α

L2
dx +

∫
Brζ

|φζ (y)|2dy
∫
RN\Nζ ,y

4
|x − y|N+2s dx

≤
1

2 − 2s
ζ 2s +

4
2s
ζ 2s.

This completes the proof. □

Next, since V (0) = 0 and suppφζ ⊂ Brζ (0), there is ε∗ > 0 such that

V (εx) ≤
ζ

∥φζ∥
2
L2

for all |x| ≤ rζ and 0 < ε < ε∗.

This together with Lemma 5.3 implies that

max
t≥0

Ψε(tφζ ) ≤
C0

2
t2/σ0

(
Cζ

2N−(N−2s)q
q +

1
1 − s

ζ 2s +
4
s
ζ 2s
)1/σ

+
t20
2
ζ . (5.5)
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Therefore, we have for all 0 < ε < min{ε0, ε
∗
},

max
t≥0

Jε(tψε,ζ ) ≤

[
C0

2
t2/σ0

(
Cζ

2N−(N−2s)q
q +

1
1 − s

ζ 2s +
4
s
ζ 2s
)1/σ

+
t20
2
ζ

]
εN−2s. (5.6)

We are now ready to prove the following lemma.

Lemma 5.4. Under the assumptions of Lemma 5.1, for any κ > 0 there exists Eκ > 0 such that for each 0 < ε < Eκ , there is
êε ∈ E with ∥̂eε∥ε > ϱε , Jε (̂eε) ≤ 0, and

max
t∈[0,1]

Jε(t̂eε) ≤ κεN−2s. (5.7)

Proof. Choose ζ > 0 so small that

C0

2
t

2
σ
0

(
Cζ

2N−(N−2s)q
q +

1
1 − s

ζ 2s +
4
s
ζ 2s
) 1
σ

+
1
2
t20ζ ≤ κ.

Let ψε,ζ ∈ E be the function defined by (5.3). Set Eκ = min{ε0, ε
∗
}. Let t̂ε > 0 be such that t̂ε∥ψε,ζ∥ε > ϱε and Jε(tψε,ζ ) ≤ 0

for all t ≥ t̂ε . Invoking (5.6), we let êε = t̂εψε,ζ and check that the conclusion of Lemma 5.4 holds. □

For any m∗
∈ N, one can choosem∗ functions φi

ζ ∈ C∞

0 (RN ) such that suppφi
ζ ∩ suppφk

ζ = ∅, i ̸= k, ∥φi
ζ∥Ls = 1 and∫∫

R2N

|φi
ζ (x) − φi

ζ (y)|
2

|x − y|N+2s dxdy ≤ Cζ
2N−(N−2s)q

q .

Let rm
∗

ζ > 0 be such that suppφi
ζ ⊂ Bi

rζ (0) for i = 1, 2, . . . ,m∗. Set

ψ i
ζ (x) = eiA(0)xφi

ζ (x) (5.8)

and

ψ i
ε,ζ (x) = ψ i

ζ (ε
−1x). (5.9)

Denote

Hm∗

εζ = span{ψ1
ε,ζ , ψ

2
ε,ζ , · · · , ψ

m∗

ε,ζ }.

Observe that for each u =
∑m∗

i=1ciψ
i
ε,ζ ∈ Hm∗

εζ , we have

[u]2s,Aε ≤ C
m∗∑
i=1

|ci|2[ψ i
ε,ζ ]

2
s,Aε ,

for some constant C > 0,∫
RN

V (x)|u|2dx =

m∗∑
i=1

|ci|2
∫
RN

V (x)|ψ i
ε,ζ |

2
dx

and

1
2∗
s

∫
RN

|u|2
∗
s dx +

1
2

∫
RN

H(x, |u|2)dx =

m∗∑
i=1

(
1
2∗
s

∫
RN

|ciψ i
ε,ζ |

2∗
s dx +

1
2

∫
RN

H(x, |ciψ i
ε,ζ |

2
)dx
)
.

Therefore

Jε(u) ≤ C
m∗∑
i=1

Jε(ciψ i
ε,ζ )

for some constant C > 0. By a similar argument as before, we can see that

Jε(ciψ i
ε,ζ ) ≤ εN−2sΨ (|ci|ψ i

ζ ).

