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1. Introduction

The following interesting problem from contemporary theory of Peano continua and combinatorial group theory hasbeen widely discussed and investigated (most recently at the 2011 workshop on wild topology in Strobl, Austria [3]),because it concerns two well-known and important 2-dimensional spaces, namely the Griffiths space G and the Harmonic
Archipelago HA, cf. [3]:
Problem 1.1.Are the fundamental groups of the Griffiths space G and the Harmonic Archipelago HA isomorphic?
∗ E-mail: umedkarimov@gmail.com
† E-mail: dusan.repovs@guest.arnes.si
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On the homology of the Harmonic Archipelago

This difficult problem remains open. Its solution will require a deep understanding of the structure of the fundamentalgroups of these spaces. In the present paper, which is a step in this direction, we shall investigate the abelianization ofthe fundamental group of the Harmonic Archipelago HA.It is well known, cf. e.g. [10, Theorem 2A.1], that the 1-dimensional singular homology group with integer coefficients
H1(X ;Z) of a path-connected space X is isomorphic to the abelianization of the fundamental group π1(X ) of X :

H1(X ;Z) ∼= π1(X )/[π1(X ), π1(X )].
Our first result is based on the structure of the homology groups of the Hawaiian Earring H (an alternative proof, usinginfinitary words, was given by Eda [5]):
Theorem 1.2.
Let HA denote the Harmonic Archipelago. Then

H1(HA;Z) ∼= ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
,

whereas Hn(HA;Z) ∼= 0 for all n ≥ 2.

Eda proved [5] that the Griffiths space G and the Harmonic Archipelago HA have isomorphic 1-dimensional singularhomology groups,
H1(G;Z) ∼= H1(HA;Z).

Now, it is well known that the Griffiths space G is cell-like and therefore it has trivial Čech cohomology groups,
Ȟ∗(G;Z) ∼= Ȟ∗(pt;Z). On the other hand, by our second main result stated below, the Čech cohomology of the HarmonicArchipelago HA does not vanish:
Theorem 1.3.
Let HA denote the Harmonic Archipelago. Then

Ȟ2(HA;Z) ∼= ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
,

whereas Ȟn(HA;Z) ∼= 0 for all n 6= 0, 2.

As an immediate consequence we obtain the following important corollary:
Corollary 1.4.
The Griffiths space G and the Harmonic Archipelago HA are not homotopy equivalent.

2. Preliminaries

The constructions of the Griffiths space G and the Harmonic Archipelago HA are based on the Hawaiian Earring H,a classical 1-dimensional planar Peano continuum:
H = ⋃

n∈N

{(x, y) ∈ R2 : x2 +(y − 1
n

)2 = (1
n

)2}
.
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U.H. Karimov, D. Repovš

The Griffiths space G is a one-point union of two cones over the Hawaiian Earring H, cf. [8]. Consider two copies of theHawaiian Earring H in R2×{0} ⊂ R3:
H+ = ⋃

n∈N

{(x, y, 0) ∈ R3 : x2 +(y − 1
n

)2 = (1
n

)2}
, H− = ⋃

n∈N

{(x, y, 0) ∈ R3 : x2 +(y+ 1
n

)2 = (1
n

)2}
.

Let C (H+, (0, 0, 1)) and C (H−, (0, 0, −1)) be two cones on the spaces H+ and H− with vertices at the points (0, 0, 1) and(0, 0, −1), respectively. The Griffiths space G is then defined as the following subspace of R3:
G = C (H+, (0, 0, 1)) ∪ C (H−, (0, 0, −1)).

Griffiths [8] proved that the fundamental group of this one-point union of contractible spaces is nontrivial.The Harmonic Archipelago HA was introduced by Bogley and Sieradski [2]. It can be simply described as follows:
HA is a noncompact space which is obtained by adjoining a sequence of ‘tall’ disks between consecutive loops of theHawaiian Earring, cf. [11].The following proposition will be useful in the sequel, cf. e.g. [10, Corollary 0.21] or [12, Theorem 1.4.13].
Proposition 2.1.
Spaces X and Y are homotopy equivalent if and only if there is a space Z, containing both X and Y as deformation
retracts.

