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Abstract Let Xn be an oriented closed generalized n-manifold, n ≥ 5. In our recent paper (Proc. Edinb.
Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map t : N (Xn) → Hst

n (Xn; 𝕃+) which
extends the normal invariant map for the case when Xn is a topological n-manifold. Here, N (Xn) denotes
the set of all normal bordism classes of degree one normal maps (f, b) : Mn → Xn, and Hst∗ (Xn;𝔼)
denotes the Steenrod homology of the spectrum 𝔼. An important non-trivial question arose whether the
map t is bijective (note that this holds in the case when Xn is a topological n-manifold). It is the purpose
of this paper to prove that the answer to this question is affirmative.
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1. Introduction

Throughout the paper, n will denote an integer ≥ 5. A generalized manifold Xn (without
boundary) of dimension n ∈ N is a Euclidean neighbourhood retract (ENR) (i.e. Xn is
an n-dimensional locally compact separable metrizable absolute neighbourhood retract
(ANR)), satisfying the local Poincaré duality (i.e. the local homology of Xn is like that
of Rn).

In this paper, we shall consider only oriented connected compact generalized manifolds.
Clearly, every oriented closed (i.e. connected, compact and without boundary) topological
manifold is such a space (cf. Cavicchioli, Hegenbarth and Repovš [3]).
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For every generalized n-manifold Xn, there exists an embedding ϕ : Xn ↪→ Rm

into Rm, for a sufficiently large m ≥ n ∈ N, so that the boundary ∂Nm ⊂ Rm of a neigh-
bourhood Nm ⊂ Rm of ϕ(Xn) in Rm is homotopy equivalent to a spherical fibration νXn ,
called the Spivak fibration, with fibre homotopy equivalent to Sm−n−1 (cf. Browder [1]).
We shall consider only the oriented case and we shall denote also its classifying map by
νXn : Xn → BSG.

A systematic construction of generalized manifolds was given by Bryant, Ferry, Mio and
Weinberger [2] (for a comprehensive treatment see Cavicchioli, Hegenbarth and Repovš [3]
and Hegenbarth and Repovš [8], and the references therein). It was proved by Ferry and
Pedersen [6] that there is a canonical lift ξ0 : Xn → BSTOP of νXn , i.e. the composition

Xn ξ0−→ BSTOP
J−→ BSG is homotopic to νXn . It gives rise to the canonical surgery

problem, denoted by (f0, b0), via the Pontryagin–Thom construction.
Here, f0 : Mn

0 → Xn is a degree one map, where Mn
0 is a closed topological n-manifold

and b0 : νMn
0
→ ξ0 is a bundle map, covering the map f0 (by slightly abusing the notation,

we shall denote by νMn
0

also the stable normal Rm−n-bundle of an embedding Mn
0 ↪→ Rm,

not just its associated spherical fibration). The canonical surgery problem (f0, b0) is
unique up to normal bordism.

Let us denote the set of all normal bordism classes of normal degree one maps (f, b)
by N (Xn), where f : Mn → Xn is a map of degree one, b : νMn → ξ is a bundle map
covering f , and ξ : Xn → BSTOP is a TOP -reduction of νXn (i.e. J ◦ ξ is homotopic to
νXn).

In the case when Xn is a closed n-manifold, one associates with (f, b) and element
in Hn(Xn;L+), where L+ = L < 1 > is the (semi-simplicial) connected surgery spectrum
(cf. Kühl, Macko and Mole [12], Nicas [17], and Ranicki [20, Chapter 18]).

In the case whenXn is a topological n-manifold, this element inHn(Xn;L+) is obtained
by decomposing (f, b) into adic pieces, using a transversality structure on the manifold
Xn (cf. Ranicki [20, Chapter 16]). This defines a map t : N (Xn)→ Hn(Xn;L+) which
is bijective. The image of (f, b) is called the normal invariant of the normal degree one
map (f, b).

This construction does not carry over to generalized manifolds Xn. If Xn is not homo-
topy equivalent to a topological n-manifold, there is no transversality structure on Xn.
Moreover, what does L+-homology mean in the class of compact ENR’s? In our recent
paper, we have proved the following result.

Theorem 1.1 (Hegenbarth-Repovš [9, Theorem 5.1]). Let Xn be an oriented
closed generalized n-manifold, n ≥ 5. Then one can construct a map

t : N (Xn)→ Hst
n (Xn;L+)

which extends the normal invariant map in the case when Xn is a topological n-manifold.

Here, Hst
∗ (Xn;E) denotes the Steenrod homology of the spectrum E. We refer to

Ferry [5], Kahn, Kaminker and Schochet [10], and Milnor [15] for the construction and
properties.

