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Abstract

We study the following problem for closed connected oriented manifeddsf dimension 4. Let
A =Z[m1(M)] be the integral group ring of the fundamental graypM). Supposes C Ho(M; A)
is a free A-submodule. When do there exist closed connected 4-manifdldsid M’ such that
M is homotopy equivalent to the connected s@wM’, wherer1(P) = (M), n1(M’) = 0,
and Hy(M'; Z) ®7 A = G. An answer is given in terms of1(M) and the intersection forms on
Hy(M; Ay andHy(M; 7).
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1. Introduction

We study the problenof splitting a closeddpological manifoldM into a nontrivial
connected sum according to some algebrate.diam dimension 3 the Kneser conjecture
gives the answer ifr1 (M) = G1 * G2. In dimension 4 a splitting may be given according
to a free product ofr1(M) or a direct sum ofr2(M), or of both (see, for example, [8,10,
12)]). In the present paper we study splittings of closed 4-maniftddsip to homotopy
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equivalence according to a direct sum decompositig/) = Hx(M; A) = H & G (as
A-modules), wherer = Z[w1(M)] is the integral group ring of1(M). Previous results
were proved in [2—4]. Our results are built on those obtained by Hambleton and Kreck
in [9]. If D — Bwi(M) is the second Postnikov decompositioniaf, e,y (D) =0

for everyg > 3 and there is a map — D which induces isomorphisms on andn,
Hambleton and Kreck defineﬁfD(D) to be the set of homotopy equivalence classes
of polarized oriented 4-dinmsional Poincaré complexe¥/e recall that an element of
SZ’D(D) is represented by a 3-equivalenteX — D, whereX is a Poincaré 4-complex.

Let [X] € H4(X; Z) be the fundamental class & Then the map

SEP(D) — Hy(D: Z)

sending(X, f) to f.([X]) is well-defined. It was shown in [9] that this map is injective if
m1(M) is infinite andH2(D; Q) # 0. If w1(M) is finite of orderm, then there is an exact
sequence

0— Tor(I2(n2(D)) ® 4 Z) — S§P(D) — Zy x Ha(D; Z)

wherel(-) denotes the Whitehead functor (see [9, Theorem 1.1]). To state our results we
introduce theZ- and A-intersection forms

A€ Ho(M; C) x Ho(M; C) — C

whereC isZ or A. If G C H>(M; C) is a submodule, Ietg be the restriction of.€ to
G x G.We denote the adjoint morphism by

7S G — Home (G, €) = G*.

Then we prove

Theorem A. Let M* be a closed connected oriented topologiéahanifold with infinite
fundamental group. Lef C Ho(M; A) = m2(M) be aA-submodule such that

(1) G is A-free andi 4 : G — G* is an isomorphism

(2) Either H3(Bm1(M); A) = 0 or Ho(M; A)/G is trivial as A-module(that is, the
fundamental grougr1 (M) acts trivially on if);

(3) 1& is extended from% .
Then there exists a homotopy equivalenceM — M1 = P#M’, where P is a

Poincaré4-complex withr1(P) = m1(M), M’ is a simply connected closedmanifold,

andG = Hx(M'; 7) ®7, A.

Moreover, if 71(M) is “good” (see [7] or [6] for slightly different conditions) and
w2(G ® 4 Z2) =0, thenP can be realized as a manifold.

Remark. The connected sumi; = P #M’ can be performed by using the top cell Bf
The hypotheses impl¢ ® 4 Z C H2(M; Z). The first part of the theorem holds for any
Poincaré 4-compleM .
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To prove Theorem A we have to constritandM’ and a polarizatiod; = P#M' —
D (see Sections 2 and 3). This can be done for any fundamental giobfore precisely,
we prove the following result:

Theorem B. Let M* be a Poincar&-complex with an arbitrary fundamental group. Let
G C H>(M; A) be a freeA-submodule such thétg‘ :G — G* is an isomorphism. Then
there is a homotopy equivalenge: M® — (P #M')® betweerB-skeleta, where? is a
Poincaré4-complex andV’ is a closed simply connected topologidaianifold.

