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into (2n+1)-dimensional Euclidean space as a cellular subset. (3) There
exists a locally compact planar set which is acyclic with respect to Čech
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1. Introduction

In 1954 Borsuk [2] asked whether every compact absolute neighborhood re-
tract is homotopy equivalent to some compact polyhedron? In 1977 his ques-
tion was answered in the affirmative by West [20]. Much earlier, in 1928
Aleksandrov [1] had proved that every compact n-dimensional space X ad-
mits for any ε > 0, an ε-map onto some n-dimensional finite polyhedron P
which is the nerve of some fine covering of X, whereas X does not admit any
μ-map for some μ > 0 onto a polyhedron of dimension less than n. These
results motivated the classical Aleksandrov-Borsuk problem which remains
open:

Problem 1.1. Given an n-dimensional compact absolute neighborhood retract
X and ε > 0, does there exist an ε-covering U of order n + 1 such that the
natural map of X onto the nerve N (U) of the covering U induces a homotopy
equivalence?

A special case is the following, also open problem:

Problem 1.2. Does every n-dimensional compact absolute retract admit a fine
covering U of order n + 1 such that its nerve N (U) is contractible?
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Note that for the class of cell-like cohomology locally conected com-
pacta the answer to analogous question is negative, since there exists a
2-dimensional cell-like cohomology locally connected compactum whose fine
coverings of order 3 are all nonacyclic [12,13].

In the present paper we shall investigate fine coverings of acyclic, cellular
and cell-like spaces. A topological space X is called acyclic with respect to
Čech homology or simply acyclic if Čech homology with integer coefficients
of X is the same as of a point. A cellular subspace X of the n-dimensional
Euclidean space R

n is a subspace of R
n which is the intersections of a nested

system of n-dimensional topological cubes Dn:

X =
∞⋂

i=1

Dn
i , where Dn

i+1 ⊂ intDn
i .

Recall that it follows by the continuity property of Čech homology that
every cellular space is acyclic.

Our first main result is the following:

Theorem 1.3. If a space X can be embedded as cellular subspace into the n-
dimensional Euclidean space R

n then X admits arbitrarily fine open coverings
whose nerves are all homeomorphic to the n-dimensional cube Dn.

It is well known that the class of all cellular spaces is quite large, for
example all n-dimensional compact cell-like spaces X can be embedded as
cellular subsets of R

m, provided that m ≥ 2n + 2 (see e.g. [9]).
We shall strengthen this fact as follows:

Theorem 1.4. Every n-dimensional cell-like compact space X can be embedded
into the (2n + 1)-dimensional Euclidean space R

2n+1 as a cellular subset.

Corollary 1.5. Every n-dimensional cell-like (in particular, contractible) com-
pact space X admits arbitrarily fine open coverings whose nerves are all home-
omorphic to the (2n + 1)-dimensional cube D2n+1.

Note that there exist n-dimensional contractible compacta which are
nonembeddable into R

2n (see e.g. [14]).
Finaly, we shall show that there exist acyclic planar spaces whose fine

covering are all nonacyclic. These spaces are of course not compact because
there is a classical result that any planar acyclic compactum is cellular (see
e.g. [3,5,16]) and by our Theorem 1.3, they have fine coverings whose nerves
are all homeomorphic to the 2-cell D2.

2. Preliminaries

We shall begin by fixing some terminology and notations and we shall give
some definitions which will be used in the sequel. All undefined terms can be
found in [3,5,7,10,11,17,19].

By a covering U of X we mean a system of open subsets of a metric
space X whose union is X. If the space X is compact then by a covering we
mean a finite covering. We consider the standard metric ρ on the Euclidean
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space R
n and its subspaces. For a subspace A of the space X and for a positive

number d we denote the d-neighborhood of the set A in X by N(A, d), i.e.

N(A, d) = {x : x ∈ X and ρ(x,A) < d}.
In particular, the open ball B(a, d) in a metric space with center at

the point a and radius d is the set N({a}, d). By the mesh of the covering
U , mesh(U), we mean the supremum of the diameters of all elements of the
covering U . We say that the space admits fine acyclic coverings if for every
open covering U there exists a refinement V of U such that homology of the
nerve N (V) is trivial, i.e. homology of N (V) is the same as homology of a
point. For compact spaces this is equivalent to existence of acyclic coverings
V with mesh(V) < ε, for every positive number ε.