As it was already pointed out above, the map t : N (Xn)→ Hst
n (Xn;L+) in

Theorem 1.1 is bijective for topological n-manifolds Xn. Therefore, it is very natural
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to ask if perhaps bijectivity of t also holds for generalized n-manifolds Xn? The main
goal of the present paper is to show that the answer to this question is affirmative.

Theorem 1.2. Let Xn be an oriented closed generalized n-manifold, n ≥ 5. Then the
map t : N (Xn)→ Hst

n (Xn;L+) in Theorem 1.1 is also a bijection.

We outline the plan how we shall prove Theorem 1.2. In § 2, we shall recall the con-
struction of the map t : N (Xn)→ Hst

n (Xn;L+) from Hegenbarth and Repovš [9]. In
§ 3, we shall prove that the map t : N (Xn)→ Hst

n (Xn;L+) is the composition of maps
in the following commutative diagram

N (Mn
0 ) Hn(Mn

0 ;L+)

N (Xn) Hst
∗ (Xn;L+)

t0

(f0)∗
t

(1.1)

There are canonical identifications of N (Mn
0 ) with H0(Mn

0 ;L+) and N (Xn) with
H0(Xn;L+) such that N (Xn)→ N (Mn

0 ) corresponds to

(f0)∗ : H0(Xn;L+)→ H0(Mn
0 ;L+).

A precise definition will be given at the beginning of § 3.
Here, (f0, b0) is the canonical surgery problem mentioned above. It is well known that

the composed map

H0(Mn
0 ;L+)

∼=−→ N (Mn
0 ) t0−→ Hn(Mn

0 ;L+)

is equal to the following composition of isomorphisms

H0(Mn
0 ;L+)

∼=−→ H̃m−n(T (νMn
0
);L+) SD−−→ Hn(Mn

0 ;L+),

where T (νMn
0
) denotes the Thom space of the normal bundle of an embedding Mn

0 ↪→ Rm

and the first map is the Thom isomorphism. The second map SD denotes the S-duality
(i.e. the Spanier-Whitehead duality) isomorphism (cf. Kühl, Macko, and Mole [12, Chapter
14, p.259] and Ranicki [20, Chapter 17, p.193]).

The same isomorphisms hold for Xn (cf. Ranicki [20, Proposition 16.1 (v), p.175],

H0(Xn;L+)
∼=−→ H̃m−n(T (νXn);L+),

where we assume Xn ↪→ Rm, and the existence of the isomorphism

H̃m−n(T (νXn);L+) SD−−→∼= Hst
n (Xn;L+)

follows from Kahn, Kaminker and Schochet [10, Theorem B, p.205].
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Finally, in § 4, we shall show that since (f0, b0) is a normal degree one map, the
following diagram commutes (cf. diagram 4.1 in § 4)

H0(Mn
0 ;L+) H̃m−n(T (νMn

0
);L+) Hn(Mn

0 ;L+)

H0(Xn;L+) H̃m−n(T (νXn);L+) Hst
n (Xn;L+)

SD

(f0)
∗ (T (b0))

∗ (f0)∗
SD

(1.2)

The bottom isomorphism is therefore equal to the composite map

H0(Xn;L+) ∼= N (Xn)→ N (Mn
0 ) t0−→ Hn(Mn

0 ;L+)
(f0)∗−−−→ Hst

n (Xn;L+).

Now the commutativity of diagram (1.1) implies that the map t : N (Xn)→ Hst
n (Xn;L+)

is indeed bijective, as asserted in Theorem 1.2. Details will be given in the forthcoming
sections.

Remark 1.3. In the epilogue (cf. § 5), we shall give an outlook for comparing the exact
sequence of a map q : Xn → B, where B is a compact metric space, with the controlled
surgery sequence, determined by the map q (cf. Bryant, Ferry, Mio and Weinberger [2]).
We are grateful to the referee for suggesting to also include a discussion of this interesting
problem.

2. Construction of the map t : N (Xn) → Hst
n (Xn; L+)

We recall the construction of the map t : N (Xn)→ Hst
n (Xn;L+) from Hegenbarth and

Repovš [9, Section 4]. So let us fix an oriented closed generalized n-manifold Xn of
dimension n ≥ 5. If U is a covering of Xn by open sets, we denote its nerve by N(U). If
the covering U ′ ≺ U is a refinement of U , then there is a simplicial map s : N(U ′)→ N(U).