Let
Cn = {(x, y, 0) ∈ R3 : x2 +(y − 1

n

)2 = ( 13n(n+ 1)
)2}

, n ∈ N,

be a countable number of circles and θ = (0, 0, 0) the origin of R3. It follows by Proposition 2.1 that the HarmonicArchipelago HA is homotopy equivalent to the subspace of R3 consisting of all cones C (Cn, (0, 1/n, 1)) over the circles Cn,with the vertices at the points (0, 1/n, 1), n ∈ N, connected by the segments and the point {θ}, which we shall denoteby HA and call the Formal Harmonic Archipelago:
HA = ∞⋃

n=1C
(
Cn,
(0, 1

n , 1
))
∪
∞⋃
n=1
{(0, y, 0) : y ∈ [ 3n+ 73(n+ 1)(n+ 2) , 3n+ 23n(n+ 1)

]}
∪ {θ}.

The Modified Hawaiian Earring MH is defined as follows:
MH = ∞⋃

n=1Cn ∪
∞⋃
n=1
{(0, y, 0) : y ∈ [ 3n+ 73(n+ 1)(n+ 2) , 3n+ 23n(n+ 1)

]}
∪ {θ}.

The Modified Hawaiian Earring MH is homotopy equivalent to the Hawaiian Earring, MH ' H. Indeed, both of thesespaces are deformation retracts of the third one, as indicated in the middle of Figure 1 (all points an, bn, cn, dn, en, and
fn converge to the point o). The piecewise linear deformation which moves the points cn and en to the point o, and fixesthe points bn and dn, yields a space homeomorphic to the Hawaiian Earring H.The piecewise linear deformation which moves sequentially the points an to the points dn, the segments [fn, dn] to [en, dn],and the segments [o, fn] to the line [o, bn] ∪ [bn, en], with fixed points o, bn, cn, dn, yields the space MH, therefore byProposition 2.1, U is homotopy equivalent to the Hawaiian earrring H.Let us define the Modified Griffiths space MG. To this end let us introduce some new spaces. Let HA− be the spacesymmetric in R3 to HA, with respect to the point θ:

HA− = ∞⋃
n=1C

(
C−n ,

(0, −1
n ,−1)) ∪ ∞⋃

n=1
{(0, y, 0) : −y ∈ [ 3n+ 73(n+ 1)(n+ 2) , 3n+ 23(n)(n+ 1)

]}
∪ {θ},
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On the homology of the Harmonic Archipelago

Figure 1. Homotopy representatives of the Hawaiian Earring H.

where
C−n = {(x, y, 0) ∈ R3 : x2 +(y+ 1

n

)2 = ( 13n(n+ 1)
)2}

, n ∈ N.

Define the convex hull L(M) of a subset M of R3 as the intersection of all convex sets in R3 containing the set M. For
n ∈ N, the sets F+

n and F−n are defined as the convex hulls of the quadruples of points of R3 as follows:
F+
n = L

({(0, 3n+ 73(n+ 1)(n+ 2) , 0
)
,
(0, 3n+ 23n(n+ 1) , 0

)
,
(0, 1

n+ 1 , 1
)
,
(0, 1

n , 1
)})

and
F−n = L

({(0, −3n − 73(n+ 1)(n+ 2) , 0
)
,
(0, −3n − 23n(n+ 1) , 0

)
,
(0, −1

n+ 1 , −1), (0, −1
n ,−1))}),

respectively. The Modified Griffiths space MG is then defined as the following subspace of R3:
MG = HA ∪ HA− ∪ F+

n ∪ F−n ∪ L
(
{(0, 0, −1), (0, 0, 1)}),

where L({(0, 0, −1), (0, 0, 1)}) is a compact segment in R3 with end points at (0, 0, 1) and (0, 0, −1), see Figure 2.

Figure 2. The Griffiths space G and the Modified Griffiths space MG.
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Now, let us also define the Modified Harmonic Archipelago MHA. Let a = (0, 0, 1) and b = (0, 0, −1) be two points ofthe MG and set
MHA = MG \ {a, b}.

