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1. Introduction

Cannon’s recognition problem [10] asks for a short list of topological properties that
is reasonably easy to check and that characterizes topological manifolds. In
dimensions below three the answer has been known for a long time: see [6, 24]. In
dimensions above four it is now known, due to the work of J. W. Cannon [11], R. D.
Edwards [14] (see also [12] and [18]), and F. 8. Quinn [21], that topological n-
manifolds (n > 5) are precisely ENR Z-homology n-manifolds with Cannon’s disjoint
disc property (DDP) [11] and with a vanishing Quinn’s local surgery obstruction [23].
In dimension four there is & resolution theorem of Quinn [22] (with the same
obstruction as in dimensions > 5) and a 1-LCC shrinking theorem of M. Bestvina and
J. J. Walsh [5]. However, it is still an open problem to find an effective analogue of
Cannon’s DDP for this dimension, one which would yield a shrinking theorem along
the lines of that of Edwards [14]. For more on the history of the recognition problem
see the survey [24].

We are interested in the 3-dimensional problem where the unresolved status of the
Poincaré Conjecture plays a crucial role. So far it has been established by D. Repovs
and R. C. Lacher [25] that, modulo the Poincaré Conjecture, an ENR Z-homology 3-
manifold X whose potential singularities are known to be restricted to some 0-
dimensional subset of X, is a topological 3-manifold if and only if X possesses either
one of the following two general position properties — the Dehn’s lemma property
(DLP) or the map separation property (MSP) [17]. The purpose of this paper is to show
how strongly a negative answer to the Poincaré Conjecture would affect the 3-
dimensional recognition problem. We prove the following theorem:

THEOREM 1-1. If fake 3-cells exist then there is a topological space X with the following
properties:
(i) X is a totally singular Z-homology 3-manifold ;
(ii) X does not admit a resolution ;
(iii) X is homogeneous;
(iv) X is a compact ANR;
(v) X has the Dehn’s lemma property;
(vi) X has the map separation property; and
(vii) X x R #s homeomorphic to S®* x R.

The construction of the space X is a slight modification of W. Jakobsche’s
technique of producing non-manifold homogeneous compact 3-dimensional ANR’s



330 W. JAKOBSCHE AND D. RepPoOVS

[15]. Recently, F. D. Ancel and L. C. Siebenmann have incorporated this method
into their work on the compactification of Davis’ non-euclidean universal covering
spaces [2]. They have also given the general axiomatic description of this technique
and we shall use in it Section 3, where we shall study a class of homogeneous spaces.
We remark that a construction, similar to the one in [15] was already used in 1930
by L.S. Pontryagin [20] in his work on dimension theory. For some other
applications see R. F. Williams [28].

2. Preliminaries

We shall be working in the category of locally compact Hausdorff spaces and
continuous maps throughout the paper. Manifolds are assumed to have no boundary
unless otherwise specified. Homeomorphism (resp. homotopy, (co)homology)
equivalence will be denoted by = (resp. =, ~). Integer coefficients will be assumed
in every (co)homology used in this paper. A homotopy n-cell is a compact n-manifold
with boundary M such that M ~ B", the standard n-cell. The definition of a homotopy
n-sphere is analogous. A fake 3-cell (resp. 3-sphere) is a homotopy 3-cell (resp. 3-
sphere) which fails to be homeomorphic to the standard 3-cell B® (resp. 3-sphere S°).
The Poincaré Conjecture asserts that fake 3-cells cannot exist or, equivalently, that
there are no fake 3-spheres. A space is said to satisfy Kneser finiteness if no compact
subset of it contains more than finitely many pairwise disjoint fake 3-cells.

A compact subset K of an n-manifold M is cellular in M if K is the intersection of
a sequence of n-cells B? in M which are properly nested, i.e. B}, < int B? for each i.
A space X is cell-like if there exist a manifold N and an embedding f: X — N such that
f(X) is cellular in N. A closed map is proper if its point inverses are compact. A map
f:X 7Y is one-to-one over Z — Y if f7'(z) is a point for every zeZ.

Let @ be a decomposition of a space X into continua and let 7: X~ X/G be the

corresponding quotient map. An element ge G is non-degenerate if g is not a point. A
set Uc X is G-saturated if U=n" (m(U)). A decomposition G is upper semi-
continuous if 7 is a closed map. A countable family of compacta {C,} is called a null-
sequence if for every ¢ > 0, all but finitely many among the C’s have diameter less
than €.
. Let f: XY be a map. The non-degeneracy set (or singular set) of f is defined by
2()= Cl{x e X|f'f(x) % x}. For X = Y we shall denote by Int, X (resp. Cl, X) the
interior (resp. closure) of X with respect to Y and we shall write Fr, X = Cl;, X\Int, X.
A space X is homogeneous if for every pmr of its points z, yeX there is a
homeemorphism %:X - X such that k(x) =

A space is a generalized n-manifold, where ne N, if (i) X is a euclidean nezghbourhood
retract, i.e. X is a locally compact, finite-dimensional separable metrizable ANR ; and
(ii) X is a Z-homology n-manifold, i.e., for every z€X,

Hy (X, X\{x}; Z) = H,(R", R"\{0}; Z).
The singular set of X is defined by
S(X) = {xeX|x has no neighbourhood in X homeomorphic to R"}.

A generalized manifold X is said to be totally singular if S(X) = X. A resolution of a
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generalized n-manifold X is a pair (M, f) where M is a topological n-manifold and
J:M - X is a proper, cell-like surjection.

A space X is said to have the map separation property (MSP) if given any collection
of maps f,, ..., f,: B*—> X such that 2 (f;) N 0B* = (J for every  and

fi0B*) N f(B?) = &

for i + j, and given a neighbourhood U < X of Ui~ f,(B?), there exist maps F,, ..., F,:
B?—> U such that F|0B? = fj|0B* for every ¢ and Fy(B*)nF(B*) = & for i+ j.
A space X is said to have Dehn’s lemma property (DLP) (cf. [17]) if for every map
f:B? > X such that X (f) N B% = (¥ and for every neighbourhood U < X of f(2 (f))
there is an embedding F:B%— f(B%) U U such that F(0B?%) = f(0B?).

