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1. I n t r o d u c t i o n  

The original purpose of this paper was to find a simpler proof of the following homogeneity theorem due 
to Skopenkov and the authors [11] (see also [1, 10, 12]), which would avoid the use of the classical Rademacher 
theorem on Lipschitz functions [3]: 

T h e o r e m  1.1 ( h o m o g e n e i t y  t h e o r e m  [11]). For every k e { 1 , 2 , . . . , n } ,  any ambiently Ca-smoothly 

homogeneous subset of R ~ is a Ca-smooth submanifold of R ~. 

A subset M C 1r ~ is said to be ambiently C a-smoothly homogeneous if, for every pair of points x, y E M, 
there exist neighborhoods O(x), O(y) C 1r n such that  the triples (O(x), O(x) N M, {x}) and (O(y), O(y) N 

M, {y}) are Ca-diffeomorphic. 
As a result of our efforts, this theorem splits into two. The first one describes the typical behavior of 

the tangent directions in compacta (tangent regular points; see the existence Theorem 2.1). The second one 
characterizes smooth submanifolds as the sets with only typical (i.e., regular) points (see the characterization 
Theorem 2.2). These two theorems together provide a very short proof of the homogeneity Theorem 1.1, 
which is contained in Secs. 3 and 7. 

The rest of the paper (Secs 4-6) replaces Rademacher's theorem, consisting of the fact that  every Lipschitz 
function f : ~ --+ IIr '~ is almost everywhere differentiable. To avoid the use of this theorem, we develop an 
approach to differentiability via tangent directions. 

In conclusion, we wish to point out tha t  the initial investigations of smooth homogeneity [1, 10, 11, 12] 
have produced not only a simple characterization of smooth submanifolds of l~ ~, but have also inspired a 
new approach to the classical Hilbert-Smith conjecture (cf. [5, 6, 9, 13]). We believe that  the present paper  
generates a promising new approach to the theory of smooth structures on compact subsets of ~ .  

2. M a i n  R e s u l t s  

Points of the unit (n - 1)-sphere S "-1 C Iir ~ will be called directions. For a pair of different points 

x, y E 1r ~, the direction from x to y is defined as ~ and denoted by x~. We say that  a sequence of ordered 

pairs {(xk,yk)}keN C ~ represents a direction d E  S n at a point x E ~n if 

l i m x k =  l i m y k = x  and l i m x k y k =  
k--+c~ k--~oo k--.oo 

Let M be an arbitrary locally compact subset of R~. A direction is said to be a tangent direction to M 
at x E M if it can be represented at x by a sequence {(xk, Yk)}keN of points of M converging to (x, x). The 
set of all tangent directions of M at x E M will be denoted by TM (x) and called the tangent set. Tangent 

directions that  have a special representation by sequences of the form {(xk, Ya)}keN, where xk = x for every 
k E N, are called proper tangent directions, and the proper tangent set is denoted by tM(x). We are now ready 
to formulate a key concept of the paper. 
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Definit ion 2.1. A point x E M C ~n is called tangent regular (or simply regular) if all of its tangent 

directions are proper, i.e., TM(x) = tM(x). 

As usual, points that  are not regular are called singular. Our first main result states the existence of 
tangent regular points in any compactum and shows that  regular points are typical. 

T h e o r e m  2.1 ( ex i s t ence  t h e o r e m ) .  For every locally compact subset M of ~n, the set of all singular points 
of M is of the first Baire category (i.e., is the union of a sequence of nowhere dense subsets). 

We define the tangent plane for M C II~ ~ at x as the linear space spanned by TM(X) and denote it by 

LM(X), where LM(X) C R n. Our main theorem can now be stated as follows: 

T h e o r e m  2.2 ( c h a r a c t e r i z a t i o n  t h e o r e m ) .  For every m E {0, 1 , . . . , n }  and every locally compact subset 
M C ~ ,  the following statements are equivalent: 

(1) M is a smooth submanifold of ~ ~ of class C 1 and dimension m; 
(2) M is tangent regular and has tangent planes of constant dimension m at every point x E M. 