We consider only Čech homology with integer coefficients.

Definition 2.1. A kernel U0
i of the element Ui of the covering U = {Ui}i=1,n

of the space X is an open non-empty subset of Ui such that it does not inter-
sect with other elements Uj , j �= i, of the covering U .

Definition 2.2. A covering U = {Ui}i=1,n is called canonical on the subspace
A ⊂ X if for every i such that Ui ∩A �= ∅ it follows that U0

i ∩A �= ∅.
Definition 2.3. A canonical covering U = {Ui}i=1,n on the subspace A is
called a canonization of the covering V = {Vi}i=1,n if Ui ⊂ Vi for every
i, and this refinement induces a simplicial isomorphism between the nerves
N (U) and N (V).

Lemma 2.4. For every finite covering V = {Vi}i=1,n of a metric space X
and its subset A without isolated points there exists a canonization U of the
covering V on the subspace A.

Proof. In every nonempty intersection Vi0 ∩ Vi0 ∩ · · ·Vik
∩ A let us choose a

point ai0i1...ik
such that to different systems of open sets there correspond

different points (this is possible because the set A does not contain isolated
points). We get a finite set of points.

Let d be any positive number less than the minimum of the distances
between the chosen points and such that if the intersection Vi ∩ A �= ∅ then
B(ai, d) ⊂ Vi. Let Ui = Vi\

⋃
B

(
aj ,

d
2

)
(the union is over all j, j �= i for

which the point aj is defined, i.e. Vj ∩A �= ∅). The nerves of the coverings U
and V are isomorphic since we did not remove the points ai0i1...ik

from the
space X and since the balls B

(
ai,

d
2

)
lie in the kernel of Ui.

Therefore the covering U is a canonization of the covering V of the
subspace A. �
Definition 2.5. By a chain connecting the element U of the covering U with
subset A along the connected subset M of the space X we mean a system
{Ui1 , Ui2 , . . . Uim

} of elements of U such that Ui1 = U, Uik
∩ A = ∅ for

k < m, Uim
∩A �= ∅ and Uit

∩ Uit+1 ∩M �= ∅ for t = 1, (m− 1).

Next, we shall need the following construction. Consider the covering U
of a topological space X and the 4-tuple {U, x, ε,m} in which U ∈ U , x ∈ U0

(U0 is kernel of the U), ε is a positive number such that B(x, ε) ⊂ U0, and m
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is any natural number. Consider the covering U ′ which consists of all elements
of the covering U except the element U. Instead of U we choose the following
m elements for m > 1:
• U(x, ε,m, 1) = U\B(x, ε

2 ),
• U(x, ε,m, k) = B(x, ε

k−1 )\B(x, ε
k+1 ), for k > 1, k < m,

• U(x, ε,m,m) = B(x, ε
m−1 ).

If m = 1, then U(x, ε, 1, 1) = U. The covering U ′ is called the grating of
U with respect to the 4-tuple {U, x, ε,m}.

If the element U of the covering U is connected then N (U ′) = N (U)∪P,
where P is a segment subdivided into m−1 parts if m > 1 and it is the empty
set if m = 1.

Let U be any covering of the space X which refines a covering W and
let ϕ : N (U) → N (W) be a simplicial mapping induced by this refinement.
Suppose that {Ui0 , Ui1 , . . . , Uim

} are subsets of the covering U having empty
intersection.

Definition 2.6. The covering W is called an extension of the covering U with
respect to the set {Ui0 , Ui1 , . . . , Uim

} if the mapping ϕ is injective and the
complex N (W) is the union of the complex N (U) with an m-dimensional
simplex corresponding to {Ui0 , Ui1 , . . . , Uim

} and possibly some of its faces.