Proposition 2.1. There exists a sequence of open coverings {Uj}j∈N with the
following properties:

(a) for every j ∈ N, Uj+1 ≺ Uj , and there exists a simplicial map sj : N(Uj+1)→ N(Uj);
(b) for every j ∈ N, there exist maps ϕj : Xn → N(Uj), ψj : N(Uj)→ Xn such that

ψj ◦ ϕj : Xn → Xn is an εj−equivalence, where limj→∞ εj = 0;

(c) lim←−j N(Uj) = Xn; and

(d) the following diagram is homotopy commutative

Xn

N(Uj+1)

N(Uj)

Xn

ϕj+1

ϕj

sj

ψj+1

ψj

(2.1)

Downloaded from https://www.cambridge.org/core. 25 Oct 2021 at 08:53:45, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


578 Friedrich Hegenbarth and Dušan Repovš

Proof. See Hegenbarth and Repovš [9, Sections 2 and 3] for verification of properties
(a), (b), (d), and Milnor [15, Lemma 2] for property (c). �

LetM(sj) = N(Uj+1)× I ∪
sj

N(Uj) be the mapping cylinder of the map sj : N(Uj+1)→
N(Uj). Using property Proposition 2.1 (d), we can form the mapping telescope F0 =
∪
j∈N

M(sj) and the obvious maps

Xn × [j, j + 1]
ϕj×Id[j,j+1]−−−−−−−−→M(sj)

ψj×Id[j,j+1]−−−−−−−−→ Xn × [j, j + 1]

fit together to give the map Xn × R+
Γ−→ F0

Λ−→ Xn × R+.
Here, F0 is a locally finite complex which can be completed to give a complex F such

that (cf. Hegenbarth and Repovš [9, Section 3] for details):

(i) at the ∞-end, we add
lim←−
j

N(Uj) = Xn;

(ii) at the 0-end, we add a cone with the cone point c0.

The complex F0 (respectively F ) is an open (respectively closed) fundamental complex
of the (compact metric) space Xn. If E is an arbitrary spectrum and H lf

∗ (F0;E) denotes
the locally finite homology of F0, then the Steenrod homology satisfies the following
axiom

H lf
∗ (F0;E) ∼= Hst

∗ (F,Xn, {c0};E).

Note that F is contractible, hence we have the following isomorphism

Hst
m(F,Xn, {c0};E) ∂−→∼= Hst

m−1(X
n;E).

We can now outline the construction of the map t : N (Xn)→ Hst
n (Xn;L+) (cf. Hegen-

barth and Repovš [9, Section 4]). Let (f, b) be a normal degree one map, i.e. f : Mn → Xn

is of degree one and b : νMn → ξ is a bundle map covering f . As before, (f0, b0) denotes
the canonical map, i.e. f0 : Mn

0 → Xn, b0 : νMn
0
→ ξ0. Consider the following bundles

over F0: η = Λ∗(ξ × R+), η0 = Λ∗(ξ0 × R+). Then Γ ∗(η) ∼= ξ × R+, Γ ∗(η0) ∼= ξ0 × R+,
since Λ ◦ Γ is homotopic to IdXn×R+ .

One obtains bundle maps (Φ, B) and (Φ0, B0) from the following compositions

Φ : Mn × R+

f×IdR+−−−−−→ Xn × R+
Γ−→ F0,

B : νMn × R+

b×IdR+−−−−−→ ξ × R+
Γ−→ η,

Φ0 : Mn
0 × R+

f0×IdR+−−−−−−→ Xn × R+
Γ−→ F0,

B0 : νMn
0
× R+

b0×IdR+−−−−−−→ ξ0 × R+
Γ−→ η0.

Their mapping cylinders M(Φ, B) (respectively M(Φ0, B0)) are normal spaces with
boundaries (Mn × R+)� F0 (respectively (Mn

0 × R+)� F0). Gluing them along F0 yields
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the normal space

N = M(F,B) ∪
F0
−M(F0, B0), ∂N = Mn × R+ ∪

F0
Mn

0 × R+,

where the minus sign denotes the opposite orientation on M(F0, B0).
This normal space N can be decomposed into adic pieces to define an element in

H lf
n+2(F0;ΩNSTOP ), where ΩNSTOP is the semi-simplicially defined spectrum of adic

normal spaces with manifold boundary (cf. Kühl, Macko and Mole [12, Section 11] for
the precise definition).

There is a similar spectrum ΩNPD, where the boundaries are Poincaré duality spaces,
and there exists an obvious map ΩNSTOP → ΩNPD. Moreover, there is a map of spectra
ΩNPD → L+ (cf. Ranicki [19, p.287]), inducing isomorphisms in homology theory (cf.
Hausmann and Vogel [7], Levine [13], Quinn [18]). The composition ΩNSTOP → ΩNPD →
L+ is called signL in Kühl, Macko and Mole [12, p.232].