The condition that the tangent planes are of constant dimension is not sufficient if this dimension is not 
related to the geometric dimension of M (as is the case here). The graph of a continuous nowhere differen- 
tiable function of ~ has tangent planes all of dimension 2. So, it would be a submanifold of dimension 2, 
but this does not mean that  there are no tangent singular points (despite of the fact that  most of its points 
are regular). Hence the condition of tangent regularity itself is very restrictive. Compacta that satisfy it are 

similar to stratified manifolds. 
These two theorems immediately yield a Cl-version of the homogeneity Theorem 1.1 (which, in turn, 

implies a Ck-version, as is shown in [11] and in Sec. 8). Indeed, ambiently smooth homogeneity implies that  
all points of the sets considered have the same regularity type and have constant dimension of tangent planes. 
Tile existence Theorem 2.1 guarantees that  this type is regular. Hence the conditions of the characterization 
Theorem 2.2 are satisfied and our sets are indeed smooth submanifolds. 

The main concept of our tangent-direction theory is the notion of a tangentiable mapping. 

Definition 2.2. A proper (closed) mapping f : M1 -+ M2 between subsets of the Euclidean spaces is 
said to be tangentiable if, for every sequence {(x~, x~)}ke~ representing a direction at x E M1, the sequence 

{(f(x~), f(X;))}k~N represents a direction at f(:c) E M2. 

The main result of this new theory is the following: 

Theorem 2.3 (on s m o o t h  images ) .  Tangentiable mappings map smooth submanifolds into smooth sub- 
manifolds. 

For examples of tangentiable mappings that are not differentiable (and for a discussion of this concept), 

see Sec. 8. 

3. Existence of Regular Points  

In this section, we will deal with a fixed locally compact set M C l~ ~ and we will omit the index M in 
the notation of tangent sets. Let us introduce sets of ~-tangent directions 

T~(z) = [{Y-~ l Y, z e O~(x)}] and t~(z) = [{x-~ I Y e O~(x)}]. 

Here, the brackets [ ] denote the closure, and O~(x) = {y [ dist(z, y) < r denotes the open e-neighborhood 
of x in M. The following lemma is an immediate consequence of the definitions. 

L e m m a  3.1. For every sequence {Ck}keN of positive numbers converging to O, we have 

5 T~(x)  -- T(x) and 5 t~k( x) = t(x)" 
k = l  k = l  
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L e m m a  3.2. I f  a set A C M has an interior point in its closure x �9 O~(z) C [A], then 

[ U  t2~(a)] _D T~(x) D T(x) . 
a E A  

Proof .  If y, z �9 O,(x), then dist(y, z) < 2E. Since y �9 O~(x) C [A], there exists a sequence {ak}keN �9 A, 
converging to y and such that  

dist(ak, z) < 2E for a l l  k �9 N. 

Thus ~ �9 t2"(ak) for all k e N and lim ~ �9 [U t2~(a)]. On the other hand, , l i m ~  = y-~; hence 
k --~ oo  a E A x--~ cx~ 

�9 [ U t2r However, ~ represents an arbitrary element of T~(x). 
a E A  

L e m m a  3.3. Let W C S ~-1 be an open set. Consider the following two sets: 

and 

Tw = {x �9 M I T(~) n W # 0} 

t _ ~  = { z  �9 M I t ( z )  n [W] = e}.  

Then the intersection Tw n t - w  is of the first Baire category. 

Proof .  Since t(x) = N t~(x), one concludes that 

t_w = n ff_w = f i  tt_/kw, 
~ > 0  k = l  

where 
t~-w = {x  �9 M I t ' (x)  n [W] = ~}. 

Thus, it suffices to prove that Tw N t~ W is nowhere dense. But if tL W are dense in some V, then 

[ U t~(x)] n w = ~, 
$: 

:g ~v 

and by Lemma 3.1, T(x) N W = ~ for all x E V. 
Hence the closure of ff-w cannot contain points of Tw in its interior. This means that the intersection 

t ~ -w N Tw is nowhere dense and our lemma is thus proved. 