3. 4 class of homogeneous spaces

Let M™ be a closed topological n-manifold and L™ a compact topological n-
manifold with (possibly empty) boundary. To every such pair of M™* and L" we shall
associate a new topological space X(M™, L") which will be defined as the inverse limit
of an inverse sequence {L;, &, ;,,};cn, Where a; ;.,:L;,, > L, are the bonding maps,
with the following properties for every 1€ N:

(i) L, is a connected sum of L and finitely many (possibly zero) copies of M;

(il) Q, is a finite collection of pairwise disjoint bicollared n-cells in L,;

(iii) a; 44, is one-to-one over the complement of the set U{Int C|CeQ};

(iv) for every CeQ,, a;},,(C) is a punctured connected sum of finitely many copies
of M;

(v) for every j > ¢, if CeQ; and DeQy, then 6C' N, ;(D) = &, where a; ;: L;~>L;
is the composition a; ; = a; ;,,...;_, ;; and

(vi) the collection {x; ;(C)|j > 7, C€Q;} is a dense null-sequence in L,.

- For n =3, M®=homotopy 3-sphere & 82, and L*® = 8%, the associated space
X(M3,L? is precisely the example from [15] of a non-manifold homogeneous
generalized 3-manifold. This class of homogeneous spaces has recently attracted
renewed interest because F.D. Ancel and L. C. Siebenmann [2] have recognized
XM* L*), where M" = Z-homology n-sphere & 8", L"=S8" and n>3, as a
compactification of the Davis non-euclidean universal covering space of a closed
(n+1)-manifold : see [13]. Also, Pontryagin disks, which one obtains from M? = 2-
torus, L* = 2-cell, and n = 2, were used in the work of W. J. R. Mitchell, D. Repovs,
and E. V. Stepin [19] on the 4-dimensional case of the cell-like mapping problem.

The following properties of spaces X(M", L*®) are easily proved using the techniques
of [15] and some standard properties of inverse limits. They also follow as special
cases from a forthcoming paper of W. Jakobsche [15a].

ProrosITION 3-1. Let M™ and L™ be as in the definition of X(M", L") above. Then

(1) for every two inverse sequences {L;, a; ;. 1}ien and {K,, B; si1}ien satisfying the
requirements (i)—-(vi) above, the associated spaces X(M",L") are homeomorphic;

(ii) every space X(M",L") embeds in R™ for some sufficiently large m;

(iii) every space X(M™,L"™) is homogeneous;

(iv) of M™ is a Z-homology n-sphere then X(M™ L") is a Cech Z-cohomology n-
manifold ;

(v) if M" is a homotopy n-sphere then X(M* ,L™) is an ANR. |
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We shall use the following notation: for every Z < L;. let Z' = a;Y(Z), hence
7' < X(M", L™). Furthermore, given a family A of subsets of L, let A’ = {Z'|Ze A}.
Next, given a map f:D - X(M" L") of a finite disjoint sum of discs and a subset
Ac XM L"), let A*=f"'4)u4d, where A, is the union of all components of
D\f (4) which do not intersect dD.

The next lemma follows immediately from Proposition 3-1 (ii):

LeEMMA 3-2. In every space X(M", L*) there is a metric p such that
lim,_, (sup {diam (C")|CeQ} =0. |

Hereafter we shall assume that X(M™*, L") is equipped with such a metric p.
Before we state our next lemma we must define a new collection:

Qf = {a, ;(C)|j > 1,CeQ,, and , ,(C) is not contained in
o; (D) for any ke{i+1,....j—1} and any DeQ,} U Q,,

for ieN. Clearly the collection Qf consists (informally) of the ‘attaching’ n-cells for
the nth stage, plus the ‘attaching’ n-cells for the (n + 1)st stage disjoint from the ones
added previously, plus the ‘attaching’ n-cells for the (n+ 2)nd stage disjoint from
those for the two previous stages, etc. Also note that the conditions (i)-(vi) imply
that the canonical projection e : X(M", L") ~ L, is one-to-one over the complement of
U{Int C|CeQF}, for every ieN.

LeMMA 3-3. Consider the upper semi-continuous decomposition of the space X(M"®, L™)
whose non-degeneracy set is (QF)’, for some ie N, and let Q, = X(M", L*)/(QF)" be the
corresponding quotient space. Then @, vs homeomorphic to L. In particular, Q; is a
topological n-manifold.

Proof. Following the remark concerning Qf, we see that @, is homeomorphic to the
quotient space L,;/QEF, since a;: X(M"™, L")~ L, is one-to-one over the complement of
the interiors of the cells QF and the upper semi-continuous cellular decomposition of
L, into points and a null-sequence of bicollared 3-cells, determined by Q£ is clearly
shrinkable [12]. The assertion now follows by the Bing shrinking criterion {12]. i

Note that for n = 5, every space X(M", L") satisfies Cannon’s disjoint discs property
[11}: every two maps of a 2-cell into X(M",L") can be approximated arbitrarily
closely by maps with disjoint images. To see this. let f,,f,: B* > X = X(M" L") be any
two maps. Consider the canonical projection g,,: X > X/(QEY, i.e. the decomposition
of X whose non-degenerate elements are determined by (QZ)’. Let @,, = X/(QEY. By
Lemma 33, Q,, is a topological n-manifold. Let f; = ¢,, f; for i = 1,2. Since n = 5, we
have the disjoint discs property in @,, and hence we can approximate f; by a map f7,
for i = 1,2, so that f{(B})nf3(B*) =F. Let T =4q,({CICe(QE)}). Then T is a
countable dense subset of @, so we can apply theorem 72 on p. 140 of [4] to
approximate f; and f; by maps g}, g;:B% + Q,, such that (g1 (B Ugy(B,)) N T = &. Let
¢ = gn'g; for i = 1, 2. Clearly the g,’s are well-defined, and by taking m large enough
and each g; to be a sufficiently close approximation, we may assume that
g.(B*n g;(B2) = J and that each g, is as close to f, as we wish. i

Henceforth, we shall deal only with 3-dimensional spaces and for convenience we
denote X(A3, L®) simply by X3.
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LEMMA 34. For every ieN and every €, > 0 there exist a null-sequence T'; =
{B|CeQF} of bicollared 3-cells in L, and a null-sequence 2 = {S-|Ce QF} of 2-spheres
wn L, such that

(i) for every CeQf, C < Int B and 0B, = S;

(ii) for every C + FeQf, ScNSp=;

(i) (UES1Se X)) n (UCICeQf)) = &;

(iv) for every CeQf, diam By < ¢;+diam C".
We wish to point out that the bicollared 3-cells B, need not be pairwise disjoint.