In order to prove Theorem A we have to show that the imagexéfand[ P # M'] under
SPP(D) — Ha(D; Z) coincide. This will be aalyzed in Section 4. Ifr1(M) is finite, one
can extend the homotopy equivalene®® — (P#M')® to a mapM — P#M’. But
there is no control over the degree of the map. This defines a componépt i@n the
other hand ifr1(M) is infinite, then the degree is shown to be one. Finally, we recall that
there are many important results on connected sum decompositions of 4-manifolds: let us
just mention the papers [8,13,14,17], and book [7] (see [5] for corrections). Further
results for 4-manifolds with special fundamental groups were proved in [2—4,12,15,18].

2. Preliminary constructions

Let M* be (as in Section 1) a closed connected topological 4-manifold with an
orientation and a CW-structure with only one 4-cell. We need this special CW-structure
only for homotopy constructions, hence it suffices to have a (simple) homotopy equivalence
to a 4-dimensional CW-complex with only one 4-cell. By a theorem of Wall (see [19,
Lemma 2.9]) this can be assumedMf is smooth or PL. LelG C H2(M; A) = nao(M)
be aA-free submodule of rank such thaﬁg :G — G* is a A-isomorphism. We choose
a A-basisey, ..., e, of G and form the CW-complexX obtained fromM by attaching
3-cells alongey, .. ., e,. We note thatt, (P, M; A) (respectivelyH? (P, M; A)) is trivial
for p # 3, and isomorphic t&@ (respectivelyG*) for p = 3. FurthermoreH, (P, M; Z)
(respectivelyH? (P, M; Z)) is trivial for p # 3, and isomorphic t@; ® 4 Z (respectively
G*® 4 Z) for p = 3. We will denote byf : M — P the canonical inclusion map. It follows
that

O0— H3(P,M;C)— Hx(M;C) i) H>(P;C)— 0

is exact forC = A or Z. In particular, the inclusion induced homomorphisfn :
Ha(M;Z) — Ha(P;Z) is bijeActive, and we sefP] = fi.([M]), where [M] is the
fundamental class o#/. Sincexé is an isomorphism, we get the following diagram of
short exact sequences:
O0——=H2(P; A)——=H?*M; A)—=H3P,M; A)=G*—0
nLel =|NM] =(34
O<——Ha(P; A)<f7H2(M; A)<——H3(P,M; A)=G<=—-0
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From this we conclude that
fPH3(PSA) > H3(M3 ), fuiHa(M; A) — Ha(P; A),
and
(\[P1: H*(P; A) — Ha(P; A)
are isomorphisms. From the diagrams
HY(P: A) T*>H1(M; A)
ﬂ[P]J/ 2J/H[M]
H(P; A) <2— Hy(M; A)
and
H3(P: A) ? H3(M: A)
ﬂ[P]J/ Ziﬂ[M]
Hi(P; A) <L Hy(M; 4) =0
we obtain isomorphisms
(\LP1:HY(P; A) — Ha—g(P; A)
foranyg = 1, 3; similarly, forqg = 0, 4. Hence we have proved the first part of the following

lemma:

Lemma 2.1. The CW-complexP is a Poincaré duality complex of formal dimensién
and f: M — P is of degreel. If the second Stiefel-Whitney class: Ho(M; 7)) — 7
vanishes orG ® 4 Z, then the Spivak normal spherical fibration Bfreduces to arOP-
fibration.

Proof. Let vy : M — BSTOP be the classifying map for the stable normal bund& of
Since wz(e;) = 0, we obtain trivializations ok} (vy) which extend over the attached
3-cells, foranyi =1, ..., r. Thereforep,s extends ove. Then the extension must be a
reduction of the Spivak normal spherical fibrationfaf O

Lemma 2.2. The kernel of the homomorphism
Ho(M; A) @4 Z— Ha(P; A)®@a Z

is isomorphic to the kernel dfio(M; Z) — H2(P; Z). This isomorphism coincides with
H3(P,M; A) ® Z—> H3(P, M; 7).