As before, we can obtain the following estimate:

max
u∈Hm∗

εζ

Jε(u) ≤ Cm∗

[
C0

2
t2/σ0

(
Cζ

2N−(N−2s)q
q +

1
1 − s

ζ 2s +
4
s
ζ 2s
)1/σ

+
t20
2
ζ

]
εN−2s (5.10)

for all small enough ζ and some constant C > 0. Using the estimate (5.10), we shall prove the following lemma.
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Lemma 5.5. Under the assumptions of Lemma 5.1, for any m∗
∈ N and κ > 0 there exists Em∗κ > 0 such that for each

0 < ε < Em∗κ , there exists an m∗-dimensional subspace Fεm∗ satisfying

max
u∈Fεm∗

Jε(u) ≤ κεN−2s.

Proof. Choose ζ > 0 so small that

Cm∗

[
C0

2
t

2
σ
0

(
Cζ

2N−(N−2s)q
q +

1
1 − s

ζ 2s +
4
s
ζ 2s
)1/σ

+
t20
2
ζ

]
≤ κ.

Set Fεm∗ = Hm∗

εζ = span{ψ1
ε,ζ , ψ

2
ε,ζ , . . . , ψ

m∗

ε,ζ }. Now the conclusion of Lemma 5.5 follows from (5.10). □

We are now ready to prove our main result which establishes the existence and multiplicity of solutions.

Proof of Theorem 3.1 (1). For any 0 < κ < σ0, by Theorem 4.1, we can choose Eκ > 0 and define for 0 < ε < Eκ , the
minimax value

cε := inf
γ∈Γε

max
t∈[0,1]

Jε(t̂eε),

where

Γε := {γ ∈ C([0, 1], E) : γ (0) = 0 and γ (1) = êε}.

By Lemma 5.1, we have αε ≤ cε ≤ κεN−2s. By virtue of Theorem 4.1, we know that Jε satisfies the (PS)cλ condition. In view of
Lemmas 5.1 and 5.4, it follows from the mountain pass theorem that there is uε ∈ E such that if J ′ε(uε) = 0 and Jε(uε) = cε ,
then uε is a nontrivial mountain pass solution of problem (3.1).

Since uε is a critical point of Jε , by (M) and (H) we have for τ ∈ [2, 2∗
s ],

κεN−2s
≥ Jε(uε) = Jε(uε) −

1
τ
J ′ε(uε)uε

=
1
2
M̃
(
[uε]2s,Aε

)
−

1
τ
M
(
[uε]2s,Aε

)
[uε]2s,Aε +

(
1
2

−
1
τ

)
ε−2s

∫
RN

V (x)|uε|2dx

+

(
1
τ

−
1
2∗
s

)
ε−2s

∫
RN

|uε|2
∗
s dx + ε−2s

∫
RN

[
1
τ
h(x, |uε|2)uε −

1
2
H(x, |uε|2)

]
dx

≥

(
σ

2
−

1
τ

)
α0[uε]2s,Aε +

(
1
2

−
1
τ

)
ε−2s

∫
RN

V (x)|uε|2dx

+

(
1
τ

−
1
2∗
s

)
ε−2s

∫
RN

|uε|2
∗
s dx +

(
µ

τ
−

1
2

)
ε−2s

∫
RN

H(x, |uε|2)dx. (5.11)

Taking τ = 2/σ , we obtain the estimate (3.2) and taking τ = µ we obtain the estimate (3.3). This completes the proof of
the first part of Theorem 3.1.

Proof of Theorem 3.1 (2). Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of E byΣ . For each
Z ∈ Σ , let gen(Z) be the Krasnoselskii genus and

j(Z) := min
ι∈Γm∗

gen(ι(Z) ∩ ∂Bϱε ),

where Γm∗ is the set of all odd homeomorphisms ι ∈ C(E, E) and ϱε is the number from Lemma 5.1. Then j is a version of
Benci’s pseudoindex [53]. Let

cεi := inf
j(Z)≥i

sup
u∈Z

Jε(u), 1 ≤ i ≤ m∗.

Since Jε(u) ≥ αε for all u ∈ ∂B+
ϱε

and j(Fεm∗ ) = m∗
= dim Fεm∗ , we obtain by Lemma 5.5 that

αε ≤ cε1 ≤ · · · ≤ cεm∗ ≤ sup
u∈Fεm∗

Jε(u) ≤ κεN−2s.

It follows from Theorem 4.1 that Jε satisfies the (PS)cε condition at all levels c < σ0ε
N−2s. By the usual critical point theory,

all cεi are critical levels and Jε has at leastm∗ pairs of nontrivial critical points satisfying

αε ≤ Jε(uε) ≤ κεN−2s.

Hence, problem (3.1) has at least m∗ pairs of solutions. Finally, as in the proof of the first of Theorem 3.1, we see that these
solutions satisfy the estimates (3.2) and (3.3). This completes the proof of the second part of Theorem 3.1. □
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