P r o o f  of  t h e  ex i s t ence  T h e o r e m  2.1. Let us consider a countable open base {Wk}ke,~ of S k-1 (for example 

a l l  rational halls). The union ~ (Tw~ N t-w~), being of the first Baire category by virtue of Lemma 3.3, 
k = l  

obviously contains all singular points of F. Indeed, if t(x) r T(x),  one can find Wk0 such that Wko AT(x) ~ e 
and [Wko] n t(x) = z.  

4. D i r ec t iona l ly  Di f fe ren t i ab le  F u n c t i o n s  

A function f : M --+ R (M C R n a locally compact set) is said to be differentiable at the point x E h i  

along the direction dE  TM(X) if, for every sequence {(x~, X~)}keN representing d, there exists a finite limit 

lim f ( x ~ ) -  f(x'k) O f  
k-~oo IIx~--x%ll = Od (x). 
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A function tha t  is differentiable along all directions from TM(X) is called directionally differentiable at  x. 
A function directionally differentiable a t  any point  x E M is said to be  directionatly smooth. The goal of  this 
section is to reduce the directional differentiability to the  continuous differentiability for smooth  manifolds. 

L e m m a  4.1.  A function f : R --+ ~ that is directionally differentiable at x is differentiable at x in the usual 
s e n s e .  

P r o o f .  T~(x) consists of two elements (positive and negative directions). The  directional differentiability 
immediately  implies the existence of left and right derivatives 

lira A f  and lira A__ff 
A x e + 0  Z~x  Ax--+-0  / ~ X  

I - -  X" X I ---~ To see tha t  these limits coincide, let us consider the sequences {(x~, x~)}k~m where x2k = x - 2k+1, 2k+1 
I H , 1 for all k E N; hence {(Xk,Xk)}k~ x + a n d  = x - F o r  t h e s e  s e q u e . c e s ,  o n e  h a s  x k  - x s  = 

represents a positive direction, and the directional differentiability of f implies the convergence of the sequence 
xt  / x l  

I( ~)-f(k)  ~ But  the even members  of this sequence converge to the right derivative and the odd members  
k -  k J kEN 

converge to the left derivative. Therefore, the left and right derivatives coincide. 

L e m m a  4.2.  Consider a Cl-function f : ~ --+ ~. Let x e ~'~ be an arbitrary point. Then, for every sequence 

X I {( k, x~) }ke,  representing a direction [ at x, there exists a limit 

lim f ( z ; )  - f(x'k) 

which coincides with the partial derivative of f in the direction 

P r o o f .  Wi thout  loss of generality, we can assume tha t  d-=  e'l = (1, O , . . . ,  0). The condition lim XkXk,. = el 
k-.-*cx~ 

implies tha t  
x~  --  x '  k = AkE:  + O ( [ I x ;  - -  x'kl [  ) . (4 .1)  

The continuous differentiability of f implies 

O f ,  , ,  
f(x'k + Ak~l) -- f(rc'k) = -~ l iXk)"  Ak + O(Ak), (4.2) 

o f  , af  
o ~  (~k) = b-~ (x) § O( l lxg - x l l )  (4.3) 

We note t ha t  condit ion (4.1) implies 

I lxg - x; : l l  = I I ) , ~ ,  + O(x;~ - xg ) l  I = ; ~  + O ( l l x g  - ~:gl l) - (4.4) 

Using conditions (4.1)-(4.4), one obtains 

f(x~) - f (x~)  = f(x~ + A ~ )  - f (x~)  + O(llx~ - z~ll) 

O f ,  , ,  
= b--~l ~x~j .  ~k + O(llx;:  - xgll) 

of  x 
= a ~ t . ( ) .  ~k + O( l lx~  - x~ll) = 

a~-(x)llx~ =gll O(llx~:-xgll). + 

2719 



L e m m a  4.3. Assume that xk --+ x and ~ -+ ~ where ~ e TM(Xk). 

differentiable along d and all ~ then 

lim Of 9 f  
k - ~  Odk (xk) = -~- (x ) .  