RegardingHs(P, M; Z) C H2(M; Z), the restriction ohﬁ to H3(P, M;7Z) x H3(P, M ; Z)

is obtained by tensoring,“} over A with Z and restricting to(H3(P, M; A) ® o4 Z) X
(H3(P,M; A)®4 Z).
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Proof. For X = M or P we have the following well-known sequence (see [1]):
H3(X; C) — H3(Br1; C) = Ha(X; A) ®4 C — Ha(X; C) —> Ha(Bmy; C) — 0.
HereC is a A-module. We will apply it forC = Z. Since
Ha(M; A) = Ha(P; A) @ G,
we have the isomorphism
Tor! (Ho(M; A), Z) — Tor! (Ho(P; A), Z),
hence the sequence
0— H3(P,M; A)®@aZ— Ho(M; A) @ Z — Ha(P; A) ®4Z— 0

is exact. Note also thaf, : H3(M; Z) — H3(P;7Z) is an isomorphism. This gives the
following commutative diagram of exact rows and columns:

0 0
H3(P,M; A) @4 Z— H3(P, M; Z)
H3(M; Z) —= H3(Bmy; Z) —= Ho(M; A) @ p Z—— Ha(M; Z) — Hz(Bm1; Z) —0

;l ;l l;

H3(P;7Z) — H3(Bmy; Z) —> Ho(P; A) ® A Z——— H(P; Z) — H2(Bmy; Z) —0

0 0

Now the claim follows from this diagram. O

Let M’ be a closed simply-connected topological 4-manifold which realizes the
nonsingular symmetric form%®AZ. We can form in an obvious way the connected sum
M1 = P#M’'. The manifoldM’ has the homotopy type of a wedgeoR-spheres with
a top cell attached, i.eM’ ~ (\/1S? Uy D*, where[6] € w3(\/;S?) corresponds to
A%;@AZ under the identificationa(\/ S?) = I'(G ® 4 Z). HereI" (A) denotes Whitehead's
quadratic functor of the Abelian groug (see [20]). The 3-skeleton o#fy is, up
to homotopy,M.> = P®\/(M")@ = P® v (\/;$?). Now we will construct a map
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g:M — M’ of degree 1. Lep = \/}e;: (M")® =\/|S? — M be the above given basis.
The degree 1 property gf defines a splitting off* as follows:

H2(M")®; 7Z)

0 G*QaZ H%(M; Z) I H%(P;Z)<—0
zim[M] Eiﬂm
0 G®sL Hy(M; ) —*— Ho(P; Z) —=0
| g
Hy(M)®; Z) == Ha((M")®); Z)

So there are weltlefined elementsy, ..., u, € H3(M; Z) satisfyingu; N ej =34;;, and
(ﬂ[P])_lf*(u,- N[M]) =0 (or equivalentlyf, (u; N [M]) = 0). The product

.
u1><~-~><ur:M—>1_[(CP°°
1

restricts to amag: M® — \/1S? = ([[; CP>).

Let M* = (\/} S?) Uy D*, whereo* : S® — \/} S? is the restriction of to the boundary
sphere ofM®. Theng extends to a map/ — M*, also denoted by. It is obvious
that Hy(M*; Z) = Z, hence we pufM*] = g,([M]). We identify (M")® = (M*)®,
Furthermore, we denote by}, ..., e; € Ho(M*; Z) the canonically given basis and by
uj,...,u; its dual inH2(M*; 7). By constructiong* (u}) = u;, andﬁ*(ej) =e¢j, forany
i,j=1,...,r. Sowe have

(uj Uu) N [M*] = (¢"uj U g™ul) N [M] = (u; Uu;) N [M]
by identifying Hy(M*; Z) = Ho(M; Z) = 7. Therefore, M* is a Poincaré complex with
the same intersection matrix a8, i.e., M* is homotopy equivalent ta7’.

Lemma 2.3. There is a degre& mapg : M — M’ such that
\r/gz _ (M/)(Z) _ (M/)(3) i) M-S M
1

is homotopic to the inclusion, and

M) Loy L p

is homotopic to the constant map.
Proof. Using the above notation we have
urn g*,B*(e’;) = g*(u;") Nej=u;Nej =35,

hence{u;: i =1,...,r} is the Hom-dual basis qu*ﬁ*(ej): j=1...,r}. So we have
g«P«(e) = e}, forany j =1,...,r. Therefore, the composition mapo A: MH® -
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(M@ is a homotopy equivalence. SingeBi(e]) = fi(e;) = 0, the composition map
f o B is homotopic to the constant mapO

3. The homotopy type of M®

Let G C H2(M; A) be, as before, al-free submodule such thé@ :G — G*is an
isomorphism. Thus we have a Poincaré compPeaf dimension 4, and a degree 1 map
fiM — P with f,:m1(M) — m1(P) and KeK fi. : m2(M) — m2(P)) =G.