Proof. Let p,:L,—~ K, = L,/Qf be the quotient map of the upper semi-continuous
decomposition of L, into points and the (countably many) elements of QF. Then it
follows by Lemma 3-3 that K, =~ L,. Furthermore, p; maps (J{C|CeQf} onto a
countable dense subset W, = K,. For every CeQf, choose an open neighbourhood
UC < K, of p,(C) such that {p;}(U®)|CeQF} is a null-sequence in L,. Number the
elements of QF ={C,,(,,...}. For every k, we now inductively find a 2-sphere
Z, = U bounding a 3-cell D, in US\(Z, U ... U Z,_,) such that Z, n p,(Qf) = & and
P(Cy)=D,. We do this as follows: suppose that we have already found Z, for j < k.
Then U = UC¥\(Z, U ... UZ,_,) is a neighbourhood of p,(C;) and by theorem 1V-7-2 of
[4], we ¢an find the desired 2-sphere Z, inside U\{p,(C)|CeQF}.

For every CeQf we now let S, = p;}Z.) and B = p;*(D¢). To satisfy the
condition (iv) we only need to choose the sets UC sufficiently small.

Choose a sequence {e; > 0},., such that lim,,_ ¢, =0 and let I, and X, be the
corresponding null-sequences from Lemma 3-4. It then follows that the corresponding
collections T, and 2} of subsets of X® are null-sequences, too, and that for every
BeT,;, we have FrB’ =S, where § = dBeX,.

LeMMA 3'5. Let ne N, let U < X® be an open I',-saturated set, and let f:D - X® be a
map of a disjoint union of finitely many 2-cells in X® such that U.0 f(0D) = & and f is
one-to-one over U. Then there exists a map g:D — X3® such that

(i) g/ (O) U (UUB)*|B €T })) = U, where 'y = {B'eT,|B" < U};

(ii) g1 = f1¥, where ¥ = D\(f}(U) U (U{(B)*|B €T ,});

(iii) g is one-to-one over U; and

(iv) gD N UN(UACICeQ)) = &.

Remark. This is our Main Lemma. It will enable us to pass from X3 to the quotient
space X3/(QFf) =~ L,/Qf = L,, a 3-manifold, so we shall be able to apply 3-manifold
properties, in particular the DLP and the MSP (see [25]). The problem one
encounters when transporting Dehn discs from X? to X3/(QF)’ is evident: the discs
may fail to remain Dehn. We succeed in pushing them off the collection (QF) inside
a prescribed open set U while keeping control over the size of each move, i.e. we taper
things off as we get close to 0B, CeQE. The process converges although there are
infinitely many C”’s because (QF)" is a null-sequence. This, i.e. the convergence, is
essentially the assertion of Lemma 35.

Proof of Lemma 3-5. For every B’el'y, we define a countable family ®(B’) of
continua in 8 = 0B’ as follows: let Y be a component of fiD)NS" and let
Vy = Int, Y*. Define ®(B’) to be the family of components Y of f(D) NS’ such that
(i) Wy # & for every Y and (ii) there is no component E of f(D) N §’ such that for any
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Fig. 1

Ye®d(B'),Y & E, we have Y < f(V;). Condition (i) implies that each V, is a non-empty
open subset of D, hence ®(B’) has at most countably many elements. Also, condition
(ii) implies that V, N Vy = J for every Y + Ee®(B’).

Let us explain further the nature of the family ®(B’). This is a family of
components of flD)NS’, not of arbitrary subcontinua of this intersection. In
particular, in the condition (ii), £ is any component of f(D) N S" whereas Y e ®(B’).
The motivation for the introduction of the family ®(B’) was the following : we wish
to change f(D) inside each B'(B = B, C€QE) so that the new f(D) will miss (", but
the change of the map f ought to be restricted (to the interior of V;,) (see Figure 1). We
perform these operations (one B’ at a time) for each component X e ®(B’). 1t is not
clear that the result is compact. The proof of this is the main task of this lemma. Once
we know that, we construct a certain shrinkable upper semi-continuous, cell-like
decomposition G of X* and transfer the whole problem to the quotient space X*/G
where we are able to find a disc replacement with certain nice properties. Finally, we
show how to lift this new disc from X*/G back to X°. '

Perhaps it is worthwhile to explain why we did not simply take all components of
fADYN S (rather than just the countable collection ®(B’)). This is because the
situation can be more complicated, e.g. we can have the intersections as shown in
Figure 2.

There is no need to consider the components £, and E, because they will disappear
after the modification corresponding to Y. On the other hand, Y is not (by the
definition of ®(B’)) contained in f(Vy) for any other £ € ®(B’), so we have to eliminate
it. This explains the condition (ii) in the definition of ®(B’) above. It is casy to see
why we need the condition (i) as well. o

By hypothesis, fIf *(U):f(U) - X?is an embedding. Also, by definition, 8’ = U, so
if §” were completely contained in f(D), then f7}(8") would be a 2-sphere embedded
in D which is clearly impossible. Therefore the set 8'\ f(D) is always non-empty. So
take an arbitrary xe S\ f(D) and identify S"\{a} with R2. Consider ®(B’) as a family
of planar continua, i.e. {Y|Ye®(B")} & R% For every Ye®(B'), let Z, = R®\H,,
where Hy = R?is the unbounded component of R*\ Y. Clearly Z is cellular in R® and
forevery Y + Ec®(B’) we have Z, c Zgzor Zy<c Z, or ZgNZy = &.

