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ON SMOOTHNESS OF COMPACTA
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1. Introduction

The original purpose of this paper was to find a simpler proof of the following homogeneity theorem due
to Skopenkov and the authors [11] (see also [1, 10, 12]), which would avoid the use of the classical Rademacher
theorem on Lipschitz functions {3}:

Theorem 1.1 (homogeneity theorem [11]). For every k € {1,2,...,n}, any ambiently C*-smoothly
homogeneous subset of R* is a C*-smooth submanifold of R".

A subset M C R” is said to be ambiently C*-smoothly homogeneous if, for every pair of points z,y € M,
there exist neighborhoods O(x),O(y) C R™ such that the triples (O{z),O(z) N M,{z}) and (O(y),O(y) N
M, {y}) are C*-diffeomorphic.

As a result of our efforts, this theorem splits into two. The first one describes the typical behavior of
the tangent directions in compacta (tangent regular points; see the existence Theorem 2.1). The second one
characterizes smooth submanifolds as the sets with only typical (i.e., regular) points (see the characterization
Theorem 2.2). These two theorems together provide a very short proof of the homogeneity Theorem 1.1,
which is contained in Secs. 3 and 7.

The rest of the paper (Secs 4-6) replaces Rademacher’s theorem, consisting of the fact that every Lipschitz
function f : R® — R™ is almost everywhere differentiable. To avoid the use of this theorem, we develop an
approach to differentiability via tangent directions.

In conclusion, we wish to point out that the initial investigations of smooth homogeneity {1, 10, 11, 12]
have produced not only a simple characterization of smooth submanifolds of R®, but have also inspired a
new approach to the classical Hilbert-Smith conjecture (cf. [5, 6, 9, 13]). We believe that the present paper
generates a promising new approach to the theory of smooth structures on compact subsets of R™,

2. Main Results

Points of the unit (n — 1)-sphere S™™! C R™ will be called directions. For a pair of different points
z,y € R, the direction from z to y is defined as ﬁngxll and denoted by 7. We say that a sequence of ordered

pairs {(zk, Yx) tren C R™ represents a direction de S" at a point £ € R™ if
lim z = lim y» = and lim wkyke =d.
ko0 k-r00 k—o0

Let M be an arbitrary locally compact subset of R®. A direction is said to be a tangent direction to M
at z € M if it can be represented at z by a sequence {(zx, yx) }xen of points of M converging to (z,z). The
set of all tangent directions of M at x € M will be denoted by T;(z) and called the tangent set. Tangent
directions that have a special representation by sequences of the form {(zk, yx) }ren, Where zx = x for every
k € N, are called proper tangent directions, and the proper tangent set is denoted by fpr{z). We are now ready
to formulate a key concept of the paper.
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Definition 2.1. A point z € M C R" is called tangent regular (or simply regular) if all of its tangent
directions are proper, i.e., Ty (z) = ty(z).

As usual, points that are not regular are called singular. Our first main result states the existence of
tangent regular points in any compactum and shows that regular points are typical.

Theorem 2.1 (existence theorem). For every locally compact subset M of R", the set of all singular points
of M is of the first Baire category (i.e., is the union of a sequence of nowhere dense subsets).

We define the tangent plane for M C R™ at z as the linear space spanned by Tj;(z) and denote it by
Lu(z), where Lps(z) C R". Our main theorem can now be stated as follows:

Theorem 2.2 (characterization theorem). For every m € {0,1,...,n} and every locally compact subset
M C R?, the following statements are equivalent:

(1) M is a smooth submanifold of R* of class C* and dimension m,;

(2) M is tangent reqular and has tangent planes of constant dimension m at every point z € M.

The condition that the tangent planes are of constant dimension is not sufficient if this dimension is not
related to the geometric dimension of M (as is the case here). The graph of a continuous nowhere differen-
tiable function of R has tangent planes all of dimension 2. So, it would be a submanifold of dimension 2,
but this does not mean that there are no tangent singular points {despite of the fact that most of its points
are regular). Hence the condition of tangent regularity itself is very restrictive. Compacta that satisfy it are
similar to stratified manifolds.