I f  the function f : M --+ R is 

Proof .  Let the sequences {(y~, l zk)}k~N represent ~ e TM(xk) for all k E N. For any k e ~I, choose l(k) 
such that 

(1) d i s t ( ~ ,  d~) < ~; 

(2) dist(ytk(k),Xk)< ~; 

1. (3) dist(z~ (k), xk) < ~, 
t(,~) l(k) 

(4)  . ,~  . ,~  - z k )  < ~.  
zk --Yk 

In this case, the "diagonal" sequence {(y~r l(k)~l zk :Ske~ represents the direction dbecause of conditions 

(1)-(3) and the conditions of the 1emma, lira dk = d a n d  lira xk = x. Therefore, the derivatives ~- can be 
k---~oo k---~oo 

calculated by using this sequence. On the other hand, condition (4) implies 

lira f(z~r - f(y~(k)) lira Of (xk). 
k - . ~  IIz~r _ Y~r = k - + o r  Od~ 

T h e o r e m  4.1. A function f : ~ -+ ~ is continuously differentiable if and only if it is directionally differ- 
entiable. 

Proof .  If f is a C<function and d E  TR.(x) is any direction, then one can choose a coordinate system such 

that dbecomes e'l and apply Lemma 4.2 to prove the existence of ~d-(X). If f is directionally smooth, it has 

partial derivatives by Lemma 4.2 and these derivatives are continuous by Lemma 4.3; this implies that our 
function is continuously differentiable. 

5. T a n g e n t - D i r e c t i o n  F u n c t o r  

Def in i t ion  5.1. The tangent space of a subset M C ir n is the subspace of M • S n-1 given by 

T ( M )  = {(x,d) I d e TM(X)}. 

P r o p o s i t i o n  5.1 (c losedness  t h e o r e m ) .  For every locally compact subset M of R n, T ( M )  is a closed 
subset of M x S n-1 and the projection 7r : T ( M )  -+ M is a closed mapping. 

Proof .  We will prove that if dk E TM(Xk) converges to d a n d  xk --+ x, then d E  TM(X). Choose sequences 
r :  l(k) l (k)~ 1 {(y~, z~)}keN representing d~. The "diagonal" sequence l~Yk , zk :J', constructed as in Lemma 4.3 (satisfying 

conditions (1)-(3)), represents d E  TM(X) and has the same limit as {~}keN- 

This proves the closedness of T(M) .  If, in the above proof, the assumption that  dk --+ d i s  replaced by 
the requirement that (dk, xa) belongs to a fixed closed set C C T(M) ,  then the same "diagonal" sequence 

converges to any partial limit of {~}keN (all of which betong to C) and the images converge to x. This proves 
that x E 7r(C), i.e., the closedness of 7r(C), and, hence, that of ~r. 
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Coro l l a ry  5.1. Let F c S "~-~ be any closed set of directions. Then the set T-F = {x E M I TM (x) M F = ~} 
is open. 

Proof .  Assume that x E T-F. Denote by ~b : M x S ~ --+ S ~ the projection onto the second factor. Then the 
inverse image ~-~(F)  is closed by the continuity of ~b. By Proposition 5.1, 7r(~-~(F)) is closed. Hence x has 
a neighborhood O~ C M such that O~ N ~r(r  = z. It remains to observe that  TM(y)N F = ~ for every 
y E O~; hence, O~ C T-F. 

A mapping f : M1 --+ Ms is said to be correct in direction d E  TM~ (x) if, for every sequence {(x~, x~)}ke~ 

representing d~ the sequence {(f(x~.), f(x~))}ke, represents a direction, which is denoted by T/(d~. The 
mapping f : M1 --+ M2 is said to be tangentiable at a point x E ML if it is correct in all directions of TM~ (x). 
A mapping is said to be tangentiable if it is tangentiable at every point. Every tangentiable map ~ generates the 
tangent mapping T~ : T(M~) --+ T(M~). A mapping f : X -+ Y is called locally homeomorphic if every point 

x E X has an open neighborhood O(x) such that f (O(x))  is an open subset in Y and fIo(~) : O(x) --4 f (O(x))  
is a homeomorphism. 