Let g5 :B”— B be the quotient map of the upper semi-continuous decomposition
G g of B’ whose non-degenerate elements are the cell-like sets from the null-sequence
QE = {C"e(QE)'|C" = B'}. By Lemma 33, Bis a 3-cell. Also T = ¢z (LU{C"|C"eQE}) is
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a countable dense subset of B. We identify the 2-spheres 8 = 0B = ¢.(0B’) and
§’ = 0B’ via the homeomorphism ¢z |S’. This will allow us to use the same notation
for the subsets of §” as for their images under ¢ in 8. In particular, we shall consider
{x}, Ye®(B’) and Z; as subsets of S.

Let I B be an arc such that InNS={z}<dl, INT =, and such that
(B\I, S\{z}) is homeomorphic to (and can thus be identified with) (R* x R,, R? x {0}).
Then we have for every Ye®(B’) that Z, < R*x {0} < R?xR,.

Given any Ye®(B), let dy,:Z, » R, be the function given by dy(z) = distl,(z, Y),
where we are referring to the usual metric p on R Let G, = R? x R, be the graph of
dy. Tt is easy to check that each Gy is cellular in R? x R, and, consequently, in B as
well. Also, for every Y + Ee®(B’), we see that G, N G = (J. Due to theorem 1V-7-2
of [4], we can assume that TN Gy = J for every Y e ®(B’).

For every Ye®(R'), let P, = q3(Gy) and let ¥ = | {®(B")| B’ e I'y}. Consider the

space D = (FDN\US (V)| Y e ¥} U (ULP, | Y e F)).

Then D n U N (U{C'|CeQE}) = F. We shall prove that D is a closed subspace of X3.
This is the key assertion of the proof and it is highly non-trivial — note that D need
not be homeomorphic to f(D) because the sets Y* (which contains Cl, V) and Py, are
in general not homeomorphic (and even when they are they can be embedded in a
different way), so we do not really know much about D.

Now to show that D is closed in X? it suffices to verify that for every B'eT,,
the space B’ N D is compact. Indeed, let {a,} be a sequence of points in D such that
a;,~>z€X® Then we have the following possibilities:

Case 1. The{‘_e exists a subsequence {a, } of {a;} such that a;, € B'N D for a fixed B'.
Then ze B’ N D = D by compactness of B’ D.

Case 2. There exists a subsequence {a;,} of {a;} such that for every £k,
a,,e D\U{Int B'|B’€T;}. Then zeD again since

D\U{IntB'|B'€ Ty} = ID\U{f(Vy)| Y € ¥}

is a closed subset of D = X3.

Case 3. Every a, is contained in some subset of X? of the form D nIntB’, B'ely,
and every such subset contains at most finitely many points a,. Then for every point
a,€D nInt B’ we can find a point ;€ D N Fr B’ and thus obtain a sequence {b;} such



336 W. JakosscHE anD D. REpoVS

that b,e D\U{Int B’'| B’ e T'y;}. It follows that lim,_ b, = lim, ,a; = x since I'y is a
null-sequence, and so by Case 2, xeD.

Next, we shall prove that for every B'e ', B' N D is compact. But first we need a
sublemma. We shall use Cech cohomology with integer coefficients.

SuBLEMMA 3-6. Let Ye ®(B’) and let Y, = Y be an arbitrary subcontinuum of Y. Then
Sforevery 0 £y eH Y(Y,), there exists a closed neighbourhood V < R? = S\{x} = ¢z.(S"\{x})
of Y, such that there are no Y,e ®(B’), Y, + Y, satisfying the following condition:

(*) there exists a cohomology class y,€ H\(Y, \ V) and ve H'(V) such that i*(v) = y,
and i3(v) =y, where 1,: Y, 0N V>V and t,: Yy~ V are inclusions.

Proof. ¥Yor every non-zero cohomology class yeﬁ‘(){,), we have 7 % 0, where 7 =
f*y)e H\(f" 1(Y,)). (Note that f is one-to-one over U.) It then easily follows from the
condition (ii) of the definition of the family ®(B’) that there is a closed neighbourood
V of f1(Y,) in f(U) = D such that for every Y,e®(B’), ¥, + ¥, we have no y,€
HY(f(Y,) n V) and 5e H(V) so that %(8) = 7, and 7%(0) = 7, where 7,:f L (Y,)n V> T
and 7,:f~}(¥,) > V are inclusions.

Since f is one-to-one over U it follows that there is a closed neighbourhood V, = U
of ¥, which meets the same requirements as ¥ with respect to y (instead of 7), ¥,
(instead of f Y1), Y, (instead of f1(Y})), and yleHl(Y1 NV,) (instead of
7 EI;‘(f“(Yl) N V,). Let V = gg(¥;) N S. Then V is a neighbourhood of the type which
we were looking for.

We now return to the problem of compactness of B’ n D. It suffices to show that
gg(B’' N D) is closed in B = qg(B’) since the closedness of q,(B' N D) implies the
closedness of B’ N D. So suppose this were not the case. Then there would exist a
sequence of points {a,,} < ¢5(B’ N D) converging to some point a € B\q (B N D). Since
S N qg(B’ ND)is compact it follows that a ¢.S. We identify (B\I, S\{x}) with (R®x R,,
R2 x {0}) as before and we use the notation introduced above. Moreover a¢ /. Indeed,
S N ¢gg(B’ N D) is compact so it gives rise to a compact set | J{Z,|Y e ®(B')} = R? x {0}.
This does not imply that the set U{Gy|Ye®(B')} = R®x R, is compact but it
does imply that it is bounded in the usual metric on R? x R,. This, in turn, implies
that a¢l. Consequently, if we identify B\I with R*xR,, we conclude that
a€ (R x (R\{ODN\U(Gy | Y e B(B)}.