Lemma 2.7. For every covering U canonical on the set A and for every system
of its elements {Ui0 , Ui1 , . . . Uim

} such that
⋂m

t=0 Uit
= ∅ and A ∩ Uit

�= ∅
there exists for every t, a covering canonical on A which is an extension of
the covering U with respect to {Ui0 , Ui1 , . . . Uim

}.
Proof. In the kernel of one of the sets Ui0 , Ui1 , . . . Uim

choose a ball B(a, d)
and replace Uit

by Uit
∪ B(a, d) for every t = 0,m. We obviously get the

desired extension. �
Subspace X of R

n is cellular if and only the quotient space R
n/X is

homeomorphic to R
n (see e.g. [9]). Therefore we can assume that for a cellular

subset X, X =
⋂∞

i=1 Dn
i , where Dn

i+1 ⊂ intDn
i , there exists a retraction

ri : Dn
i → Dn

i+1 such that preimage of every point x of the boundary ∂Dn
i+1

is homeomorphic to the segment [0, 1].

Definition 2.8. ([9,10]). A polyhedral neighborhood N of the polyhedron P ⊂
R

n is called regular if there exists a piecewise linear mapping ϕ : N× [0, 1]→
N, such that ϕ(x, 0) = x, ϕ(x, 1) ∈ P for all x ∈ N and ϕ(x, t) = x for x ∈ P
and t ∈ [0, 1] or in other words, P is a strong deformation retract of N under
a piecewise linear homotopy ϕ.

Definition 2.9. ([9,10]). An ε push of the pair (Rn,X) is a homeomorphism
h of R

n to itself for which there exists a homotopy ϕ : R
n × [0, 1]→ R

n such
that
(1) ϕ(x, 0) = x, ϕ(x, 1) = h(x);
(2) ϕt : R

n → R
n is a homeomorphism for every t ∈ [0, 1] and ρ(x, ϕt(x)) <

ε for all x ∈ R
n;

(3) ϕ(x, t) = x for every t ∈ [0, 1] and all x such that ρ(x,X) ≥ ε.
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Definition 2.10. ([9,10]). Let P be a compact subpolyhedron of R
n and let ε

be a positive real number. An ε-regular neighborhood of P in R
n is a regular

neighborhood N of P such that for any compact subset Y of R
n\P , there is

an ε-push h of (Rn, P ) such that h(Y ) ∩N = ∅.

We note that it follows by definition that every ε-regular neighborhood
N of subpolyhedron P is a proper subset of N(P, ε).

The following lemma follows by the regular neighborhood theory (see
e.g. [9,10]).

Lemma 2.11. For any finite subpolyhedron P of R
n and any ε > 0 there exists

an ε-regular neighborhood N of P.

3. Proof of Theorem 1.3

Since X is a cellular subset of R
n we have

X =
∞⋂

i=1

Dn
i , where Dn

i+1 ⊂ intDn

and there are natural retractions ri : Dn
i → Dn

i+1.
Fix a positive number ε and some natural number K which will be

specified later. Since X ⊂ int D1 and X is a compact space there exists a
finite system of open balls of radius ε′ < ε

K in R
n which cover X, i.e. X ⊂

∪x∈F B(x, ε′), F is a finite subset of X for which ∪x∈F B(x, ε′) ⊂ Dn
1 . There

exists an index i0 such that Dn
i0
⊂ ∪x∈F B(x, ε′). Let r be a natural retraction

of Dn
1 on Dn

i0
. Since the mapping r is uniformly continuous there exists a

positive number δ < ε′, such that �(r(x), r(y)) < ε′ whenever �(x, y) < δ.
Consider a triangulation of Dn

1 with the diameters of simplices less than
δ
2 . Consider a covering of Dn

1 by open stars of the vertices of this triangulation.
According to Lemma 2.4 there exists a refinement U = {Ui}i=1,m of this
covering which is canonical on X. Note that the nerve N (U) is homeomorphic
to Dn.

We wish to associate to every open set Ui of the U some open subset
of the space X. If the intersection Ui ∩X is nonempty then we associate to
Ui the open set Ui ∩X in X. If Ui ∩X = ∅ then we choose a point yi ∈ Ui.
The point r(yi) belongs to some ball B(xi, ε

′), xi ∈ F, and the subspace
r−1(r(yi)) is homeomorphic to a segment if yi /∈ Di0 or is a point if yi ∈ Di0 .
So the union Mi = r−1(r(yi)) ∪B(xi, ε

′) is a connected set.
Since Mi is connected there obviously exists a chain {Ui1 , Ui2 , . . . Uim(i)}

connecting Ui with X along Mi. Since the covering U is canonical on X, the
intersection of the kernel of Uim(i) and X is nonempty, and we can find a
point zi ∈ U0

im(i)
∩X. Let εi be a positive number such that B(zi, εi) ∩X ⊂

U0
im(i)

∩X. So we have a 4-tuple {Uim(i) ∩X, zi, εi,m(i)} and we can take a
grating of U|X = {Ui ∩X}i=1,m with respect to this 4-tuple.