These two theorems immediately yield a C'-version of the homogeneity Theorem 1.1 (which, in turn,
implies a C*-version, as is shown in [11] and in Sec. 8). Indeed, ambiently smooth homogeneity implies that
all points of the sets considered have the same regularity type and have constant dimension of tangent planes.
The existence Theorem 2.1 guarantees that this type is regular. Hence the conditions of the characterization
Theorem 2.2 are satisfied and our sets are indeed smooth submanifolds.

The main concept of our tangent-direction theory is the notion of a tangentiable mapping.

Definition 2.2. A proper (closed) mapping f : M, — M, between subsets of the Euclidean spaces is
said to be tangentiable if, for every sequence {(},z})}ren representing a direction at = € M, the sequence
{(f(z}), f(z?))}ren represents a direction at f(z) € Ms.

The main result of this new theory is the following:

Theorem 2.3 (on smooth images). Tangenticble mappings map smooth submanifolds into smooth sub-
manifolds.

For examples of tangentiable mappings that are not differentiable (and for a discussion of this concept),
see Sec. 8.

3. Existence of Regular Points

In this section, we will deal with a fixed locally compact set M C R™ and we will omit the index M in
the notation of tangent sets. Let us introduce sets of e-tangent directions

T*(z) = {72 | 9,z € O(2)}] and t°(z) = ({37 | y € Oc(2)}].

Here, the brackets [ ] denote the closure, and O.(x) = {y | dist(z,y) < €} denotes the open e-neighborhood
of z in M. The following lemma is an immediate consequence of the definitions.

Lemma 3.1. For every sequence {ex}ren of positive numbers converging to 0, we have

ﬁ T (z) =T(z) and ﬁ t°(x) = t(z).
k=1

k=1
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Lemma 3.2. If a set AC M has an interior point in its closure ¢ € O.(z) C [A], then

[U )] 2T%=) 2 T(@).

a€A

Proof. If y, z € O.(z), then dist(y, z) < 2¢. Since y € O.(x) C [A], there exists a sequence {ay }ren € 4,
converging to y and such that
dist(ak,z) <2z forall ke N.

Thus @32 € t*(a;) for all k& € N and klim @ € [U t*(a)). On the other hand, klim @ = 7%; hence
—00 acA —>00

A= [U t*(a)]. However, 72 represents an arbitrary element of T (z).
ac€A

Lemma 3.3. Let W C S™~! be an open set. Consider the following two sets:
Tw={zeM|T(z)nW # 2}

and
tiw={zeM|tlz)n|[W]=w2}.

Then the intersection Tw Nt_w is of the first Baire category.
Proof. Since t(z) = (t5(x), one concludes that
sk
tw = t2w =) t%,
>0 k=1

where

t2yw ={z e M|t (z)N[W]= o}
Thus, it suffices to prove that Ty M1y, is nowhere dense. But if ¢°y, are dense in some V/, then
[U f@InW =g,
Ifjw

and by Lemma 3.1, T(z)NW =g forallz € V.
Hence the closure of ¢°y; cannot contain points of Ty in its interior. This means that the intersection
t<w N Tw is nowhere dense and our lemma is thus proved.

Proof of the existence Theorem 2.1. Let us consider a countable open base {W; }ren of S5~ (for example
all rational balls). The union fj (Tw, N't_w,), being of the first Baire category by virtue of Lemma 3.3,
k=1

obviously contains all singular points of F. Indeed, if t(z) # T'(z), one can find Wy, such that Wi, NT(z) # @
and [Wy ] Nt(z) = o.

4. Directionally Differentiable Functions

A function f : M — R (M C R® a locally compact set) is said to be differentiable at the point x € M

along the direction d € Ty (z) if, for every sequence {(z},z})}ren representing d, there exists a finite limit

Lo £ = £ of

koo lof — 2]l T ad

(z).
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A function that is differentiable along all directions from Ty (z) is called directionally differentiable at z.
A function directionally differentiable at any point z € M is said to be directionally smooth. The goal of this
section is to reduce the directional differentiability to the continuous differentiability for smooth manifolds.