Proposition 2.2.
Suppose that in the short exact sequence 0 → A α−→ B β−→ C → 0 (∗)
there exists a projection p : B → A (i.e. p is a homomorphism such that p ◦ α : A → A is the identity mapping 1A). Then
there exists an isomorphism φ : B → A⊕C such that φ(b) = (p(b), β(b)) for every b ∈ B.

In this case, the short exact sequence (∗) is said to split [10, Splitting Lemma, p. 147] or is splitting, cf. e.g. [7, Lemma 9.1and p. 38]. The following statement is well known, see e.g. [7].
Proposition 2.3.
If the group A is algebraically compact and C is torsion-free then every exact sequence (∗) splits.

Throughout this paper only singular homology H∗ and Čech cohomology Ȟ∗ with integer coefficients will be used. Thefollowing statement is a reformulation of a theorem of Eda and Kawamura [6] (they used the notion of p-adic completion).
Proposition 2.4.
For the 1-dimensional singular homology group of the Hawaiian Earrings H1(H) there exists the following exact se-
quences which splits:

0 → ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
→ H1(H) σ−→

∞∏
i=1 Z → 0

or, equivalently

0 → (∑
i∈c

Q

)
⊕
( ∏
p prime

∞∏
i=1 Jp

)
→ H1(H) σ−→

∞∏
i=1 Z → 0.

Proof. It was proved in [6] that there exists the following exact sequence which is splitting:
0 → ( ∏

p primeAp
)
⊕
(∑

i∈c
Q

)
→ H1(H) σ−→

∞∏
i=1 Z → 0,

where Ap is the p-adic completion of the direct sum of p-adic integers ⊕c Jp, and c is the continuum cardinal. Accordingto a theorem of Balcerzyk [1], [7, VII.42, Exercise 7], we have( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
∼= ( ∏

p primeAp
)
⊕
(∑

i∈c
Q

)
.

Therefore the first desired isomorphism follows. The second isomorphism again follows from [6, Theorem 3.1] and[7, Theorem 40.2].
Proposition 2.5 (cf. [10]).
Let the space X be a countable union of an increasing system of open sets {Ui}∞i=1. Then for the Čech cohomology Ȟ∗
there exists the following exact sequence:

0 → lim←−(1)Ȟn−1(Ui) → Ȟn(X ) → lim←−Ȟn(Ui) → 0,
where lim←−(1) is the first derived functor of the inverse limit functor lim←−.
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On the homology of the Harmonic Archipelago

3. Proofs of the main theorems

3.1. Proof of Theorem 1.2

Since the Harmonic Archipelago HA is homotopy equivalent to the Formal Harmonic Archipelago HA, it suffices tocalculate the group H1(HA). Let U and V be the open sets defined as follows:
U = HA ∩

{(x, y, z) ∈ R3 : z ∈ [0, 23
)}

, V = HA ∩
{(x, y, z) ∈ R3 : z > 13

}
.

Consider the following part of the Mayer–Vietoris sequences of the triad (HA,U, V ):
H2(HA) → H1(U ∩ V ) i−→ H1(U)⊕H1(V ) j−→ H1(HA) δ−→ H0(U ∩ V ) → H0(U)⊕H0(V ).

Obviously, V is homotopy equivalent to a countable discrete union of points and the space U∩V is homotopy equivalentto a discrete countable union of circles.The homomorphism H0(U ∩V )→ H0(V ) is an isomorphism since the 0-dimensional homology group is isomorphic to thedirect sum of Z cardinality of path-connectedness components [12, Theorem 4.4.5]. The space U is homotopy equivalentto MH since MH is a deformation retract of U and MH ' H, therefore U ' H.The singular homology groups are homology groups with compact support, therefore Hn(HA) ∼= lim−→Hn(P), where P arePeano subcontinua of HA, cf. [12, Theorem 4.4.6]. Obviously, there exists a confinal sequence of Peano continua suchthat every P is homotopy equivalent to the Hawaiian Earring H and Hn(P) ∼= 0 for all n > 1 (by [4], Hn are trivial forone-dimensional spaces for all n > 1), therefore Hn(HA) ∼= 0 for all n > 1. In particular, H2(HA) ∼= 0.Therefore we have the following commutative diagram with exact rows and columns:
0
� �

0
��Ker σ ∼= //

φ1
��

Ker σ
φ2
� �0 //

∞∑
i=1 Z

φ3 / /

∼=
��

H1(H) φ4 //

σ

��

H1(HA) //

φ5
� �

0

0 //
∞∑
i=1 Z

φ6 / / ∞∏
i=1 Z

φ7 //

��

( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
//

��

0

0 0
in which homomorphisms φ3 and φ4 correspond to i and j , respectively. The homomorphism σ is defined for any element[l] of the H1(H) as (l1, l2, l3, . . . ), where li is the winding number of the loop l around the i-th circle Si, cf. [6, p. 310]. Itfollows that the composition σφ3, which we can identify with φ6, is a monomorphism and Imφ3 ∩ Ker σ = 0. Then thecomposition φ1φ4 is a monomorphism which we shall identify with φ2.The homomorphism φ7 is the quotient mapping. The homomorphism φ5 is defined as follows. Take any element a ∈
H1(HA). Due to exactness of the middle row there exists an element b ∈ H1(H) such that φ4(b) = a. Define φ5(a) ≡
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φ7σ (b). Let us show that this mapping is well-defined. Suppose that φ4(b′) = a. Then the difference b − b′ belongs toImφ3 and σ (b−b′) ∈ Imφ6, therefore φ7(b−b′) = 0. This means that φ7(b) = φ7(b′) and the mapping φ5 is well-defined.If a = a1 + a2 then there exist b1 and b2 such that φ4(b1) = a1 and φ4(b2) = a2. Since σ and φ7 are homomorphismswe have φ5(a) = φ7σ (b1 + b2) = φ7σ (b1) + φ7σ (b2) = φ5(a1) + φ5(a2) and φ5 is indeed a homomorphism. Since σ and
φ7 are epimorphisms it follows that φ5 is an epimorphism. The composition φ5φ2 is trivial since the composition σφ1 isthe zero homomorphism. If a ∈ H1(HA) is such that φ5(a) = 0 then φ7σ (b) = 0 for any b for the corresponding a.Choose one of these elements b. It follows that there exists c such that φ6(c) = σ (b). Since the left projection inthe diagram is an isomorphism, there exists c′ such that σ (φ3(c′)) = σ (b). It follows that b − φ3(c′) = φ1(d) for someelement d. Then φ4(b − φ3(c′)) = φ4φ1(d), but φ4(φ3(c′)) = 0 and φ4(b) = a, therefore a = φ2(d) and the right columnis an exact sequence.By Proposition 2.4 we have that Ker σ ∼= ∏

i∈N Z/
∑

i∈N Z. By Proposition 2.3, the right column splits since the group∏
i∈N Z/

∑
i∈N Z is algebraically compact and torsion-free [7, Corollary 42.2]. Therefore we have the following exactsequence which splits:

0 → ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
→ H1(HA) p−→

( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
→ 0

and hence
H1(HA) ∼= ( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
⊕
( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
.

However, obviously, ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
⊕
( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
∼= ( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
,

therefore
H1(HA) ∼= H1(HA) ∼= ( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
.

3.2. Proof of Theorem 1.3

Let U1 = U (where U was defined in the proof of Theorem 1.2) and Ui at i > 1 be the following open subspaces of HA:
Ui = HA ∩

{(x, y, z) ∈ R3 : y > 2i+ 12i(i+ 1)
}
∪ U.