Remark. Instead of the above hypothesis one could start with a degree 1fmap—
P such that f, : w1 (M) —> m1(P). The difference with the above assumption is that

Ker( fys :mao(M) — ﬂz(P)):iS only stablyA-free. The proofs go through under this weaker
assumption.

For the following it is convenient to recali¢ natural exact sequence of Whitehead for
a CW-complexx (see [20]):

Hy(X; A) — I'(IT2(X)) LN IT3(X) - H3(X; A) — 0.
Recall thatl" (A) is the quadratic functor defined on Abelian groupsf A is a A-module,
thenI"(A) inherits fromA a A-module structure. Sé'(2(X)) is a A-module. It is well
known that there is a natural identification

F(nz(X)) = |m(7T3(X(2)) — 7'[3(X(3))).

The homomorphism is induced fromrs(X®) — 73(X), andr3(X) — Hz(X; A) is the
Hurewicz homomorphism.

Lemma 3.1. The induced homomorphisms of the mapM — P satisfy the following
properties

(@) fi:m2(M®) - 1(PD) is split surjectiveand
(b) fi:m3(M®) — 73(P®) is surjective.

Proof. (a) follows from the degree 1 property of the mgpRecall from Section 2 that
fs i H3(M; A) — H3(P; A) is an isomorphism. From the diagram

0—— Ha(M; A) —= Ha(M, M'¥; A)—= Hy(M®; A) —= H3(M: A)—=0

;lf* < |\ lf*

0—— Ha(P; A) — Hy(P, P®); A)— H3(P®; A)— H3(P; A)—=0
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we get thatf, : H3(M®; A) — H3z(P®; A) is anisomorphism. Then property (b) follows
from the following diagram of Whitehead’s sequences

0——I'(ra(M®)) ——nz(M®) —= Hz(M®; A)——0
if** lf* lf*
0——TI'(m2(P¥)) ——n3(P¥) ——=H3(P¥; A) —0
since f, is induced from the split-surjective homomorphism
f*:nz(M(?’)) — nz(P(3)).
Note thatl” satisfiesTr (A®@ B)=T'(A)® T'(B)® (A®Q B). O

Corollary 3.2.

(@) fi:m2(M) — m2(P) is split surjectiveand
(b) fi:m3(M) — m3(P) is surjective.

Sincef, : w1 (M) — w1 (P) is an isomorphism, there is amap P® — M@ such that

(f o @)y = iw:m1(PP) — mi(P),
wherei : P® — P is the inclusion.

Lemma 3.3. The mapx : P@ — M@ extends to a map over tt8eskeletor(still denoted
by «) such that

Sfroay,= i*:NZ(P(B)) — m2(P),

wherei : P® — P is the inclusion.

Proof. The difference cochain construction aefs a bijection of the set of homotopy
classes of extensions of| ) with CZ(P w2 (M) = HomA(Cz(P) w2 (M)). Here X
denotes the universal covering space Xfas usual. Letd = d(f o «,inclusion e
C2(P, r2(P)) be the difference cochain between the composifienx and the inclusion
mapi:P®@ — P. Since f,:m2(M) — m2(P) is surjective andCa(P) is A-free, the
induced homomorphlsrﬁ2(P m2(M)) — CZ(P m2(P)) is surjective. Therefore, we can
lift d to an elemend € C2(P, w2(M)). Changingr by d defines amap’: P®® — M such
that f o’ : P® — P is homotopic to the inclusion. We are going to dengtéy o. Now,
let w € H3(P; m2(M)) be the obstruction to extendingover the 3-skeleta. The natural
homomorphism

H3(P; m2(M)) — H3(P; w2(P))

maps » to the obstruction to extending o « ~ i: P@® — P over P®, so it
is zero. But we have isomorphisms&(M) = 72(P) & G and G = 7 A, hence
H3(P; m2(M)) —> H3(P; m2(P)) becausé?3(P; G) = H1(P; G) = 0. Thereforep = 0
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anda extends oveP®. Now again, sincef, : w3(M) — m3(P) is surjective, the differ-
ence cochain construction applies to give the desired map

a: PO > M. O
Addendum to Lemma 3.3The mapf o «: P® — P is homotopic to the inclusion,

hence it extends to a map: P — P of degree 1, i.e.P|p3 = f o . SO we have the
following diagrams:

()* id
Ha(P, P®; ) == H,y(P, PD; )

H3(P®; A)—5;— Ha(P¥; )
and

0,=id
w4(P, P®) === 74P, P®)

] |

m3(P®) Wﬂs(fﬁ))
The mapsf: M — P andg: M — M’ give rise to a map
V= xQlye:M? > (PxM)?=pdv(M)?=uP.
We will extendy, over the 3-skeleton to a map, also denoted/hyand show that
avB:P®v (M’)(3) =mMP - MO

is a homotopy inverse.
First we note that the compositions

M® i> mMP? —C> p® —’& P,

and
(M/)(Z) B M2 i> M(z) - (MHP

are equal tof | @, gl y@, and 14, @, respectively.

Herec: M\?) = P@ v (M')@ — P®@ andc’: M{? — (M')@ are the projections, and
i andi’ are the canonical inclusions.

Lemma 3.4. The mapy : M@ — M? extends to a magstill denoted byy) v : M —
M{B) such that the composition

cop:M® YL, MP 5 pd

is homotopic tof | ;@ : M — PO,
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Proof. Since n2(M) = 72(P) @ G and G = @] A, the induced homomorphism
H3(M; ma(My)) — H3(M; m2(P)) is an isomorphism. The obstruction for extendifg

maps to the obstruction for extending c o ¥ >~ f|,,@, under this isomorphism. So it is
zero, and) extends oveM @ The extensions are classified by equivariant chain maps

Cg(M(B)) — 7T3(M§_3)),
i.e., by elements of Hom(C3(M®), 73(M\?)). Let d € Hom,(C3(M®), n3(P®))
be the difference cochain of|,,s and c o ¥. Since C*Z7T3(M}_3)) — m3(P®) is

surjective (same proof as for Lemma 3.1(b)), we can diftto an elementd
Hom, (C3(M®), 73(M.>)). Changingy by d gives the desired extensionc

We note that the composition

(M/)(Z) _ (M’)(S) Aom® Y Mi3) N (M’)(S) _ (M/)(Z) (+)

is still homotopic to Id ;@ -

Lemma 3.5. The induced homomorphisgn. : mo(M @) — 7T2(MJ(_3)) is surjective.

Proof. The composition

2 (M{?’)) @V T2 (M(s)) LN 2 (M{?’))
defines a homomorphism

m2(PP) @ (ma(M)”) ®2 4) — m2(P®) & (m2((M)®) @2 4).
Note that all maps ard-homomorphisms. Since

m)? L y® L, p®

is homotopic to zero (see Lemma 2.3), it follows fram) that an element0, b) €
12(P®) @ (m2((M')?) ®7 A) maps to(0, b). An element

(@.0) e m2(P®) @ (m2((M')?) 82 4)

goes to the elementa, x(a)) by Lemmas 3.3 and 3.4, wherg is the composite
homomorphism

72(P®) 25 my(M®) L5 ma(u®) 2% (M) ?) @7 A
Therefore(a Vv B). o ¥ is surjective; in fact, it is an isomorphism. Hence
Yy ! nz(M(?’)) — ng(MiS))
is surjective. O

Lemma 3.6. The induced homomorphism
{1/ nz(M(?’)) — nz(MES))
is an isomorphism.
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Proof. Lemma 3.4 gives the following diagram

0—= K2(f. A) —= Hy(M®; A) = na(M®) L Hy(P®; A) = Ho(P; A)—=0
lw*
0—= Ka(c, A) —= Hy(M¥; A) = 1p(MP) = Hay(PD; A) = Hp(P; A)—>=0

whereK>(f, A) andK2(c, A) denote the kernels of, andc,, respectively. Note that they
are A-free. Therefore, the surjective homomorphism

Y Ho(M®; A) > Hy(MY; A)
induces a surjective homomorphism

Yl ko(f,0) - K2(f, A) — Ka(c, A)
and

Ka(f, A) = Ka(c, A) ® Ker(Yilky (1, 4))-
But we have isomorphisms

,
Ko(f. A @4 Z=PZ=Ka(c, 4) @4 Z.
1

hence

Ker(Vl k,(r,4)) =0.