A word about notation: we shall denote the element represented by M(Φ, B) ∪
F0

−M(Φ0, B0) by

{f, b} − {f0, b0} ∈ H lf
n+2(F0;ΩNSTOP )

and its image under

H lf
n+2(F0;ΩNSTOP )

∼=−→ Hst
n+2(F,X

n, {c0};ΩNSTOP )

∂−→∼= Hst
n+1(X

n;ΩNSTOP )
signL

−−−→ Hst
n (Xn;L+)

will be denoted by [f, b]− [f0, b0].
Finally, one can then show that the map t : N (Xn)→ Hst

n (Xn;L+) sending (f, b) to
[f, b]− [f0, b0], is well defined (cf. Hegenbarth and Repovš [9, Theorem 5.1]).

3. Factorization of the map t : N (Xn) → Hst
n (Xn; L+)

This section is devoted to studying diagram (1.2).

I. First, one has to define the map N (Xn)→ N (Mn
0 ). We shall keep the notation from

§ 2, so (f0, b0) denotes the canonical surgery problem for an oriented closed generalized
n-manifold Xn with f0 : Mn

0 → Xn, b0 : νMn
0
→ ξ0.

Let (f, b) represent an element in N (Xn), where f : Mn → Xn, b : νMn → ξ. We
shall also write ξ0, ξ : Xn → BSTOP for the corresponding classifying maps. Their
compositions with J : BSTOP → BSG are homotopic.

Consider now the bundles (f0)∗(ξ0) and (f0)∗(ξ) over Mn
0 . Observe that (f0)∗(ξ0) =

νMn
0

and that (f0)∗(ξ) is fibre homotopy equivalent to νMn
0
. In other words, (f0)∗(ξ) is a

TOP -reduction of the Spivak fibration of the manifold Mn
0 .

Therefore (f0)∗(ξ) defines a surgery problem f ′ : M ′n →Mn
0 , b′ : νM ′n → (f0)∗(ξ),

which we shall denote by (f ′, b′). These are well-known constructions (cf. Browder [1,
Section II.4], Madsen and Milgram [14, Chapter 2], Wall [22, Chapter 10]).
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Lemma 3.1. The composition of the normal maps

M ′n f ′
−→Mn

0
f0−→ Xn, νM ′n

b′−→ (f0)∗(ξ)
f̃0−→ ξ,

where f̃0 is the obvious bundle map covering the map f0, is normally bordant to (f, b).

Proof. For the proof, we have to describe (f0, b0), (f, b), and (f ′, b′) in more details.
Suppose that Xn is embedded into Sm, for some sufficiently large m ≥ n, with a regular
neighbourhood Wm ⊂ Sm and a retraction r : Wm � Xn. Thus, r|∂Wm : ∂Wm � Xn is
homotopy equivalent to the spherical fibration νXn , giving rise to β : Sm →Wm/∂Wm →
T (νXn).

The TOP -reductions ξ0 and ξ of νXn then yield the following homotopy commutative
diagram

T (νXn)

T (ξ)

T (ξ0)

h (3.1)

Note that h : T (ξ0)→ T (ξ) is induced by a fibre homotopy equivalence ξ̇0 ∼ νXn ∼ ξ̇,
where ξ̇0 (respectively ξ̇) denotes the sphere bundles of ξ0 (respectively ξ).

Denote the compositions with β by α0 : Sm → T (ξ0), α : Sm → T (ξ). They can be
made transverse to Xn ⊂ T (ξ0) (respectively T (ξ)) in order to obtain α−1

0 (Xn) = Mn
0

(respectively α−1(Xn) = Mn), and b0 (respectively b) are the obvious maps from their
normal bundles in Sm. Moreover, α0 (respectively α) factor as Sm → T (νMn

0
)→ T (ξ0)

(respectively Sm → T (νMn)→ T (ξ)) and we have the following homotopy commutative
diagram

Sm

T (νMn)

T (νMn
0
)

T (ξ)

T (ξ0)

α

α0

h (3.2)

Note that h : T (ξ0)→ T (ξ) induces a homotopy equivalence h̄ : T ((f0)∗(ξ0))→
T ((f0)∗(ξ)). However, (f0)∗(ξ0) = νMn

0
, so we get the following homotopy commutative
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diagram

Sm T (νMn) T (ξ)

T (νMn
0
) T ((f0)∗(ξ0)) T ((f0)∗(ξ))

T (ξ0)

T (f̃0)

h

α′

α0

T (f̃0)

= h̄

α

(3.3)

Here, f̃0 : (f0)∗(ξ)→ ξ (respectively f̃0 : (f0)∗(ξ0)→ ξ0) are the obvious bundle maps
over f0 : Mn

0 → Xn (for simplicity we use the same symbol f̃0 for both maps), and T (f̃0)
is the induced map between the Thom spaces, so T (f̃0)−1(Xn) = Mn

0 , similarly for T (f̃0) :
T ((f0)∗(ξ0))→ T (ξ0). Note that h and h̄ are not induced by bundle maps.