Lemma 4.1. A function f : R — R that is directionally differentiable at = is differentiable at z in the usual
sense.

Proof. Ty(z) consists of two elements (positive and negative directions). The directional differentiability
immediately implies the existence of left and right derivatives

Af .
Azl-{bn+0 Az and Alll»n—o ZE ’

To see that these limits coincide, let us consider the sequences {(z}, z}) }ken, Where 25, =2 =5, |, To,, =
T + 55+ and 2, = ¢ — 5. For these sequences, one has o — z} = { for all k € N; hence {(x}, Z§) }xen
represents a positive direction, and the directional differentiability of f implies the convergence of the sequence
{ Ha)=f(=)

o7 } . But the even members of this sequence converge to the right derivative and the odd members
k keN

converge to the left derivative. Therefore, the left and right derivatives coincide.

Lemma 4.2. Consider a C'-function f : R® = R. Let £ € R™ be an arbitrary point. Then, for every sequence

{(z}, z{) }ren representing a direction d at z, there ezists a limit

1o £ = f(a)
S ]

1

which coincides with the partial derivative of f in the direction d.

Proof. Without loss of generality, we can assume that d=g = (1,0,...,0). The condition kll{n TLIL = €]
oQ
implies that
zy — zp = M€ + O(llzi — z|]) - (4.1)

The continuous differentiability of f implies

' pd ! 8 '
flah + Aeé1) — f(z) = ‘6)‘5];1(%) Ak + O(A), (4.2)
of .\ _ of /
5 (04) = (=) + Ok — I (43)
We note that condition (4.1) implies
llzi = zkl] = [|Aér + O(k — zi)l| = Ax + O (Il — zilD) - (4.4)

Using conditions (4.1)—(4.4), one obtains
F@%) = fzk) = fl@i + M) — flai) + Ollzi — zill)
_ 5

o AR EEAD

= 2= () M+ O(llzk — zi])) =

—

g—é.{(z)llzz — gl + Ollal, — ) -
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Lemma 4.3. Assume that z, — = and dp — d, where d € Tym(z). If the function f : M — R is
differentiable along d and all dy then '

lim a—{(.’tk = (—9—{.(33)
k~+e0 9, od

Proof. Let the sequences {(y}, 24)}ren represent dy € Ty (z;) for all k € N. For any k € N, choose (k)
such that

(1) dist(yi® )

Ye "2k 7d_;€) < %7
(2) dist(y®, i) < &;
(3 dist(5, 2) < &

-1 oy 1
(4) TG 3&;(Ik) <%

k) (k)
%k

In this case, the “diagonal” sequence {(y; )}ren represents the direction d because of conditions

(1)—(3) and the conditions of the lemma, klim di = d and klim zr = z. Therefore, the derivatives gg- can be
—00 —00

calculated by using this sequence. On the other hand, condition (4) implies

k) g (k) 5
) f(z’f[(kg f[((f;c ) = lim OF (2.
= g =yl = Odj

Theorem 4.1. A function f : R® — R is continuously differentiable if and only if it is directionally differ-
entiable.

Proof. If f is a C'-function and de Tw»(z) is any direction, then one can choose a coordinate system such
that d becomes &; and apply Lemma 4.2 to prove the existence of %ﬁ.(x). If f is directionally smooth, it has

partial derivatives by Lemma 4.2 and these derivatives are continuous by Lemma 4.3; this implies that our
function is continuously differentiable.

5. Tangent-Direction Functor

Definition 5.1. The tangent space of a subset M C R" is the subspace of M x S™~! given by

T(M) = {(z,d) | d € Tn (=)}

Proposition 5.1 (closedness theorem). For every locally compact subset M of R*, T(M) is a closed
subset of M x S™~1 and the projection 7w : T(M) — M is a closed mapping.

Proof. We will prove that if cﬁ € Th(zi) converges to d and T — x, then de Twm(z). Choose sequences
{(y}, ) }ren representing di. The “diagonal” sequence {(yfc(k), zi(k))}, constructed as in Lemma 4.3 (satisfying
conditions (1)—(3)), represents d € Ty;(x) and has the same limit as {dj }ren.