We have an infinite sequence {G} of sets G, = Gy, such that a,€ G,. Since every G,
is compact we can assume that G; & G, for all 1 + j. Let Z, = Z,, . We must consider
the following possibilities:

Case 1. There exists an infinite sequence ¢, < ¢, < i, < ... such that Z; « Z, < Z,
< .... Then there exists Y € ®(B’) such that Z = U{Z, | ke N} is one of the components
of Zy\Y. Indeed, ¥; N Y, = for k <j, so Z, < IntZ,. This implies that Z is an
open subset of D, and of course, Z is connected since every Z,, is connected. On the
other hand, DN S’ is compact and so for every sequence of points {x,} such that
x, €Y, and x,—>xeD, we have that xe D n 8. This implies that FrZ < Dn.S’. By the
definition of Z we have D N Z = J, so from the connectedness of Z it follows that
FrZ is contained in one component Y of D N8’ and so Z is one of the components of
Z,\Y.

Let Y,=FrZcY and let ye H(Y,) be any non-zero cohomology class cor-
responding (via duality in R?) to the image of a generator of Hy(Z) in Hy(R?*\Y;) (note
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that Z is an open set). Then by Sublemma 36, there exists a closed neighbourhood
V of ¥, in R? satisfying all the requirements of (3-6). However, from the definition
of the sequence {i,}, it follows that ¥, < IntV for sufficiently large £ and by
duality, there are y,, e H\(Y, ,) and veH‘(V) such that i;(v) = y;, and if(v) = y, where
1,:Y;, >V and ¢,: ¥, >V are mcluswns This is clearly a contradiction.

Case 2. There exists an infinite sequence i, < i, <i; < ... such that Z, o Z, > 7,

.. Let £ be the supremum of the diameters of all balls in Z, . Clearly the sequence

{£,} is monotone. If lim, , , £, = 0 then by the properties of the functions dy ,, and
their graphs Gy ), where Y(i, k) = ¥, we must have a = lim, , . a; €R*x {0}, a
contradiction. On the other hand, 1f lim,, & =£&3%0 then it follows by the
compactness of D 8" that there are a component Z of the compactum ({Z, |ke N}
and a continuum Ye®(B’) such that Z =Z, (note that £, —§& > 0 implies that
Vy + ). Let ¥, = Fr Z and let ye H'(Y, o) be the non-zero cohomology class which
corresponds by duality to a generator of Hy(S\Z). (Note that Z c R* = § and § is
identified with S’ by means of the map ¢4 .) Again, by (3-6), one can find a
neighbourhood V of ¥ which contradicts the choice of the sequence {i,}.

Case 3. There exists an infinite sequence i, <14, <3 <... such that Z, NZ, = &
for all 7 % j. Then by the compactness of 8’ N D we have hm,Hoo £, =0, where {gk} is
defined as in Case 2. Hence again a€{§’, a contradiction.

This completes the verification that B’ N D must be compact. Thus D is always
compact and we can proceed with our proof of Lemma 3-5.

Let q,:X® - @, be the upper semi-continuous decomposition of X? into points and
the cell-like continua from the null-sequence (QF)". Since @, = L, /QF it follows by
Lemma 3-3 that @, = L, and hence in particular, @, is a 3-manifold. Let U = ¢,(U)
and consider g, (D). Clearly

2.(D) N U n g, (ULCIC" e (QE))) = &.
Let ¢:Q, ~ @, be the decomposition of @, whose only non-degenerate elements are
continua from the collection

A=) Ye¥} = (Gy|Ye ).

Since every Gy is cellular in some B = gg(B’) it is also cellular in Q,. For every
B'eTl;,, B'nD is compact and so ¢,(D)NB’ too is compact. This implies that
q|B:B - q(B) is an upper semi-continuous decomposition (this is the only place in the
proof where we use the fact that D is closed in X?). Therefore q is a proper map since
I'; is a null-family.

Assertion. The decomposition G(q) of @, determined by the map ¢:Q,—~>@, is
shrinkable.
Proof. Let 6 > 0 and define
= {B’el,|diamgq,(B’) > 6} and A'={G(Y)eA| for some B'eA,, Yed(B")}.
Let
= {g,(B’)| B’ e ,\%, and B’ is not contained in the interior of any ' e I',\%,}
and define an upper semi-continuous cellular decomposition A, of @, whose non-
degeneracy set is given by A, = A1 U A%,
Since A? is a null-sequence of bicollared 3-cells in @,,, the decomposition of @,, into
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points and elements of A? is shrinkable (see [12]), so by the Bing shrinking criterion
the quotient map ¢,:: @, > @,/A? is approximable by homeomorphisms.

Clearly the decomposition A! = ¢,:(A') of @,/A® is upper semi-continuous,
countable, cellular and compact (since £, is finite). (Note, however, that Al is not a
null-sequence.) Therefore by corollary II1'7-4°A of [12], A! is (strongly) shrinkable, so
by the Bing shrinking criterion, the quotient map g¢x:Q,/A*—(Q,/A%)/A is
approximable by homeomorphisms and hence @, = @,/A? = (Q,/A%/A. Since
obviously Q,/A; = (Q,/A?)/A!, it follows by the Siebenmann-Armentrout cellular
approximation theorem (see [3, 26]) that A, is shrinkable.

Now, given any ¢ > 0 and any A-saturated open covering # of @,, we can find
& > 0 such that there is an open, Aysaturated refinement ¥~ of %. By the argument
above, the decomposition A; of @, is shrinkable, so for our € > 0 there exists a
homeomorphism %:Q, - @, such that k is ¥"-close to the identity id, and for every
geA,, diamh(g) <e. Clearly h is the desired shrinking of the decomposition A,
too.

Remark. For a better understanding of the proof above we have included a diagram
showing the maps involved:

Z,

L, X3
Ih.l qnl
K,=L,/Q=Q, =X*/(QF ——Q, = Q./A = (Q./A%/AL.

qat 94"
Q./A*

It follows by the Bing shrinking criterion that @, =~ @, and so @, =~ L, by Lemma
3:3. ‘

Consider a map f,:D @, defined by

(gog.of)(t) if teD\U(Y*|Yel}
Jol®) = {q(GY) if teY* for some YeV.