Repeat this procedure for all i. We get some canonical covering U ′ of X.
There is a simplicial mapping J : N (U ′) → N (U) which maps the vertices
U(zi, εi,m(i), k) to the vertices Uik

. This mapping is in general not injective
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because some element Uk ∈ U can be the element of several chains of the
type {Ui1 , Ui2 , . . . Uim(i)}.

Consider a new covering W whose elements are unions of all elements
of U ′ which correspond to the elements Uk under a mapping T .

Let us estimate the diameters of the elements of W. Take two points
a1 and a2 from any W ∈ W. By construction, there must exist two sets Mi1

and Mi2 which intersect with Uk. The distance between the points r(yi1) and
r(yi2) < ε′ since the diameter of Uk < δ. Diameters of balls B(xi1 , ε

′) and
B(xi2 , ε

′) are less than or equal to 2ε′. The diameters of the elements of the
covering U are also less than ε′ since δ < ε′.

By the Triangle Inequality it follows that ρ(a1, a2) < 7ε′ therefore
diam(W) ≤ 7ε′. We now have the injective mapping J ′ : N (W) → N (U)
which maps vertices of N (W) bijectively onto the vertices of N (U). Suppose
that J ′ is not surjective. Then there exists a system of elements {Wi1 ,Wi2 , . . .
Wim(i)} of the covering W with empty intersection.

Let us apply the operation of the extension of the covering W (see
Definition 2.6). We get a new covering. Since all coverings are finite, after
few applications of this operation we finally get the covering W ′ of the space
X and a bijective mapping J ′′ : N (W ′)→ N (U).

Let us estimate the distance between the points of the sets Wik
and

Wil
which are the vertices of same simplex of the polyhedron N (W ′). For

the mapping T ′ to Wik
and Wil

there correspond two elements Uik
and Uil

which intersect. We have two points yik
∈ Uik

and yil
∈ Uil

. Since Uik
∩

Uil
�= ∅, we have ρ(yik

, yil
) < 2δ and ρ(r(yik

), r(yil
)) < 2ε′. By construction

ρ(r(yik
),Wil

) < 7ε′ for every k.

It follows that the distance between any points of Wik
and Wil

is less
than 16ε′. So the diameters of the elements of the covering W ′ are no more
than 16ε′. Since the number K was arbitrary we can put K > 16 and get
that diam(W ′) < ε. So we have a fine covering whose nerve is homeomorphic
to Dn.

4. Proof of Theorem 1.4

We shall need the following lemmas.

Lemma 4.1. (Freudenthal [7,8,18]). Every compact metrizable space X is

homeomorphic to the inverse limit of the inverse sequence {Pi
fi←− Pi+1}i∈N

of finite polyhedra Pi with piecewise linear (i.e. quasi-simplicial [7, pp.148,
153]) surjective projections fi. If dim X ≤ n then dim Pi ≤ n.

Lemma 4.2. (see [9, Theorem 3.3]). Let dimX ≤ n and suppose that X is

homeomorphic to the inverse limit of the inverse sequence {Pi
fi←− Pi+1}i∈N

of finite polyhedra Pi with piecewise linear surjective projections fi and dim
Pi ≤ n. Then for every i, Pi can be embedded as subpolyhedron Ri in R

2n+1

so that:
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• For every i there exists a qi-regular neighborhood Ni of Ri in R
2n+1,

qi < 1
i and N i+1 ⊂ Ni;

• X is homeomorphic to ∩∞
i=1Ni.

Let us give a brief sketch of the proof of this lemma, see also [6, Exercise
3.4.5].