This proves the closedness of T(M). If, in the above proof, the assumption that di — d is replaced by
the requirement that (di, zx) belongs to a fixed closed set C C T(M), then the same “diagonal” sequence

converges to any partial limit of {d;c}kEN (all of which belong to C) and the images converge to x. This proves
that z € m(C), i.e., the closedness of 7(C), and, hence, that of =.
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Corollary 5.1. Let F C S*~! be any closed set of directions. Then the set T_p ={z € M | Ty(z)NF = o}
is open.

Proof. Assume that z € T_p. Denote by ¢ : M x S™ — S™ the projection onto the second factor. Then the
inverse image ¥~1(F) is closed by the continuity of ¥. By Proposition 5.1, () "1(F)) is closed. Hence r has
a neighborhood O, C M such that O, N#{y~(F)) = @. It remains to observe that Tj;(y) N F = & for every
y € Oy; hence, O, C T_p.

A mapping f : My — M, is said to be correct in direction d € Ty, (z) if, for every sequence {(z}, z}) bren
representing d, the sequence {(f(z}), f(z!))}ren represents a direction, which is denoted by Ty(d). The
mapping f : M; — M, is said to be tangentiable at a point z € M, if it is correct in all directions of Ty, ().
A mapping is said to be tangentiable if it is tangentiable at every point. Every tangentiable map  generates the
tangent mapping T, : T(M;) — T(M3). A mapping f: X — Y is called locally homeomorphic if every point
z € X has an open neighborhood O(z) such that f(O(xz)) is an open subset in ¥ and f|o@) : O(z) = f(O(z))
is a homeomorphism.

Lemma 5.1. If f: M, — M, is tangentiable at x € M), then it maps M, locally homeomorphically onto its
image f(My).

Proof. Since every continuous injective mapping of compacta is a homeomorphism, we have that for locally
compact spaces, the local injectivity of a continuous mapping implies that it is a local homeomorphism.
The negation of the local injectivity implies the existence of a sequence {(z},T})}ren such that z} # zf,
f(z) = f(z}), and kh—r};o (z}) = klglolo (z{) = z. In this case, f is incorrect with respect to all partial limits of

{(=k> ) Fren-
The following proposition summarizes obvious properties of tangentiable mappings.

Proposition 5.2. Let f : M; — M, be a surjective tangentiable mapping between locally compact subsets
M, My C R™. Then the following assertions hold:

(1) Ty : T(M,) — T(M,) is continuous;

(2) Ty is surjective, and, moreover, Ty(Ta, )(z) = Tar,(f(x)) for every x;

(3) Ty maps regular points to regular points.
Proof. (1) Here the same trick with the “diagonal” sequence works as in Lemma 4.3.

(2) Consider a neighborhood O(z) such that f|o(,) is a homeomorphism between O(x) and f(O(z))

(Lemma, 5.1). Since f(O(z)) is a neighborhood of f(z), every direction d € Thy, (f(z)) has a representation
{(k, Y Ieen by elements of f(O(x)). Let @ : f(O(z)) ~» O(z) be the inverse to f. Being continuous, @
generates directions {{y{¥1.}, v{¥L)) ken at T by choosing convergent subsequences. Such directions transform

f into d; this proves d € T¢(Tar, ().
(3) Obviously, f transforms proper directions into proper ones. Thus, if tp,(z) = Tay(z), then
Ti(tan(2)) C tan(f(z)) and Ty(ta, (z)) = Tar, (f(2')) by the previous property. Hence ¢y, (f(z)) = Tay, (f(z)).

A tangentiable mapping f : M; — M, is said to be tangently injective if its tangent mapping T} is
injective.
Lemma 5.2. If a mapping ¢ : My — M, has an inverse ¢! : My — M, and ¢ is tangently injective at
z € M, then ¢~! is tangentiable ot o(z).