L e m m a  5.1. If f : 1~I1 --+ lPls is tangentiable at x E 1~I1, then it maps M1 locally homeomorphicaUy onto its 
image/(M,) 
Proof .  Since every continuous injective mapping of compacta is a homeomorphism, we have that for locally 
compact spaces, the local injectivity of a continuous mapping implies that it is a local homeomorphism. 
The negation of the local injectivity implies the existence of a sequence {(x~, x~)}ke~ such that x~. # x~, 
f(x'k) = f(x~), and k_~oo(xk)tim ' = k-.oolim (z~) = x. In this case, f is incorrect with respect to all partial limits of 

! I t  { (~, ~)},~. 
The following proposition summarizes obvious properties of tangentiable mappings. 

P r o p o s i t i o n  5.2. Let f : M1 --+ 1~I2 be a surjective tangentiable mapping between locally compact subsets 
M1, lP~ C ~ .  Then the following assertions hold: 

(1) TS: T(IUI,) -+ T(Ms) is continuous; 
(2) T S is surjective, and, moreover, Ts(TM~)(x ) = TM~(f(x)) for every x; 
(3) T S maps regular points to regular points. 

Proof .  (1) Here the same trick with the "diagonal" sequence works as in Lemma 4.3. 
(2) Consider a neighborhood O(x) such that f[o(~) is a homeomorphism between O(x) and f (O(x))  

(Lemma 5.1). Since f (O(x))  is a neighborhood of f (x) ,  every direction d E TM~ (f(x))  has a representation 
{(Y~,Y~)}k~N by elements of f(O(x)).  Let ~ " f (O(x))  -+ O(x) be the inverse to f .  Being continuous, 
generates directions {(p(y~), ~(Y~))}ke~ at z by choosing convergent subsequences. Such directions transform 

f into d; this proves d-E Ts(TM~(X)). 
(3) Obviously, f transforms proper directions into proper ones. Thus, if tM~(X) = TM,(X), then 

TS(tM ~ (x) ) C tM~ ( f  (x) ) and TS(tM ~ (x) ) = TM~ ( f  (x') ) by the previous property. Hence tM, ( f (x)  ) = TM~ ( f  (x) ). 

A tangentiable mapping f : M1 --+ hfs is said to be tangently injective if its tangent mapping Tf is 
injective. 

L e m m a  5.2. If a mapping ~ : M1 -~ Ms has an inverse ~-1 : Ms --+ M1 and ~ is tangently injective at 
x E Nil, then ~- t  is tangentiable at tz(x). 

P roo f .  Let us consider a sequence {(x~, X~)}k~N such that {(to(z~), ~(x~))}k~ represents some direction 

d e TMz~(x). We have to prove that (x~, x~) represents a direction in TM~ (x). Assume the contrary. Then 

the sequence xkx k is not convergent and it has at least two different partial limits d~ and 4 .  In this case, T~ 

transforms both of them into ~ This contradicts the tangent injectivity of ~. 
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L e m m a  5.3. A linear mapping L : ~'~ -+ R" is correct in direction dE TR~(x) if and only if  d does not belong 

to its kernel, i.e., d ~  L-I(O). 

The proof is obvious. 

L e m m a  5.4. Let ~r : ~" --+ L~(x) be the orthogonal projection onto the tangent plane Ln(x) at the point 
x E M. Let f = triM. Then f is tangently injective at x, i.e., the mapping T l is injective in some neighborhood 
ofx.  

Proo f .  Let us consider Tf at the point x: 

Tf : Tu(x )  --+ TLM(~)(x) = S N LM(X) , 

where S is the unit sphere. Thus, Tf is an inclusion, due to the linearity and orthogonality of 7r. Hence x is a 

point of tangent injectivity of f = 7riM. Corollary 5.1 and the closedness of the kernel ~r-l(x) now imply that  
Tf is injective in some neighborhood of x. 

6. T a n g e n t i a b l e  M a p p i n g s  

A direction d E  TM(X) is called continuous if there exists a continuum C C M (i.e., a compact connected 

set) such that x E C and to(x) consists of a unique element c~ 

L e m m a  6.1. If directions ~ ,  ~ E TM(x) are continuous and x is a regular point of M,  then all positive 

linear combinations -aid1 + ~2~ belong to TM(X). 