Proof. Let K1 be the number of vertices of the polyhedron P1 for some fixed
triangulation. Choose points P1 = {p1,1, p1,2, . . . p1,K1} in general position in
the space R

2n+1 and embed simplicially the polyhedron P1 in R
2n+1 in such a

way that to the vertices of P1 there correspond the points P1 (see e.g. [11,17]).
Denote by Q1 the image of polyhedron P1 in R

2n+1 with a given triangulation.
Since f1 is a quasi-simplicial mapping there exists barycentric triangu-

lations of P1 and P2 such that f1 becomes simplicial mapping. Let L1 and K2

be the number of vertices of the polyhedra P1 and P2 after these triangula-
tions, respectively. We have points {q1,1, q1,2, . . . q1,L1} of the polyhedron Q1

which correspond to the vertices of the polyhedra P1 for this triangulation.
These points are not in general position but we can move them in such

a way that we get points R1 = {r1,1, r1,2, . . . r1,L1} which are in general po-
sition and we get a new subpolyhedron R1 of R

n piecewise homeomorphic
to Q1 generated by these points with the simplicial mapping f1 : P2 → R1

(here, and in the sequel, we shall use the same symbol for mappings if the do-
main/range are the same and if the corresponding diagram is commutative).

Let N1 be 1-regular neighborhood of R1, see Lemma 2.11. Let r1 be the
distance between R1 and R

2n+1\N1.
Let d1 be any positive number less than 1 and the maximum of the di-

ameters of the simplices of the polyhedron R1. Choose points P2 = {p2,1, p2,2,
. . . p2,K2} in R

2n+1 which satisfy the following conditions:

(1) All points R1 ∪ P2 are in general position, see e.g. [7, p. 102, Theorem
1.10.2];

(2) If the vertex corresponding to the point p2,i is mapped by f1 to the
point r1,j then p2,i ∈ B

(
r1,j , min

{
r1
3 , d1

3

})
.

Since the points P2 are in general position we can simplicially embed
the polyhedron P2 with respect to these vertices. Denote by Q2 the image
of P2 in R

2n+1. Let us estimate the distance between the points x ∈ Q2 and
f1(x) ∈ R1. Take any point x ∈ P2. Then we have for some λi,

∑
λi =

1, λi ≥ 0 and for some p2,i that x =
∑

λip2,i where p2,i are vertices of some
simplex of the polyhedron P2 which contains x. Then f(x) =

∑
λif(p2,i).

Furthermore,

ρ(x, f(x)) = ||x− f(x)|| =
∣∣∣∣ ∑

λi(p2,i − f(p2,i))
∣∣∣∣

<
∑

λi ·min
{

r1

3
,
d1

3

}
= min

{
r1

3
,
d1

3

}
= δ1.

It now follows that N(Q2, δ1) ⊂ N1.
So we have a triad {R1, N1, Q2} of subpolyhedra of R

2n+1 such that
R1 is piecewise homeomorphic to P1, polyhedron N1 is a 1-regular neigh-
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borhood of R1, and Q2 is homeomorphic to P2. There is a natural mapping
f1 : Q2 → R1 which is associated to f1 : P2 → P1 and for any x ∈ Q2 we have

ρ(x, f1(x)) ≤ δ1 = min
{

r1

3
,
d1

3

}

where r1 is the distance between R1 and R
2n+1\N1, and d1 is the maximum

of the diameters of all simplices of the polyhedron R1.
Let us suppose that we are given for some index i a triad {Ri, Ni, Qi+1}

of subpolyhedra of R
2n+1 such that:

• Ri is piecewise homeomorphic to Pi;
• Ni is a qi-regular neighborhood of Ri, qi < min{ 1

i , di} and di is the
maximum of the diameters of all simplices of the polyhedron Ri;
• Qi+1 is homeomorphic to Pi+1 and there is a natural mapping fi :

Qi+1 → Ri which is associated to fi : Pi+1 → Pi;
• for any x ∈ Qi+1 we have

ρ(x, fi(x)) ≤ δi = min
{

qi,
ri

3
,
di

3

}

where ri is the distance between Ri and R
2n+1\Ni.

We call the triad with these properties a special triad.
Now we construct a special triad {Ri+1, Ni+1, Qi+2} in the following

way. We have a piecewise linear mapping fi+1 : Pi+2 → Pi+1 = Qi+1 there-
fore there exist barycentric subdivisions of Pi+2 and Qi+1 such that fi+1

becomes a simplicial mapping. Let Li+1 and Ki+2 be the number of vertices
of the polyhedra Pi+1 and Pi+2 after these triangulations, respectively. We
have points {qi+1,1, qi+1,2, . . . qi+1,Li+1} of the polyhedron Qi+1 which corre-
spond to the vertices of the polyhedron Pi+1 for this triangulation.