Proof. Let us consider a sequence {{z}, z{)}xen such that {(x(z},), ©(x])) }ren represents some direction

d € Thye(z). We have to prove that (x, z¥) represents a direction in Ty, (). Assume the contrary. Then

the sequence x}c:z:k;’ is not convergent and it has at least two different partial limits d, and dy. In this case, T,

transforms both of them into d. This contradicts the tangent injectivity of .
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Lemma 5.3. A linear mapping L : R® — R™ is correct in direction d € Tyn (z) if and only if d does not belong
to its kernel, i.e., d ¢ L~1(0).
The proof is obvious.

Lemma 5.4. Let 7 : R* — L,(z) be the orthogonal projection onto the tangent plane L.(z) at the point
z € M. Let f = m|p. Then f is tangently injective at z, i.e., the mapping Ty is injective in some neighborhood
of x.
Proof. Let us consider Ty at the point z:

Ty : Tr(z) = Toy(z) = SN Ly(z),

where S is the unit sphere. Thus, T} is an inclusion, due to the linearity and orthogonality of 7. Hence z is a

point of tangent injectivity of f = m|p. Corollary 5.1 and the closedness of the kernel 7~!(z) now imply that
Ty is injective in some neighborhood of z.

6. Tangentiable Mappings

A direction d € Ti(z) is called continuous if there exists a continuum C C M (i.e., a compact connected

set) such that x € C and tc(x) consists of a unique element d.

Lemma 6.1. If directions dy,d, € Tr(z) are continuous and z is a regular point of M, then all positive

linear combinations —and) + cads belong to Tas{z).

Proof. Let C; and C, be continua representing d; and d,. For sufficiently small € > 0, one finds points

z(e) € C; and y(e) € C, such that dist{z(e), z) = oy¢ and dist{y(e),y) = ae. Then lin(x)a:(s)y(z-:) represents
e—r

the direction —-a;oi + agcig.

Lemma 6.2. If all directions in Ty(z) are continuous and x is regular, then Ly {(x) = {aa? la>0 de

TM(I)}.

Proof. The regularity of z means that £3,{z) = Ty(z). But Ths(z) is symmetric with respect to the origin,

since one can replace a sequence of pairs {(zx, yx) }ren by the sequence {{yk, z&) }xen. Thus, if d is continuous

then —d is also a continuous direction. Thus, for continuous directions d; and d; and for positive a; and as,

we have that the directions along the vector ayd; + ozzd; belong to Ty (x).
In fact, it suffices to consider Lemma 6.1 with

ondy + 0ody = (~an)(~dh) + aud,
One can prove by induction that for a basis dy,...,d; of L (x), every direction in Ly (z) belongs to Ty ().
Given a mapping f: X — Y, its graph is defined as follows:
Ip={(z,9) e X xY |y = f(a)},
and the graph embedding is the natural homeomorphism of X onto I'; denoted by I'(f) : X - Ty C X x Y.

Lemma 6.3. A function f : M — R is directionally differentiable at z if and only if its graph embedding
L(f): M — M xR C R* x R is tangentiable at = and Tr (z, f(z)) does not contain the “vertical direction”
(0,0,...,0,1).

Proof. If a sequence {(z}, =) }ren represents a direction in M C R™, then it is easy to see that the existence
of a finite limit of £Z=F=4) g equivalent to existence of a nonvertical limit for the sequence of directions

“Ik—IL”

{(F(=0), F (@)} xen-
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Lemma 6.4. If a mapping ¢ : R* — R™ has tangentiable graph embeddings I'(p) and its graph G has no
“vertical” directions, i.e., Tt (z) N {O x R™} = g, then y is continuously differentiable.

Proof. If 7 : R” — R is the first coordinate projection of the product, then

idx7:R" xR* > R* xR
projects the graph of ¢ onto the graph of m o ¢. The tangentiability of 7 x id|r, is provided by the condition
that I', has no vertical directions. (This condition means that no element of T(M) belongs to the kernel of
7 x id|p,; see Lemma 5.3.) Since ¢ has a tangentiable graph, it follows that ¢ is tangentiable; hence, so is

T o ¢, being a composition of tangentiable maps. Therefore, m o ¢ also satisfies the “verticality condition.”
Hence Lemma 6.3 and Sec. 4 produce the continuous differentiability of T o ¢, and, thus, that of ¢.