Clearly f,(D) = q(q,(D)). Since the families (Q)" and A are countable it follows that
the image under qogq, of the non-degeneracy set 7T, of the map gogq, contains only
countably many points, some of which may lie in fy(D). Note that f,|f;'¢q(U) is cellular
and that it maps f~}(U) onto f(f(U)) < goq,(D), so we can replace f, by a map
fi:D~>fo(D) such that f,|(D\f5'q(D)) = fol(D\fs*q(U)) and such that f,|f5'q(0)
is one-to-one over U. This. implies that f,(D)NU is a ‘boundary’ set in U,
so we can apply theorem IV-72 of [4] to replace f, by a map f,:D—~@,
such that f,[(D\f5'q(D) = f,|(D\fs*q¢(0)), falfs'q(U) is one-to-one over U, and
LD)NTinq(q,(U)) = &. We now define the map ¢:D — X® promised by (3'5) as

follows: 0= [0 if teD\f3}(0)
9(6) = (qogq,)tof,(t) otherwise.
This completes the proof of Lemma 3-5. |
THEOREM 3:7. Every space X® = X(M?,L?) has the map separation property.

Proof. Suppose that {f;:D,>X?|1 <¢ <k} is a family of Dehn discs such that
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SD)n foD,) = & for all i + j. and choosc a neighbourhood V < X? of U{f(D))|1 <
i < k}.Set D = []%, D, and f = [, f;: D — X®. Then there is a regular neighbourhood
A =Uk_ A, of dD in D, where A; = D, are annuli such that f(f(4)) = 4 and f|4 is
an embedding. Identify 4; with §' x [0, 1], where 0D, is identified with §' x {1}. Then

S'x L3 < 8'x[0.1] = 4,

corresponds to an annulus E;,c 4; and S'x[},1] corresponds to an annulus
G, < E, Set E=UL,E,and G =\, G,.

Using Lemmas 3-2 and 34, we can find I',-saturated neighbourhoods V;, ¥, < V of
fIE) and a number neN so that the following requirements are met: (i) ClV, < ¥,;
(i) fUB)*) n (X\V,) = T forevery B’ e ', such that B’ < V; (iii) f(V,) = 4\04 ; and
(iv) V,nf(D) < flA). We now invoke Lemma 3:5 for U = V, », and f. We get a map
g:D — V such that g(E) < V,. glg”(V,) is an embedding, g(D) n (HC'|CeQEHhn ¥, =
&, and g|(D\f~'(V,)) = FUD\Sf Y V,)). (The last condition follows by Lemma 3-5 (i).)

Let ¢,:X*—>@Q, = L, be the quotient map from Lemma 3-3. Set h = ¢q,0g. Then
h:D—Q,and W = k(D) N q,(})) is an embedded surface. If W is not locally flat we can
change & slightly by first approximating W by a PL surface (see [7]) and then using
theorem IV-7-2 of [4] we can achieve that

MDYNV N g, (U 1CeQrl) = &.

Clearly, after this operation, W becomes locally flat (in ¢,(}})).

For every 1 < i<k, let D, D, be a disc such that 8D, c 8G, and G, c D,.
Furthermore, let Y, = D, be an annulus such that one of the components of ¢Y;
is D, and such that ¥, forms one of the components of Cl,(4\E,). Set D = J, D, and
Y= Uf-l Y,

We now consider the non-compact 3-manifold N = X3/(QE)'\h(Y). By ‘cutting .V
along A(E\G)" we obtain a non-compact 3-manifold & with boundary and a map
p:N' — N with the following propertics: (i) p{R: R — N\h(E\G) is a homeomorphism,
where R = (N\ON)Up ™ {R(CG\OE)): and (ii)) p|@:Q—h{Int,(E\G)) is a double
covering, where @ = dN'\p ' (h(0G\CE)). Note that p~'oh(0G\JE) < ON’. The fact
that the points of N’ have euclidean neighbourhoods in N* follows from the fact
that the surface W is locally flat in ¢,(}}).

Let F:D -\ be the map defined by ¥ = p“ohID~ (note that this is well-defined).
The maps F,:D, > N', defined by F, = F|D,. are then Dehn discs (because g(E) < ¥,
and g|g~!(V,) is an embedding) such that F,(3D,) = dN', so by corollary 2-4 of [25], we
can find maps F;:D,~ p g, (V\A(Y)) such that FyD,) nF;([),) = ¥ for i +j, and
F;|0D, = F,|dD,. We can assume that for every i,

FiDynp g (U{C'|CeQih) = O,

using the fact that the set p~!(g,(U{C’|CeQE})) is countable and invoking the
standard Baire category argument (see e.g. [12]).
Finally, let F¥:D,— X?® be the maps given by

(@:toh) () if teD\D,

Ftey = {(q;lopoF;)(t) otherwise.

Then the maps F} for 1 <i < k satisfy the requirements of the MSP. |

TuEOREM 3-8. Every space X3 = X(M?, L?) has the Dehn’s lemma property.

< i o e s
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Proof. Suppose that f: D~ X? is a Dehn disc and let V < X® be a neighbourhood of
JE()). Let A = D be a regular neighbourhood of 6D in D such that 4 N X(f) = &.
We identify A with §* x [0, 1] so that dD is identified with S* x {1}. Then we denote
by E (resp. Y) the annulus in 4 which is identified with S* x [0,1] (resp. S* x [}, 1]). As
in the proof of Theorem 37 one can find I',-saturated neighbourhoods ¥, and V¥, of
SE(f) in V, and a number neN such that (i) Cl1V, <V, and ClV, <V, (ii)
FrV,n (({B'|B' el',}) = &, for every 1, (iii) f(B)*) NV, = &, for every B’ eI, such
that B'nClV, = J, and (iv) fY(C1¥,) N4 = & and no element B’ eI, meets both
f(Y) and f(Cl,(D\4)).