By making the composition

Sm
α′
−→ T (νMn

0
) = T ((f0)∗(ξ0))

h̄−→ T ((f0)∗(ξ))

transverse to Mn
0 , one obtains the surgery problem

M ′n = (h̄ ◦ α′)−1(Mn
0 )→Mn

0 , b′ : νM ′n → (f0)∗(ξ).

Homotopy commutativity of diagram (3.3) then implies that

M ′n f ′
−→Mn

0
f0−→ Xn, νM ′n

b′−→ (f0)∗(ξ)
f̃0−→ ξ

is normally bordant to (f, b). To see this, observe that (f, b) is obtained from the upper
arrow α, whereas the composition (f0, b0) ◦ (f ′, b′) is obtained from the composition of
the arrows ↓−→↑, that is T (f̃0) ◦ h̄ ◦ α′. Note that T (f̃0) produces (f0, b0) and h̄ ◦ α′ gives
(f ′, b′). This completes the proof of Lemma 3.1. �

Remark 3.2. One might expect that homotopy commutativity of diagram (3.3)
implies that (f0, b0) and (f, b) are normally bordant. However, this is not the case since
h (respectively h̄) are not induced by TOP -bundle maps.

The association (f, b)→ (f ′, b′) defines a map N (Xn)→ N (Mn
0 ). It depends on the

fixed surgery problems (f0, b0), and IdMn
0

: Mn
0

∼=−→Mn
0 , IdνMn

0
: νMn

0

∼=−→ νMn
0
. We shall

relate this map using the following identifications (cf. Kühl, Macko and Mole [12, Chapter
14, in particular Section 14.23])

N (Xn)→ [Xn, G/TOP ], N (Mn
0 )→ [Mn

0 , G/TOP ].

Given f : Mn → Xn, b : νMn → ξ, we know that ξ ⊕ (−ξ0) : Xn → BTOP classifies the
Whitney sum of ξ and −ξ0. The composition with J : BTOP → BSG is homotopic to the
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constant map, hence it yields a map Xn → G/TOP. This defines a bijection N (Xn)→
[Xn, G/TOP ], depending on (f0, b0).

Let us denote the image of (f, b) ∈ N (Xn) in [Xn, G/TOP ] by [ξ − ξ0]. Similarly,
N (Mn

0 )→ [Mn
0 , G/TOP ] can be defined using IdMn

0
: Mn

0

∼=−→Mn
0 , IdνMn

0
: νMn

0

∼=−→
νMn

0
. The construction above then implies the following corollary.

Corollary 3.3. The diagram

N (Mn
0 ) [Mn

0 , G/TOP ]

N (Xn) [Xn, G/TOP ]

(f0)
∗

(3.4)

commutes. Moreover, (f0)∗([ξ − ξ0]) = [(f0)∗(ξ)− νMn
0
].

II. Next, we shall show how (f ′, b′) can be used to calculate t(f, b) ∈ Hst
n (Xn;L+).

By crossing (f ′, b′) with R+, one gets a normal map

f ′ × IdR+ : M ′n × R+ →Mn
0 × R+, b′ × IdR+ : νM ′n × R+ → (f0)∗(ξ)× R+,

denoted by (f ′, b′)× IdR+ . The mapping cylinder M((f ′, b′)× IdR+) of the map
(f ′, b′)× IdR+ is a normal space with manifold boundary, hence it defines an element

M((f ′, b′)× IdR+) ∈ H lf
n+2(M

n
0 × R+;ΩNSTOP ).

Lemma 3.4. Let Γ0 : Mn
0 × R+ → F0 be defined as the composition of the maps

f0 × IdR+ : Mn
0 × R+ → Xn × R+, Γ : Xn × R+ → F0.