Theorem 6.1. The image of every tangentiable mapping  : R® — R™™ is a Ct-submanifold of R*t™.
Proof. The case m = 0 follows from Lemma 5.1 and the Brouwer theorem on the invariance of domains.
Now let m > 1. First, let us remark that the tangent plane L,mn)(@(z)) = L} is an n-dimensional linear
subspace of R**™. Indeed, note first that for every point £ € R, its image ¢(z) is regular (see Proposition 5.2
(3), applied to f = ¢, M, = R*, and M, = ¢(R")). Next, note that the image of every continuous direction
is continuous. Finally, by Proposition 5.2 (2), the tangent map is surjective.

Therefore, all tangent directions in ¢(R™) are continuous. It remains to observe that Lemma 6.2 implies
the inequality

dimL; < n,

whereas Lemma 7.1 below yields the inequality
dimL} = dimLgen)(p(2)) > dimy@e(R™) = n.

Denote now by L™ the orthogonal complement to L? and by m, : R™*" — L? and 7, : R™" — L the
canonical orthogonal projections. The composition 7, o : R® — L7, being locally invertible (Lemma 5.1) and
locally tangentially injective (Lemma 5.4), has a local inverse ¢ : V' — O(z), which is tangentiable (Lemma
5.2). The graph of m,(¥) : V — L™ in L™ @ L7 transforms to ¢(O(z)) under the linear homeomorphism
Tp @ Ty - R™™ — L2 @ LT, Also, the “vertical” direction of L7 & L7, transforms to the kernel of m,, which
does not intersect T, (y) for y € O(x) (O(z) is so chosen). Thus, the image of p{O(z)) coincides with
the graph of a tangential mapping 1 that takes the “vertical” directions. Now, by Lemma 6.4, ¢, being C?,
produces C'-submanifolds as its image.

Proof of Theorem 2.3 on smooth images. It is implied by Theorem 6.1.

7. Characterization of Submanifolds

We denote by dim,M the topological dimension of M at z. There are several possibilites for introducing
this concept (see, e.g., [2] or [4]). But we need only the following property of such a dimension which is
common to all possible approaches to the local dimension.

Proposition 7.1. For a locally compact set M C R", one has dim, M = n if and only if = is an interior
point of M.

Lemma 7.1. For every locally compact set M C R™ and every point x € M, one has dim, M <dimZLy(z).

Proof. The orthogonal projection 7|y : M — Ly (z) is a local homeomorphism by Lemmas 5.1 and 5.4.
Hence, dim, M < dimO(z) < dimLp(z).

Lemma 7.2. Ifdim M = dimLy () = k, then = has a neighborhood O(z) that is a k-dimensional topological
submanifold of R™.
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Proof. Consider the projection = : R* = Ly (z) as above. Proposition 7.1 implies that the image of an
open neighborhood O(z), where 7|o(z) is injective, is a neighborhood of m(z). Hence, O(z) is a k-dimensional
topological manifold and it is a topological submanifold, since its intersection with {7~(y)}yer(0(z)) consists
of a single point.

Lemma 7.3. If dim, M = dimp L(z) for allz € M, then M is a C'-submanifold of R™.

Proof. Let the projection 7 : R® — Ly (z) be as above, and let O(z) be as in Lemma 7.2; in addition, we
require that T|o(;) be tangentially injective (Lemma 5.4). Now, one concludes by Lemma 5.2 that the inverse
is tangential, and Theorem 6.1 allows us to prove that the image of O(z) (which is homeomorphic to R") is
a C'-submanifold.

A round ball B is said to be tangent to the set M at the pointz € M ifx € 8B and Int BN M = 2.
Lemma 7.4. If z is a reqular point of M C R™ and it has e tangent ball, then

dimLy(z) < .