Now the claim follows from the above diagramQ
We can now state the main result of this section.

Theorem 3.7. Let M be a closed connected topologieemanifold with aCW-structure
so thatM = M® U, D*. Suppose thaG C H2(M; A) is a A-free submodule of rank
r such thatig:G — G* is an isomorphism. Then there are a Poincaré comphex
a degreel map f:M — P with f.:m1(M)— m1(P) and K2(f, A) = G, a closed

simply-connected topologicdtmanifold M’ witﬁHz(M’; 7Z) = G ® 4 Z, and a homotopy
equivalencey : M@ — PG v (M),

Proof. It remains to prove that is a homotopy equivalence. By Lemma 3.6 this follows
once we have proved that, : Hs(M®; A) — Hz(M®; A) is an isomorphism. Since
f:M — P andc:M; = P#M' — P (the “projection” ontoP) are of degree 1 and
¢y :m1(M1) — mw1(P) is an isomorphism, we obtain isomorphismis: H3(M; A) —
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H3(P; A) andc, : H3(M1; A) — H3(P; A) (see Section 2). Now the claim follows from
the diagram

Hy(M; A)——— Ha(M,M®; A)—— Ha(M®; A)— H3(M; A)——=0
Zlf* Zlf* if* Zlf*
Ha(P; A)—— Hy(P, P®: A)—— H3(P®; A)——— H3(P; A)——=0

;T . = I ;T .

Ha(M1; A) — Hy(My, M{Y; A)—> Hy(M{; A) — H3(M1; A) —0

andcs o ¥y = fi: H3(M®; A) - H3(P®; A) (by Lemma 3.4). Therefor&f andP #M’
have the same 3-type (see [16])0

4. Extending ¢ : M® — M{s)

In this section we will show that the obstruction to extendifigto a homotopy
equivalence (still denoted by), v : M — M, is detected by the intersection form
Aj‘} cHo(M; A) x Ho(M; A) — A. Let us first recall it. IfX is a 4-dimensional Poincaré
complex, then the cup product defines a map

2 2 4 NIX] ~
HY(X; A QH(X; A) > H'(X; AQz A) — Ho(X; ARz AN =EA.

Choosing theA-module structures as in [19], it 8-linear in the first component and anti-
A-linear in the second one (by using the canonical anti-involutionofThe intersection
form AQ is obtained from this by passing #(X; A) ® H2(X; A) via Poincaré duality.
We will identify A4 with the cup product. By our main result of Section 3 we have
that the firstk-invariantsky, andky, of M and My, respectively, are the same. In fact,
v :M® - M defines an isomorphism of the algebraic 2-types(M), wa(M), k]
and[r1(M1), m2(M1), km,]. In other words, we have a 2-stage Postnikov syster —
Brm1, and maps : M — D andei: M1 — D inducing isomorphisms ofa; andr,. Note
thatD = K (m2,2) and I (2) = Ha(D; A). There is a natural map

F:Ha(D; Z) — Hom, z(H?(D; A) ® H*(D; A), A)

defined byF(z)(x ® y) := (x U y) N z. As above, it isA-linear in the first component,
and antiAA-linear (i.e., A-linear) in the second one. We can idenm‘g, and Aj“h with
F(p«[M]) and F ((¢1)<[M1]), respectively. The map' can be defined on the chain level
by using an equivariant chain approximation to the diagonal

§:Cx(D) — C.(D) ®z Ci(D).

If we Ca(D) represents, anda andb represent andy, respectively, thert is induced
from

Fw)(a,b):=Y_a)bw"),
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whered(w) =Y w’ ® w”. Therefore, the map factorizes over the canonical map

Ho(D; A) ® 4 Ha(D; A) = Hom, 5 (H?(D; A) ® H(D; A), A)

defined bye(z1 ® z2)(x ® y) := (x,z1){(y, z2). We will prove that the obstruction for
extendingys belongs toH2(D; A) ® 4 H2(D; A). We first note that, as a spack, can
be obtained fromM by attaching cells of dimensian> 4. So we can identify

Ho(D; A) = Ho(D¥; A) = Hoy(M®; 4) L Hp(MP; ).