We move these points in such a way that we obtain points

Ri+1 = {ri+1,1, ri+1,2, . . . ri+1,Li+1}
which are in general position and ρ(qi+1,i, ri+1,i) < ri

3 . We get a new polyhe-
dron Ri+1 which lies in the neighborhood N(Qi+1,

ri

3 ) and for which we have
a simplicial mapping fi+1 : Pi+2 → Ri+1. Let di+1 be the maximum of the
diameters of all simplices of the polyhedron Ri+1. Let qi+1 < min{ 1

i+1 , di+1}
be such a number that the qi+1-regular neighborhood Ni+1 of Ri+1 is a subset
of N(Qi+1,

ri

3 ).
Let ri+1 be the distance between Ri+1 and R

2n+1\Ni+1, and let di+1

be the maximum of the diameters of all simplices of the polyhedron Ri+1.
Choose points Pi+2 = {pi+2,1, pi+2,2, . . . pi+2,Ki+2} in R

2n+1 satisfying the
following conditions:
(1) All points ∪i+1

i=1Ri ∪ Pi+2 are in general position;
(2) If the vertex corresponding to the point pi+2,i is mapped by fi+1 to the

point ri+1,j then pi+2,i ∈ B
(
ri+1,j , min

{
qi+1,

ri+1
3 , di+1

3

})
.

Since the points Pi+2 are in general position we can simplicially embed
the polyhedron Pi+2 with respect to these vertices. Denote by Qi+2 the image
of Pi+2 in R

2n+1. It is easy to see that N(Qi+2,
ri+1

3 ) ⊂ Ni+1. We now have
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a special triad {Ri+1, Ni+1, Qi+2}. By induction we can thus obtain a special
triad {Rk, Nk, Qk+1} for every k ∈ N.

If we consider two different sequences of points xi ∈ Pi, fi(xi+1) = xi

and x′
i ∈ Pi, fi(x′

i+1) = x′
i, then obviously there exists an index i0 such that xi

and x′
i belong to different simplices of Ri0 . It follows by our choice of numbers

di that the limit points x and x′ of the sequences {xi} and {x′
i} are different.

Therefore the space X is homeomorphic to the intersection
⋂∞

1 Ni and
it is the limit of the sequence of polyhedra {Ri}i∈N. �

Now we can prove Theorem 1.4. First, let us prove Theorem 1.4 in the
case n = 1, i.e. let us prove that every 1-dimensional cell-like compactum X
can be embedded as a cellular subspace into R

3.

According to the classical Case-Chamberlin theorem, every
1-dimensional cell-like continuum is tree-like, i.e. any of its open coverings
has a tree-like refinement (a refinement whose nerve is a 1-dimensional fi-
nite contractible complex) [4]. By the proof of the Freudenthal Theorem [18]

it follows that X = lim←−
(
Pi

fi←− Pi+1

)
, where each Pi is a contractible 1-

dimensional polyhedron and all projections fi are piecewise linear mappings.

It follows by Lemma 4.2 that X can be embedded in R
3 so that its

image has arbitrary fine neighborhoods Ni with contractible spines Ri ≈ Pi,
i.e. Ni is homeomorphic to D3 and the embedding of X in R

3 is cellular in
this case.

Let now n ≥ 2. Then we embed space X in a regular way in R
2n+1

according to Lemma 4.2. Let us show that such an embedded space X satisfies
the cellularity criterion in R

2n+1 (see [6]).

Consider any neighborhood U of X in R
2n+1. Since the space X is cell-

like there exists a neighborhood V of X in U such that the embedding V ⊂ U
is homotopic to the constant mapping. Consider any mapping f of ∂D2 to
V \X. Since the embedding V ↪→ U is homotopic to the constant mapping
there exists an extension f : D2 → U. By the Simpicial Approximation
Theorem we can suppose that f and f are simplicial mappings and the image
of f is a 2-dimensional polyhedron in U.