We now invoke Lemma 3-5 for this f and =, and for U = X3\(H UClV,), where
H = f(Y)U H' and H’ is the sum of all B’eT", for which B’ N f(Y) % . Clearly H is
compact, and so U is open and I'j-saturated in X®. By Lemma 35, there is a map
g:D— X3 such that g|g(X*\Cl V) is an embedding, g| Y = f| Y, g(Z(9)) = fZ()) = Vs,
FClL M) NCLV, = F (this condition follows by Lemma 3-5 (i) and from (ii)
above), and g(D) N (U{C"|CeQEHYNU = .

Now apply Lemma 3-5 again, this time for g, », and U1 = V\Cl V}\H,, where H, =
f(Cly(g~(U)) U H; and H is the sum of all B’ eI, such that B’ n f(Cl,(g~*(U))) + &.
Clearly H, is compact, and so U, is open and I';-saturated. From Lemma 3:5 we get
a map h:D — X3? such that £|A"H(X?*\Cl 1}) is an embedding, h|Y = f| Y, k|A7(U,) is an
embedding, A(3(h)) = f(Z (f)) < V,, and

NUICICeEQENN(XA\N(HUCI)) =&

(this follows since Fr ¥, n ((J{B'|B el,}) = &).

Let ¢, :X® > @, be the quotient map from Lemma 33 and let F:D—>@, be the
composition F' = ¢, 0 h. By our choice of h, F'| (D\(f"*(H) U A~*(C1 1}))) is an embedding
and F(D)n TN q,(X*\(H UClV,)) = &, where T' = q,,(L{C"| C € QE}). This implies that
F (Z(F)) © gq(H) U g,(CL 1))

As in the proof of Theorem 37 one can use [7] to change F slightly if necessary so
that F(D)ngq,(U) is locally flat in ¢, (U). As in the preceding proof we consider the
3-manifold N = X3/(QE)"\q,(H) and ‘cut along F(4)\g,(H)’ to obtain a non-compact
3-manifold N with boundary and a map p:N' - N with the following properties:
(i) p|R:R—~N\F (Int, E) is a homeomorphism, where R = (N'\oN') U p~Y(F(OE\Y));
and (ii) p|Q:Q — F (Int, E)\q,(H) is a double covering, where @ = dN'\p {(F(0E\JY)).
Note that N is a 3-manifold because F(D) N ¢, (U) is locally flat in U.

Let F':D'>N be the map F'=plo(F|D’), where D" = Cl,(D\4). Clearly
F’: D" N is a Dehn disc with F*(6D’) < dN’, and

Therefore, by corollary 2-2 of [25], we can find an embedding F”:D’ - N’ such that
F/(D') = F'(D') U g, (U UCLY)) = F'(D') U (Vo \H,).

By theorem IV-7-2 of [4], we may assume that p™(T') N F*(D’) = (J. Therefore we can
define an embedding F*:D — f(D) U V, required for the DLP, as follows:

ooy — [FO if tef X3\, UH,) = g~ (X*\V})
0= VigtopoF")(ty if tef (V\H,).
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This is well-defined because p ™ (T)n F*(D)y =& so that ¢,' is a function on
(po F")(D)nq,(V;\8S,). and by the construction of g, &, and F”, both agree on

[ (FrVAH,) < fNCLVAH,) 0 fN(X\F,) U H,).
Also, F* is an embedding because it is an embedding on each of the pieces and by the

choice of H,,
F*(f (CLV\H,) 0 FX(f(X?\V,) U H,) = F* (Fr V,\H,). l

4. Proof of Theorem 1-1

The construction of the example X is a minor modification of the one in [15] which
is equivalent to the one described in {15] which is equivalent to the one described in
Section 3 for n = 3, for M* a homotopy 3-sphere H® % S3, and L = 83. The purpose of
the modification is to ensure that the bonding maps are cell-like.

So let (H?, F?) be a polyhedral pair, where F? ¢ H* is a fake 3-cell and H*\Int F? is
a real 3-cell. Let (7, T;) be a triangulation of the pair (H3, F?) such that the 2-skelcton
(Ty)® contains a spine of F3, i.e. a compact 2-dimensional subpolyhedron K? < Int F3
such that F3/K? >~ B® the standard 3-cell. Note that K*® is always cell-like (and
never cellular in F?): see [16]. Let f: (F?, 0F3) -~ (B®, 0B®) be the corresponding PL spine
map; hence fis a proper, cell-like surjection whose only non-degenerate point-inverse
is the spine K?. We may assume that f| B3 is the identity. With this modification the
construction in [15] vields a space X = X(H?, S%) as the inverse limit of the inverse
sequence {L; a; ;. };cn, and all the bonding maps «, ;,,:L,,, > L; as well as the
canonical projections a,;: X — L, are proper, cell-like surjections.

By [15]. X is a 3-dimensional, homogeneous compact ANR and it is not a manifold.
By our Thecorems 3:1, 37 and 3-8, X is also a Z-homology 3-manifold. hence a
generalized 3-manifold and (btcause of homogeneity) totally singular (i.e. S(X) = X),
and X possesses both the Dehn’s lemma property and the map separation property.
This satisfies the assertions (i) and (iii)-(vi) of Theorem 1-1 and so it remains to
establish (ii) and (vii) in order to complete the proof.

First we shall prove assertion (vii). Consider the following inverse sequence:

2y, oXid a, a%id ay gxid

L,x8! Lyx 8! Lyx8'«—— ...

which is obtained from the inverse sequence (L;,a; ;,,};en by ‘crossing with S* and
with the identity map’. Clearly the bonding maps & 41 gy xSt > L, x 8" are
proper, cell-like and onto (see [16]) and since they are maps between topological 4-
manifolds we can invoke F.S.Quinn’s 4-dimensional celi-like approximation
theorem [22] to conclude that they are near-homeomorphisms, i.e. approximable by
homeomorphisms. Finally, we use M. Brown’s theorem for inverse sequences of near-
homeomorphisms (see [8]; for a very nice short proof see also [1]) to conclude that
X xS8'= L, xS Recall that in [15]. L, = 8* and pass to the universal covering
spaces to conclude that X x R = 83 x R. This proves (vii).

Remark. In {15] it was established that X embeds in R?. It follows from our
argument above and Theorem 3-1(i) that X embeds already in R*.