The Poincaré compled; = P #M' is obtained from\ ¥ ~ P® v (M")® by attaching
one 4-cellD? along[d D] € w3(M?). Similarly, M is obtained fromy® by attaching a

4-cell D* along[d D4 € n3(M®). The obstruction to extending: M® — Mf) belongs
to

H*(M; 73(M1)) = Ho(M; 73(M1)) = 73(M1) ® 4 Z.
Obviously, it is equal to
i« [0D%]) @4 1,
wherei : Mf) — M is the inclusion map. We prefer to analyze the element
V. [0D* @41 [0D]] @4 1=£ € m3(M{Y) ®4 Z,
or even more
§=y[00"] - [9D4] € ma(M{?).

Obviously,&é = 0 implies the vanishing of the obstruction. To state the next lemma we
recall that

r(m2(M2)) = I (m2(P®)) @ 72(PP) @ G ® I'(G) € m3(MP).
Lemma 4.1. The elemeni belongs taro(P®) @ G & I'(G).

Proof. The claim follows immediately from the following diagrams of Whitehead’s
sequences:

0——=TI'(72(M®)) ——=n3(M®) ——= H3(M®; A)—=0

P S

00— I (m2(MY)) —=m3(MP) — Hy(MP; A)—0
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and

00— (72(M®)) ——=n3(M®) —— H3(M®; A)—0

l l -

0——=TI'(m2(P®)) ——=n3(P®) ——H3(P®; A)—0

~

00— I'(ma(MP)) —= ma(M¥) ——= Hy(M>; A)—0

The vertical maps are induced by the mapM — P and the collapsing map. P#M’ —
P. The morphisms from the last to the first rows are derived from the map©® —

Mf), constructed in Section 3. The isomorphisHs(M®; A) — H3z(P®; A) and

HyM®; A) — Hz(P®; A) are induced by the isomorphisnig(M; A) — H3(P; A)
andHsz(M1; A) — H3(P; A), respectively, as explained in Section 33

It follows from Lemma 2.2 of [9] that" (G) ® 1 Z € G ® 4 G. Hence we have the
following corollary.

Corollary 4.2. There is a well-defined elemeate 72(P®) 4 G & G ®4 G which
vanishing implies the extension ¥f

As always, tensor products of right (leftymodules overA are formed by using the
canonical anti-involution ofA.
Let us writeg = &1 + &>, whereg, € 12(P®) @4 G andéz e G ®4 G.

Lemma4.3.1f 14:G ® G — A is extended fromZ ,, theng, =0.

Proof. Under the homomorphism
e:Ho(D; A) ® 4 Ha(D; A) — Hom,_(H?(D; A) ® HA(D; A), A)

the elementf, maps to the difference ok$ and the restriction of the pairing
)\,“‘41 i Ho(M1; A) x Hao(M1; A) — A to G. But )\,“‘41 restricted toG is the A-extension

of )%®AZ (see Lemma 2.2). It is now obvious th@t® 4 G C Ha2(D; A) @ 4 H2(D; A)
ande|gg 4G is injective. The claim now follows. O

Lemma 4.4. Suppose thall 2(Bm1; A) = 0. Then we havé; = 0.

Proof. Recall the exact sequence (see [1])
0— H?(Bmy; A) — H3(X; A) — Homy (Ha(X; A), A)
— H3(Bm; A) — H3(X: A),
whereX can beP, D, M, or M1. Applied to P, we obtain
0— H?(P; A) — Hom, (Ha(P; A), A).
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By Poincaré duality we get that the canonical nf&g P; A) — Homu(H2(P; A), A) is
injective. SinceG = @) A, we obtain an injection

Ha(P; A) ®4 G — Homy (H2(P; A), G) —> Hom,_4(H%(P; A) ® G*, A).

Here the isomorphism
T :Homyu (H?(P; A), G) — Hom,_z(H?(P; A) ® G*, A)

is defined by

T (x®y):=y(nx)).
The composition
Ha(P; A) ®4 G — Hom,_5(H?(P; A) ® G*, A)

is the restriction ofe, hencee|p,(p. 4)g,G IS injective. On the other hand(&,) is the
difference of the intersection-forms (cup products) o 2(P; A) ® G*. But for both
intersectionA-forms, Ho(P; A) andG are orthogonal submodules. Therefaré;) =0,
hencet1 =0. O

So far we have used the intersectiarform to detect the obstruction. The next lemma
gives an example where the integral intersection form degects

Lemma 4.5. Suppose thatl2(P; A) is A-trivial (in the sense of Theorem A, p§2)) and
without torsion, that isH2(P; A) = @3 Z. Then we havé; =0.