Let ε be a positive number such that N(X, ε) ⊂ V and choose the index
i so that the qi-regular neighborhood Ni of Ri, is a subset of V (it suffices to
require qi < ε). We may assume that Imf and Ri are in general position and
that the spaces Imf and Pi do not intersect, Imf∩Pi = ∅, since 2+n < 2n+1.

By Lemmas 2.11 or 4.2 there exist for Ni, a qi-push hi of the pair
(R2n+1, Ri) such that hif(D2) ∩ Ni = ∅. It follows that hif(D2) ∩ X = ∅.
Therefore f : ∂D2 → U\X is inessential and we obtain an embedding of
the cell-like space X into R

2n+1, 2n + 1 ≥ 5 which satisfies the Cellularity
Criterion of McMillan (see [15] or [6, Theorem 3.2.3]). It follows that X is
cellular.
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5. Acyclic Subspaces of the Plane Whose Fine Coverings
are all Nonacyclic

We shall present two examples of locally compact planar acyclic with respect
to Čech homology spaces whose fine coverings are all nonacyclic.

Example 5.1. Consider in the plane R
2 a countable bouquet of circles S1

i with
a base point A and with a common tangent line, whose diameters tend to
infinity. From every circle S1

i remove a small open arc AAi such that the
diameters of these arcs tend to 0. We get the desired space X1, see Fig. 1.

Obviously, X1 is a locally compact space. Consider the following cofinite
system of coverings of X1. Triangulate the segments S1

i \AAi and take their
coverings by open stars of all vertices of the triangulations except the stars of
the vertex A. For the point A consider the open set B(A, ε)∩X1. Obviously,
the coverings of such type are cofinal in the set of all coverings of X1.

The nerves of these coverings are homeomorphic to the countable bou-
quet

(∨n
1 Ii)

∨

A

(∨∞
n+1S

1
i )

of circles and a finite number of segments with respect to the point A. There-
fore their 1-dimensional homology groups are isomorphic to the direct sums∑∞

i=n+1 Z and we have the following inverse system:

∞∑

1

Z←↩
∞∑

2

Z←↩
∞∑

3

Z←↩ · · · .

The inverse limit of this system is zero and the space X1 is acyclic. How-
ever, since all homomorphisms in this system are nonzero monomorphisms it
follows that all fine coverings are nonacyclic.

Example 5.2. Consider the “compressed sinusoid” CS as a subspace
of the rectangle [0, 1]× [−1, 1] ⊂ R

2:

CS =
{

(x, y)| y = sin
1
x

if x ∈ (0, 1], and y ∈ [−1, 1] if x = 0
}

.

Remove the continuum {0} × [0, 1] and obtain a locally compact space
X2 = CS\({0} × [0, 1]).

Figure 1. Locally compact acyclic space whose fine coverings
are all nonacyclic
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Figure 2. Locally compact acyclic subspace of CS without
acyclic fine coverings

To prove the acyclicity consider the following strong deformation retract
T of CS\({0} × [0, 1]), see Fig. 2:

T =
{

(x, y)| y = sin
1
x

if x ∈ (0, 1], and y = −1 if x = 0
}

.

The space T has the same homotopy type as X2 and it consists of the
curve y = sin 1

x which is homeomorphic to (0, 1] and the point (0;−1). There
exists a cofinite system of open coverings of this space T . Indeed, on this line
consider the standard triangulation and its cover by open stars of its vertices.
For the point (0;−1) consider the open subspace B((0;−1), ε)∩ T of T. The
nerves of this cofinite system of coverings are homeomorphic to a countable
bouquet of circles and a segment.

We have (as in the first example) the following cofinite inverse system
of homology groups and homomorphisms:

∞∑

1

Z←↩

∞∑

2

Z←↩

∞∑

3

Z←↩ · · · .

The inverse limit of this system is trivial, therefore Ȟ1(T ) = 0 and hence
space X is acyclic with respect to Čech homology. However, all fine covering
of X2 are nonacyclic.

6. Epilogue

It follows by Corollory 1.5 that every n-dimensional contractible compactum
has arbitrary fine coverings of order 2n + 1 whose nerves are all contractible.
The following question is a special case of Problem 1.2:

Question 6.1. Does there exist an n-dimensional contractible compactum
whose fine coverings of order n + 1 are all nonacyclic?
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