Then Γ0 induces a homomorphism

(Γ0)∗ : H lf
n+2(M

n
0 × R+;ΩNSTOP )→ H lf

n+2(F0;ΩNSTOP ),

such that

(Γ0)∗([M((f ′, b′)× IdR+)]) = {f, b} − {f0, b0}.
Proof. The element (Γ0)∗([M((f ′, b′)× IdR+)]) is represented by the mapping

cylinder
(M ′n × R+)× I ∪

f ′×IdR+

Mn
0 × R+,

but decomposed according to the dissection given by Γ0 : Mn
0 × R+ → F0. The element

{f, b} − {f0, b0} is represented by

(M ′n × R+)× I ∪
Φ
F0 ∪

F0
− (Mn

0 × R+)× I ∪
Φ0

F0,

as described in § 2. By Lemma 3.1, it is equivalent to the mapping cylinder construction
based on the composition of the normal maps (f0, b0) ◦ (f ′, b′). It gives the following

(M ′n × R+)× I ∪
f ′×IdR+

Mn
0 × R+ ∪ (Mn

0 × R+)× I ∪
Γ0

F0 ∪ −(Mn
0 × R+)× I ∪

Γ0
F0,

(cf. Ferry [4, Proposition 8.10] for the mapping cylinder calculations).
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This is obviously bordant to

(M ′n × R+)× I ∪
f ′×IdR+

Mn
0 × R+

since
(Mn

0 × R+)× I ∪
Γ0

F0 ∪ −(Mn
0 × R+)× I ∪

Γ0
F0

is 0-bordant. This completes the proof of Lemma 3.4. �

Now (f ′, b′) is a normal degree one map between manifolds, so it defines an element
[f ′, b′] ∈ Hn(Mn

0 ;L+), namely its normal invariant.

Corollary 3.5. Consider the homomorphism (f0)∗ : Hn(Mn
0 ;L+)→ Hst

n (Xn;L+).
Then (f0)∗([f ′, b′]) = [f, b]− [f0, b0].

Remark 3.6. If Xn happens to be a topological n-manifold, then this is the Ranicki
composition formula (cf. Ranicki [21, Proposition 2.7]).

Proof. The assertion follows from the following diagram

H lf
n+2(M

n
0 × R+;ΩNSTOP ) H lf

n+2(F0;ΩNSTOP )

Hst
n+2(M

n
0 × [0,∞],Mn

0 × {∞},Mn
0 × {0};ΩNSTOP ) Hst

n+2(F,X
n, {c0};ΩNSTOP )

Hn+1(Mn
0 ;ΩNSTOP ) Hst

n+1(X
n;ΩNSTOP )

Hn(Mn
0 ;L+) Hst

n (Xn;L+)

(Γ0)∗

∼= ∼=

(Γ̄0)∗

(f0)∗

(signL+
)∗ (signL+

)∗

(f0)∗

(3.5)
Note that the element [M((f ′, b′)× IdR+)] ∈ H lf

n+2(M
n
0 × R+;ΩNSTOP ) maps to [f ′, b′]

under the left vertical arrow of morphisms. The completion of Γ0 then gives the map
Γ̄0 : Mn

0 × [0, ∞]→ F. This completes the proof of Corollary 3.5. �

III. Summary: Let Xn be an oriented closed generalized manifold of dimension n ≥ 5,
and f0 : Mn

0 → Xn, b0 : νMn
0
→ ξ0 a surgery problem according to a BSTOP -reduction
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of νXn . Then the map t : N (Xn)→ Hst
n (Xn;L+), defined in § 2, fits into the following

commutative diagram

N (Mn
0 ) Hn(Mn

0 ;L+)

N (Xn) Hst
n (Xn;L+)

t0

(f0)∗
t

(3.6)

Here, t0 sends a normal degree one map with target Mn
0 to its normal invariant.

Moreover, under the identification of Corollary 3.3, diagram (3.6) can be redrawn as
follows

[Mn
0 , G/TOP ] Hn(Mn

0 ;L+)

[Xn, G/TOP ] Hst
n (Xn;L+)

(f0)
∗ (f0)∗ (3.7)

4. Proof of Theorem 1.2

The essence of the proof was already given in § 1, by comparing diagrams (1.1) and (1.2).
In this section, we present the details.

Let L• denote the symmetric L-spectrum (cf. Ranicki [20, Chapter 13]). It is a
ring spectrum and L+ is a L•-module spectrum. Hence, the cup product constructions
Hq(Z, A;L•)×Hp(Z;L+)→ Hp+q(Z, A;L+) are well defined.

Considering an oriented closed generalized n-manifold, embedded inXn ⊂ Sm, for some
m ≥ n, its Spivak fibration νXn has a canonical orientation (cf. Ranicki [20, Chapter 16]),
i.e. a Thom class

UνXn ∈ Hm−n(E(νXn), ∂E(νXn);L•) ∼= H̃m−n(T (νXn);L•),

inducing the Thom isomorphism (here, E(νXn) is the associated disk fibration)

H0(Xn;L+) = H0(E(νXn);L+)
∪ UνXn−−−−−→ H̃m−n(T (νXn);L+).