Proof. Let us place z into the origin in such a way that the tangent ball takes a position with coordinate
of the center equal to (r,0,0,...,0), where r is its radius. Let us denote by ST~ and S™~! the upper and

lower hemisphere of S*~1. Hence S¥~! = {d = (d\,d,, ...,d,) | d; > 0}.

In this case, it is easy to see that t(x) N S7~! = @. However, z is regular and T(z) is always symmetric
{as immediately follows from its definition). Hence, T(x) N S}™! = T(z) N S27! = @, and this means that
T(z) is contained in the hyperplane z; = 0, and so is L(z).

Proof of the characterization Theorem 2.2. According to Lemma 7.3, it suffices to prove that
dimys L{z) = dim, M. In the opposite case, there is a point z € M with dim, M < dimZL(z).

Consider the orthogonal projection n : R* — L(z). Its restriction is an embedding which does not contain
any neighborhood of z. Hence there exists a point y € L(z) \ #{O(z)) that is arbitrarily close to z. The
nearest point of 7(O(z)), which exists for points y sufficiently close to z, since the image 7(O(x)) is locally
compact, will be the point z with the tangent ball. But z should be regular as the image of a regular point
(Proposition 5.2). Thus, by Lemma 7.4, one concludes that dimZLy;(z) < dimLy (7w~!(z)). But 7 should be
tangent injective by Lemma 7.4.

8. Epilogue

Tangent regular points have two fundamental properties: symmetry and continuity. The first one means
that for every proper tangent direction, its opposite is also proper. Possibly, the most interesting aspect of our
existence Theorem 2.1 is the discovery of the fact that typical points in an arbitrary compactum are tangent
symmetric.

The continuity means that the tangent set at a point contains the upper limit of tangent sets converging
to the point. The sets T'(z) of all tangent directions always have the property of continuity. The concept of
improper direction automatically leads to this continuity.

However, the concept of improper tangent direction gives more than the continuity itself. Let us consider
a bouquet of two smooth tangent circumferences (see Fig. 1).

Its proper tangent sets (consisting of either two or four points) are symmetric. The proper tangent sets are
continuous and the proper tangent plane (linear space spanned by t,(z)) is of constant dimension. However,
these are not manifolds.

This example shows the role of improper directions in the characterization Theorem 2.2. The touching
point is not tangent regular. All directions of the plane are improper tangent directions to this point.
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Fig. 1

Our considerations give an approach to introducing differential structure via tangent directions. A dif-
ferential structure is defined when one knows which functions are differentiable. In particular, the differential
structure via functions is inherited from smooth manifolds to all of its subsets. Functions on subsets are called
differentiable if they are restrictions of differentiable functions on an ambient manifold.

Our approach, arising from tangent directions, is as follows. If tangent directions are known, one can
introduce the differentiability of functions as the directional differentiability. This approach produces the
same result for smooth submanifolds as the one via functions (cf. the main result of Sec. 4). However, for
compacta they give different results.

The smooth structure via directions can be defined without embeddings into manifolds. Every continuous
Z,-equivariant mapping D : X% — S™ of the deleted square X2 = {(z,¥) |  # y} into the n-sphere (the Z,-
action of X2 is the diagonal symmetry (z,7) — (y,z)) generates the directional structure. A sequence
{(}, Z!) }xen Tepresents a direction d € S™ if klglolc D(z),z}) = d.

For such a general direction structure, one introduces the concept of proper directions and regular points
without any changes. The proof of the existence Theorem 2.1 also proceeds in this general setting without
changes. Compacta with all tangent regular points could perhaps play the role of manifolds in such a theory.

In Theorem 6.1 on smooth images, it was proved that every tangentiable mapping f : R® — R™*™ locally
factors through a tangentiable homeomorphism h : R* —» R” and a C'-smooth embedding ¢ : R* — R™*™. All
homeomorphisms of the real line are obviously tangentiable. But for n > 1, tangentiable homeomorphisms
are very close to diffeomorphisms. In particular, we can prove that the dimension of the set of points of
nondifferentiability of such homeomorphism is at most 0-dimensional.

We conclude our paper with the following question.

Question 8.1. Does there ezist a tangentiable homeomorphism of the plane that is not differentiable?
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