P r o o f .  Let Cl and C2 be continua representing d~ and 4 -  For sufficiently small ~ > 0, one finds points 
x(s) E C~ and y(r E C2 such that  dist(x(~), x) = c~le and dist(y(e),y) ---- a2e. Then lira x(s)y(E) represents 

e---~O 

the direction --atd~ + a 2 ~ .  

L e m m a  6.2. If all directions in TM(X) are continuous and x is regular, then LM(X) = {ad  l a >_ O, d E  
TAr(x)}.  

P r o o f .  The regularity of x means that  tM(x) = T1~t(z). But TM(X) is symmetric with respect to the origin, 

since one can replace a sequence of pairs {(xk, Yk)}ker~ by the sequence {(yk, Xk)}ke~. Thus, if d i s  continuous 

then - d i s  also a continuous direction. Thus, for continuous directions ~ and ~ and for positive a l  and ~2, 

we have that the directions along the vector a ~  + a 2 ~  belong to TM(x). 
In fact, it suffices to consider Lemma 6.1 with 

+ = + 

One can prove by induction that  for a basis ~ , . . . ,  d~ of nM(x), every direction in LM(X) belongs to TM(Z). 

Given a mapping f : X -~ Y, its graph is defined as follows: 

r f  = e x  

and the graph embedding is the natural homeomorphism of X onto F /deno ted  by F( f )  : X --+ r I c X x Y. 

L e m m a  6.3. A function f : M ~ ~ is directionaIly differentiable at x if and only if its graph embedding 
F(f )  : M ~-+ M x 1~ C R ~ x II~ is tangentiable at x and Trf(x, f (x))  does not contain the "vertical direction" 

(0 ,0 , . . . , 0 ,  1). 

P roo f .  If a sequence {(x~, x~)}keN represents a direction in _hi C R ~, then it is easy to see that  the existence 

of a finite limit of "f(~)- ' f (z~)  is equivalent to existence of a nonvertical limit for the sequence of directions 

{(f(x~), f(x;))}ke~. 
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M A P P I N G S  OF B O U N D E D  V A R I A T I O N  W I T H  VALUES IN 
A M E T R I C  SPACE: G E N E R A L I Z A T I O N S  

V. V. C h i s t y a k o v  UDC 517.988.52; 517.983.6 

1. I n t r o d u c t i o n  

The present paper addresses the theory of mappings f : I ~ X of bounded (~, a)-variation (see the 
definition in Sec. 2) which are defined on a compact interval [ of the real line R and take values in a metric 

or normed space X. We prove the structural theorem for these mappings (Lemma 4 and Theorem 5) and 

establish a compactness theorem in the space of mappings of bounded (~, a)-variation (Theorem 6), which 
in the classical case (X = IR, ~(p) = p, and a(t)  = t) reduces to the well-known Helly selection principle 
([13], Chap. 8, Sec. 4). We study properties of differentiability in the weak and strong senses for these 
mappings (Theorem 7) and generalize criteria due to Riesz [14], Medvedev [11] and the author [6] for the 
case of reflexive Banach space- and metric space-valued mappings (Corollaries 9 and 10). We show that  any 
absolutely continuous mapping f : I --+ X from I into a metric space X is a mapping of bounded (~, a)- 
variation with an appropriately chosen function (I) such that  ~ ( p ) / p  --+ oo as p --+ oo for any continuously 
differentiable function a : I -+ II~ such that  a' > 0 (Corollary 11). We prove an explicit formula for the 
(~, a)-variation of a smooth mapping (Theorem 12). Finally, we show (Theorem 13) that  any set-valued 
mapping with compact graph from a compact interval of the real line into subsets of a Banach space X that 
is of bounded (~5 cr)-variation with respect to the Hausdorff metric admits a regular selection of bounded 
(~, a)-variation with respect to the original norm in X (this result generalizes the previous results of the 
author on the existence of regular selections of set-valued mappings of bounded variation [2]-[6]). 

The short version of the main results of the present paper was presented at the International Conference 
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin, August, 31-September, 6, Moscow, 1998 
([7]). 