Proof. By hypothesis, there is an isomorphism
Hy(P; A) ®4 G = Ha(P; A) ®z (G Q4 Z),
and the map
&1 Ha(P; A) ®2 (G ®4 Z) — Homy (HA(P; A) ® (G* ®4 Z), Z)

is injective. As aboveg(&1) is the difference of the integral intersection forms (cup
products) restricted tél>(P; A) ®7 (G ® 4 Z). But Ho(P; A) andG ® 4 Z are orthogonal
with respect to both intersection forms. Hence we hagg) = 0, which implies that
&1 =0. See also [11] for other resultsO

Example. Let F be a closed connected aspherical surface.#f F x S?, thenHy(P; A) =
Z. Supposer1(M) = w1(F). It was shown in [4] that there exists a degree 1 nfap/ —
P such that f, :m1(M) — m1(P) is an isomorphism. LeG = Ker(f,: Ho(M; A) —
H>(P; A)). ThenM is homotopy equivalent t& # M’ if and only if Ag is extended from
A%@AZ'

Summarizing we have proved the following result.
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Theorem 4.6. Let M* be a closed connected oriented topologidaianifold with a
CW-decomposition ang (M) infinite. Supposéf = M® U, D*, and letG C Ha(M; A)

be aA-free submodule so that : G x G — A is extended from%mz. If H2(Bm1; A) =
Oor Hx(M; A)/G is a A-trivial module, thenM is homotopy equivalent to a connected
sumP#M’, where P is a Poincaré4-complex withr1(P) = 71(M) and M’ is a closed
simply-connected topologicdtmanifold withHy(M'; Z) = G ® 4 Z.

Proof. If A2 is extended from?%®AZ, theni4:G — G* is an isomorphism. So by
previous lemmata there is an extensionM — My = P#M’. Sincer1(M) is infinite,

the mapy is of degree 1. This implies that is a homotopy equivalence ..

5. Application of surgery theory and proof of Theorem A

We assume thatr1(M) is a good fundamental group (see, for example, [7]) and
w2(G ® 4 Z) = 0. Hence, for aA-basises, ... ., ¢, of G, we have trivializations

tief(vy) —> S% x DN,

wherevy, is the normal bundle af/ ¢ R¥. By using the;’s we obtain the bundlep over
P and a canonical bundle m&pvy; — vp over f: M — P.

Remark. Since M is orientable, the second Stiefel-Whitney class gf coincides with
that of M.

The degree 1 normal magy, b) has a surgery obstruction(f, b) € La(mw1(M)). It
is represented byG, A4, u&), wheren? is the self-intersection number defined by the
t;'s (see [19, Chapter 5], for more details). The trivializations. . ., ¢, are also used
in [19] to define the intersection numbers geometrically. However, they coincide with
the algebraic defition via cup product and Poincaré duality. Let us assume )t@ais
extended frorm%@AZ and let the signature df%@ﬂ be zero. Then we find a basis
of G of type {u1, v1,uz, v2, ..., us, vg}, 25 = r, with A’G‘(ui, v;) =1, andA‘G‘(x, y)=0
otherwise. It follows from the relations betweké andug‘ (see [19, Theorem 5.2]) that
i) = pé(v;) = 0. Sincerr1 (M) is good, surgeries ofuz, v1, uz, v, ..., s, vg} can
be performed to get a homotopy equivalente P’ — P. If the signature oﬁ%mz is
not zero, then we can form the connected sum of the normal fnag — P with an
appropriate degree 1 normal mgfi: M” — S* to get the above situation.

In summary, we have proved the following result which completes the proof of
Theorem A.

Theorem 5.1. If w2(G®AZ) =0 andkg is extended from?;@AZ, then there is a degrek

normal mapf : M — P with trivial surgery obstruction. Ifr1(P) = m1(M) is good, then
there is a closed connected topologidainanifold homotopy equivalent t®.
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