Recall that canonical means that it is constructed via the canonical reduction ξ0 of νXn .
Hence, the Thom class Uξ0 ∈ H̃m−n(T (ξ0);L•), corresponds to UνXn under the homotopy
equivalence between T (ξ0) and T (νXn).

The existence of Uξ0 is guaranteed (cf. Ranicki [20, Chapter 16]). Moreover, since
(f0)∗(ξ0) ∼= νMn

0
, it follows that f0 : Mn

0 → Xn, b0 : νMn
0
→ ξ0 induces T (b0) : T (νMn

0
)→

T (ξ0), so that under

(T (b0))∗ : Hm−n(T (ξ0);L•)→ Hm−n(T (νMn
0
);L•),
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Uξ0 is mapped to UνMn
0
, the Thom class of νMn

0
. This implies commutativity of the

following diagram

H0(Mn
0 ;L+) H̃m−n(T (νMn

0
);L+)

H0(Xn;L+) H̃m−n(T (ξ0);L+)

. ∪ UνMn
0

(f0)
∗ (T (b0))

∗

. ∪ UνXn

(4.1)

The Thom isomorphisms are now composed with the S-duality isomorphisms:

H̃m−n(T (νMn
0
);L+) ∼= Hst

n (Mn
0 ;L+) ∼= Hn(Mn

0 ;L+)

and
H̃m−n(T (νXn);L+) ∼= Hst

n (Xn;L+).

For the generalized manifold Xn, this follows from Kahn, Kaminker and Schochet [10,
Theorem B], which asserts that

Hm−n−1(Sm \Xn;L+) ∼= Hst
n (Xn;L+).

Since for every m ≥ n,
Hm−n−1(Sm;L+) = Lm−1, Hm−n(Sm;L+) = Lm,

where Lq = πq(G/TOP ), the exact sequence of the pair (Sm, Sm \Xn) then implies that

Hm−n−1(Sm \Xn;L+) ∼= H̃m−n(Sm, Sm \Xn;L+)

∼= H̃m−n(T (νXn);L+) ∼= H̃m−n(T (ξ0);L+).

This also applies to Mn
0 .

The proof of Kahn, Kaminker and Schochet [10, Theorem B] shows that the following
diagram commutes

H̃m−n(T (νMn
0
);L+) Hst

n (Mn
0 ;L+) = Hn(Mn

0 ;L+)

H̃m−n(T (ξ0);L+) Hst
n (Xn;L+)

∼=

(T (b0))
∗ (f0)∗

∼=

(4.2)

Briefly, this follows since the Spanier–Whitehead duality isomorphism comes from the
slant product constructions, using the map

Xn
+ ∧ T (ξ0) ∼= Xn

+ ∧ T (νXn)→ Sm,

i.e. it comes from the element in Hm(Xn
+ ∧ T (ξ0);L+) which it defines. This construction

is natural for the normal map (f0, b0). Since Xn is not a complex, T (νXn) is replaced by
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a certain function space which leads to the Steenrod homology (cf. Kahn, Kaminker and
Schochet [10, Section 4]).

Summary: The following diagram commutes

H0(Mn
0 ;L+) H̃m−n(T (νMn

0
);L+) Hn(Mn

0 ;L+)

H0(Xn;L+) H̃m−n(T (ξ0);L+) Hst
n (Xn;L+)

∼= SD

(f0)
∗ (T (b0))

∗ (f0)∗

∼= SD

(4.3)

The composition of the upper row isomorphisms is known to be

. ∩ [Mn
0 ]L• : H0(Mn

0 ;L+)
∼=−→ Hn(Mn

0 ;L+),

where [Mn
0 ]L• ∈ Hn(Mn

0 ;L•) is the L•-coefficient fundamental class of Mn
0 (cf. Ranicki

[20, Proposition 18.3]). Finally, we can identify

[Mn
0 , G/TOP ] = H0(Mn

0 ;L+), [Xn, G/TOP ] = H0(Xn;L+),

according to the equivalence G/TOP
∼=−→ L+ (cf. Kirby and Siebenmann [11, Essay 5,

Appendix C], Ranicki [20, Proposition 16.1]).
Combining this with Corollary 3.3 and diagram (3.6), we obtain the following diagram

H0(Mn
0 ; L+) [Mn

0 , G/TOP ] N (Mn
0 ) Hn(Mn

0 ; L+)

. ∩ [Mn
0 ]L+

H0(Xn; L+) [Xn, G/TOP ] N (Xn) Hst
n (Xn; L+)

∼=

∼= ∼= t0

(f0)
∗ (f0)

∗ (f0)∗

∼= ∼= t

(4.4)

Commutativity of the outer diagram (cf. diagram (4.3)) and each square imply that

N (Xn)→ N (Mn
0 ) t0−→ Hn(Mn

0 ;L+)
(f0)∗−−−→ Hst

n (Xn;L+)

is an isomorphism, hence by diagram (3.6), this composition is t. This completes the
proof of Theorem 1.2.