2. Def in i t ions  

In what follows, we assume that  X and Y are metric spaces with respective distance functions dx( . ,  .) 

and dy(.,-) that  will, for the sake of brevity, be denoted by the same symbol d(-,-). Let • be the set of 
all continuous convex functions �9 : [0, c~[ --+ [0, oo[ such that  ~(p) = 0 if and only if p = 0. The set of all 
functions ~ E J~4 with l imp_~ ~ ( p ) / p  = oc will be denoted by A#. Suppose that  a : I --+ Y is a fixed injective 

mapping from the compact interval I = [a, b] C IR (a < b) into Y (later on, the assumptions on a will be 
made more str ict--see (4), (8) and (17)). 

Given a mapping f : I --+ X,  a partition T = {ti}~o of the interval I (i.e., a = to < tl < . . .  < tin-1 < 
t,, = b), and a function �9 E J~4, we set 

vo,~ T1 P. = ~ . d(a(t ,) ,  a(ti_:)).  
i=i d(a(ti) ,  a ( t i - 1 ) ) )  

The supremum of V~,r T] with respect to all partitions T of the interval I will be denoted by V~,r I) ,  

or simply by V~,~(f) if I is clear, and will be called the (total) B-variation of f with respect to or, or the 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya, Tematicheskie Obzory, 
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1. I n t r o d u c t i o n  

The present paper addresses the theory of mappings f : I ~ X of bounded (~, a)-variation (see the 
definition in Sec. 2) which are defined on a compact interval [ of the real line R and take values in a metric 

or normed space X. We prove the structural theorem for these mappings (Lemma 4 and Theorem 5) and 

establish a compactness theorem in the space of mappings of bounded (~, a)-variation (Theorem 6), which 
in the classical case (X = IR, ~(p) = p, and a(t)  = t) reduces to the well-known Helly selection principle 
([13], Chap. 8, Sec. 4). We study properties of differentiability in the weak and strong senses for these 
mappings (Theorem 7) and generalize criteria due to Riesz [14], Medvedev [11] and the author [6] for the 
case of reflexive Banach space- and metric space-valued mappings (Corollaries 9 and 10). We show that  any 
absolutely continuous mapping f : I --+ X from I into a metric space X is a mapping of bounded (~, a)- 
variation with an appropriately chosen function (I) such that  ~ ( p ) / p  --+ oo as p --+ oo for any continuously 
differentiable function a : I -+ II~ such that  a' > 0 (Corollary 11). We prove an explicit formula for the 
(~, a)-variation of a smooth mapping (Theorem 12). Finally, we show (Theorem 13) that  any set-valued 
mapping with compact graph from a compact interval of the real line into subsets of a Banach space X that 
is of bounded (~5 cr)-variation with respect to the Hausdorff metric admits a regular selection of bounded 
(~, a)-variation with respect to the original norm in X (this result generalizes the previous results of the 
author on the existence of regular selections of set-valued mappings of bounded variation [2]-[6]). 

The short version of the main results of the present paper was presented at the International Conference 
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin, August, 31-September, 6, Moscow, 1998 
([7]). 

2. Def in i t ions  

In what follows, we assume that  X and Y are metric spaces with respective distance functions dx( . ,  .) 

and dy(.,-) that  will, for the sake of brevity, be denoted by the same symbol d(-,-). Let • be the set of 
all continuous convex functions �9 : [0, c~[ --+ [0, oo[ such that  ~(p) = 0 if and only if p = 0. The set of all 
functions ~ E J~4 with l imp_~ ~ ( p ) / p  = oc will be denoted by A#. Suppose that  a : I --+ Y is a fixed injective 

mapping from the compact interval I = [a, b] C IR (a < b) into Y (later on, the assumptions on a will be 
made more str ict--see (4), (8) and (17)). 

Given a mapping f : I --+ X,  a partition T = {ti}~o of the interval I (i.e., a = to < tl < . . .  < tin-1 < 
t,, = b), and a function �9 E J~4, we set 

vo,~ T1 P. = ~ . d(a(t ,) ,  a(ti_:)).  
i=i d(a(ti) ,  a ( t i - 1 ) ) )  

The supremum of V~,r T] with respect to all partitions T of the interval I will be denoted by V~,r I) ,  

or simply by V~,~(f) if I is clear, and will be called the (total) B-variation of f with respect to or, or the 
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