Obviously, Ui is homotopy equivalent to the Modified Hawaiian Earring and therefore to the Hawaiian Earring. Sincethe Hawaiian Earring can be presented as the inverse limit of bouquets of finite numbers of cycles:
S11 π1←− S11 ∨ S12 π2←− . . . πn−1←−−

n∨
j=1S

1
j

πn←−
n+1∨
j=1 S

1
j ←− . . . ,

where the projections πn map the corresponding circles S1
n+1 to the base point of the bouquets and map all othercircles identically, it follows that the 1-dimensional Čech cohomology of the Hawaiian Earring is isomorphic to ∑∞

j=1 Z.Therefore Ȟ1(Ui) ∼= ∑∞
j=1 Z. By Proposition 2.5, we have the following exact sequences:

0 → lim←−(1)Ȟ1(Ui) → Ȟ2(HA) → lim←−Ȟ2(Ui) → 0.
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The embedding Ui ⊂ Ui+1 generates the monomorphism Ȟ1(Ui)← Ȟ1(Ui+1) which we can identify with ∑∞
j=1 Z p←−

∑∞
j=1 Z,where p acts by the rule p(a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ), therefore

lim←−(1)Ȟ1(Ui) ∼= lim←−(1)( ∞∑
j=1 Z

p←−
∞∑
j=1 Z

)
.

We have following commutative diagram with exact rows:
0 / /

∞∑
i=1 Z

q //
∞∑
i=1 Z // 0

0 //
∞∑
i=1 Z

p

OO

p //
∞∑
i=1 Z

q

OO

// Z

l1

OO

// 0

0 //
∞∑
i=1 Z

p

OO

p2
//
∞∑
i=1 Z

q

OO

// Z⊕Z

l2

O O

// 0
p

OO
q

OO
l3
OO

where q is the identity mapping and ln : ∑n
i=1 Z→∑n−1

i=1 Z is the projection defined by
ln(a1, a2, . . . , an−1, an) = (a1, a2, . . . , an−1).

For the inverse limit functor and its first derived functor we have following exact sequence [9, Property 5]:
0 → lim←−

( ∞∑
i=1 Z p←−

∞∑
i=1 Z

)
→ lim←−

( ∞∑
i=1 Z q←−

∞∑
i=1 Z

)
→ lim←−

(n−1∑
i=1 Z ln←−

n∑
i=1 Z

)
→

→ lim←−(1)( ∞∑
i=1 Z p←−

∞∑
i=1 Z

)
→ lim←−(1)( ∞∑

i=1 Z q←−
∞∑
i=1 Z

)
→ lim←−(1)(n−1∑

i=1 Z ln←−
n∑
i=1 Z

)
→ 0.

Obviously,
lim←−
( ∞∑

i=1 Z p←−
∞∑
i=1 Z

)
∼= 0, lim←−

( ∞∑
i=1 Z q←−

∞∑
i=1 Z

)
∼= ∞∑

i=1 Z,

lim←−
(n−1∑

i=1 Z ln←−
n∑
i=1 Z

)
∼= ∞∏

i=1 Z, lim←−(1)( ∞∑
i=1 Z q←−

∞∑
i=1 Z

)
∼= 0,

since q is the identity mapping. It follows from this diagram that
lim←−(1)( ∞∑

i=1 Z p←−
∞∑
i=1 Z

)
∼= ( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
,

therefore lim←−(1)Ȟ1(Ui) ∼= ( ∞∏
i=1 Z

)/( ∞∑
i=1 Z

)
.
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Since Ui are homotopy equivalent to 1-dimensional space (Hawaiian Earring), it follows that lim←−Ȟ2(Ui) ∼= 0 and byProposition 2.5 we have
Ȟ2(HA) ∼= ( ∞∏

i=1 Z
)/( ∞∑

i=1 Z

)
.

Since, as it was mentioned in the proof of Theorem 1.3, lim←−Ȟ1(Ui) ∼= 0, it follows from the exact sequence
0 → lim←−(1)Ȟ0(Ui) → Ȟ1(HA) → lim←− Ȟ1(Ui) → 0

that Ȟ1(HA) ∼= 0. Since dimHA = 2 it follows that Ȟn(HA) ∼= 0 for all n > 2.
Remark 3.1.From the homotopical point of view, the spaces G and HA are very close to each other – it is possible to show that Gand HA are homotopy equivalent to MG and MHA, respectively. However, by definition of MHA, it follows that

MHA = MG \ {a, b},

for some pair of points a, b (see Figures 2 and 3).

Figure 3. Homotopy representatives of the Harmonic Archipelago HA.
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