Remark 4.1. In particular, the proof of Theorem 1.2 also shows that the L-duality
isomorphism for generalized manifold Xn factors over t : N (Xn)→ Hst

n (Xn;L+).
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5. Epilogue

We shall conclude this paper by a brief outlook for further studies, following a very
interesting suggestion of the referee. In this paper, we have proved that there exists a bijec-
tive map t : N (Xn)→ Hst

n (Xn;L+) from normal degree one bordisms to the Steenrod
homology of the spectrum L+.

The Steenrod homology is known to behave well on the category of compact metric
spaces. In particular, if q : Xn → B is any morphism, then there exists a long exact
sequence

· · · → Hst
n+1(B;L+)→ Hst

n+1(B,X
n;L+) ∂∗−→ Hst

n (Xn;L+)
q∗−→ Hst

n (B;L+)→ . . . (5.1)

On the other hand, if q : Xn → B is a UV 1-map, then there is a controlled surgery
sequence (cf. Bryant, Ferry, Mio and Weinberger [2], Mio [16], and Nicas [17]),

Hst
n+1(B;L)→ Sc

(Xn⏐⏐� q

B

)
−→ N (Xn) σc

−→ Hst
n (B;L) (5.2)

Here, L denotes the 4-periodic spectrum with L0 = Z×G/TOP , σc is the controlled
surgery obstruction map, and

Sc

⎛⎜⎜⎝
Xn⏐⏐� q

B

⎞⎟⎟⎠ (5.3)

is the controlled structure set. This controlled surgery sequence 5.2 makes sense if the
controlled structure set 5.3 is nonempty (cf. Mio [16, Theorem 3.8]).

It is natural to ask if sequences (5.1) and (5.2) are related via the map t : N (Xn)→
Hst
n (Xn;L+). First, one notes that two spectra L+ and L are involved, where L+ i−→ L is

considered as the covering spectrum over the Eilenberg–MacLane spectrum K(Z, 0), i.e.
L+ i−→ L→ K(Z, 0) is a fibration of spectra.

In order to compare sequences (5.1) and (5.2), we consider the composite map

q∗ ◦ i∗ : Hst
n (Xn;L+) i∗−→ Hst

n (Xn;L)
q∗−→ Hst

n (B;L),

and obtain the following diagram

Hst
n (Xn;L+) Hst

n (B;L)

N (Xn) Hst
n (B;L)

q∗ ◦ i∗

t =

σc

(5.4)

The first step would be to prove commutativity of diagram (5.4). However, this is not
enough, since one also needs a map between Hst

n+1(B, X
n;L+) and the set (5.3), compati-

ble with t : N (Xn)→ Hst
n (Xn;L+). This can all be done ifXn is a topological n-manifold
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(cf. Hegenbarth and Repovš [8]). In the case when Xn is a generalized n-manifold, this
is still an unsolved problem.

For the second step, one is led to ”refining” the map t : N (Xn)→ Hst
n (Xn;L+) to a

map

t : Sc
(Xn⏐⏐� q

B

)
→ Hst

n+1(B,X
n;L+)

so that the following diagram is commutative

Hst
n+1(B; L+) Hst

n+1(B,X
n; L+) Hst

n (Xn; L+) Hst
n (B; L)

Hst
n+1(B; L) Sc N (Xn) Hst

n (B; L)

q∗ ◦ i∗

i∗ t t =

σc
(5.5)

where Sc denotes the set (5.3).
Since dimXn = n, we may assume that dimB ≤ n. In this case, it follows from the

Atiyah–Hirzebruch spectral sequence (which holds for the Steenrod homology, cf. Hegen-
barth and Repovš [9, p. 206]) that Hst

n+1(B;L+) i∗−→ Hst
n+1(B;L) is an isomorphism. In

this case, the map

t : Sc
(Xn⏐⏐� q

B

)
→ Hst

n+1(B,X
n;L+)

is bijective. However, the existence of such a map t is at present still a conjecture.
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