It remains to show that X does not admit a resolution (assertion (ii)). To see this
we shall argue with Kneser finiteness: the idea is to construct a generalized 3-manifold
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Y and a proper, cell-like surjection g: X — Y such that Y will contain a null-sequence
of pairwise disjoint fake 3-cells. (Note that Y will therefore not be, like X, totally
singular — its singular set will be precisely the complement of that null-sequence of
fake 3-cells.) The argument will then be as follows: if X had a resolution, say A - M - X,
with A some proper cell-like surjection and M some topological 3-manifold, then the
composition gh:M —Y would be a resolution of Y: see [16]. However, ¥ cannot
resolve, by a finiteness theorem of Bryant and Lacher [9] because it fails to satisfy
Kneser finiteness. This contradiction will therefore establish assertion (ii).

We shall construct Y as the inverse limit of an inverse sequence {M;,f; ;. \}ien
which, in turn, will be built inductively. The map g:X — Y will be defined as the limit
of the maps g¢,:L; >M,, i€ N, which will make the following diagram commutative:

Xy2 X33 Xy 441
L, L, L, L, X
191 , 192 5 lgl 5 lgm !9 *)
i+ ¥
M«— M, — M, "M, Y.

Before we begin our construction we need to review the construction of

X = lim{L;, a; ;;1};en from [15]. (Note, however, that we are using different notation.)

Let L, = §®, with some fixed triangulation 7, and some fixed orientation. Choose an
orientation also for F® and assume hereafter that the restriction f|0F?® of the map
f:(F3,0F* —~ (B 0B?), introduced earlier in this section, is an orientation-reversing
homeomorphism.

To obtain L, do the following: take the second barycentric subdivision
17 of the triangulation 7,. For every 3-simplex o €7,, take the star o* = st (¢, 7{) of
the barycentre ¢ of o (with respect to 77) and repla.ce o* by a copy F, of the fake 3-
cell F°, using as the glueing map the identity

f, =f|I0F3?:0F3 - 0o* = 0B3.
Fix once and for all a subdivision 7, of T,y which makes f, PL. Define

= (L,\U{Into*|oe Tl})U(f”}(H{Fv| TET,})

with the triangulation 7, which is induced by 7, on the F,’s and by 7, on
LA\U{Into*|oer,}. Let o, ,:L,—> L, be the PL map which equals

f:(F3, 0F%) > (a*, 0s*) = (B®, 0B®)

over every o* and is the identity over the rest of L,.
To obtain L,, take the second barycentric subdivision 7, of 7, and for every 3-
simplex o€, replace the star o* = st (4, 7,) by a copy F, of F?, etc.

Assertion. Suppose that for every i, K, < L, is a subcomplex of L, such that
a7 in(K) = K;,,. Then there exists an inverse system {M,f; (,,};cn With sub-
complexes N; < M, such that for every 1,

MA\N; = L\K;
(2) Biserl M \BT 1 (V)) = ok | (Lgin\ a7 141 (KY)) 5
(3 B, i+1|:3i_i+1(N : it (V) > N; is a homeomorphism ;
N \B7 i, Ki+1\“t 1n(Ky); and

( ) N2 ﬂi,i+1

and there exist maps {g,:Ll - M }cn such that the diagram (*) above commutes.
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Remark. As a result, we obtain maps g:X - Y, where X =lim{L;, o, ;,,} and ¥ =
lim{M,, g, ,.;}. It follows by (3) and (5) that g;|8;*(N,):f;*(N;)>N; is a homeo-

morphism.

Proof. We argue by induction on ¢. To begin take g, = id, M, = L, and N, = K,.
Suppose now that we have constructed M;,N; and g, ,;,, for all j < and construct
M,,, from M, as follows: whenever (in the above notation) any o* < L,,, lies in
o7 41 (K;), we replace it by a copy of B® = o* (i.e. itself) rather than F,. We then take
N;,, to be the subcomplex corresponding (in the evident sense) to K;,,. The
verification of properties (1), (4) and (5) is straightforward : we define g, ,,,:M,,, >
M, to be a,,, modified to the identity (instead of f) over the o*s which
were replaced ‘by themselves’. Finally, g,,,:L,,, >M,,, is defined as the identity
everywhere except on the F’s in L,,, replaced by o*’s in M,,,, where it is defined as
[:F, —o* =~ B3 Commutativity of the diagram (*) as well the properties (2) and (3)
now follow easily.

Our example of a non-resolvable Y is now constructed using the assertion above as
follows: take K, = ¢J and K, = aj}(0,), where o, is a fixed 3-simplex of L (with
respect to 7,). Next, let K, = o5, (K, U 0,), where o, is a fixed 3-simplex of L, (with
respect to 7,) such that Into, N K, = ¢J, etc. It is then clear that N, = J, N, = F,
N, = two copies of F (possibly identified along a boundary edge), etc. and that Y
contains the requisite sequence of copies of fake cubes F.

Note that by taking K, =L, for all ¢, we produce a proper cell-like surjection
g:X®—> 8% Moreover it is clear that g is homogeneous in the sense that a PL
homeomorphism 4:8% - 8% can be ‘lifted’ to H:X?— X? such that goH = hog.

Using a resolution theorem of Bryant and Lacher[9], one can further strengthen
the assertion of Theorem 1-1: it follows that X does not admit even an (almost) Z,-
acyclic resolution. Namely, one can show that for every proper, monotone surjection
J:M—>X defined on a topological 3-manifold M, the dimension of the set
{eeX|H'(f (x); Z,) % 0} is at least 1.

Question 4-1. Suppose fake 3-cells exist. Is there then a generalized 3-manifold X
with dimS(X) =0 (in particular, S(X) % &) satisfying Kneser finiteness and
possessing (at least one of) the properties DLP and MSP?

Remarks. (1) If such an example exists, then 8(X) cannot have any isolated points
and, moreover, S(K) is not 1-LCC embedded in X.

(2) The condition concerning Kneser finiteness is important: without it, it is easy
to find such an example (see [24]).
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