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Dedicated to the memory of Professor Andrew Ranicki (1948–2018).

Abstract. This paper presents an alternative approach to controlled
surgery obstructions. The obstruction for a degree one normal map
(f, b) : Mn → Xn with control map q : Xn → B to complete con-
trolled surgery is an element σc(f, b) ∈ Hn(B,L), where Mn, Xn are
topological manifolds of dimension n ≥ 5. Our proof uses essentially
the geometrically defined L-spectrum as described by Nicas (going back
to Quinn) and some well-known homotopy theory. We also outline the
construction of the algebraically defined obstruction, and we explicitly
describe the assembly map Hn(B,L) → Ln(π1(B)) in terms of forms in
the case n ≡ 0(4). Finally, we explicitly determine the canonical map
Hn(B,L) → Hn(B, L0).

Mathematics Subject Classification. Primary 57R67, 57P10, 57R65;
Secondary 55N20, 55M05.

Keywords. Generalized manifold, resolution obstruction, controlled surgery,
controlled structure set, Lq-surgery, Wall obstruction.

Introduction

To solve a surgery problem, one encounters an obstruction being an element
of the Wall group [20]. If one does controlled surgery with respect to a con-
trol map over B, the obstruction belongs to a controlled version of Wall
groups. Both groups are constructed in a purely algebraic way as equiva-
lence classes of certain forms or formations. The principal result (cf. Theo-
rem 3.3 in Sect. 3) of the present paper shows that controlled obstructions
are elements of Hn(B,L), where L is the geometrically defined surgery spec-
trum as described by Nicas [13]. The basic idea of our proof is that controlled
surgeries are done in small regions of the manifold when projecting it onto
B (and this fits well with L-homology of B). The proof is given in Sect. 3.

In Sect. 1, we review the algebraic construction of controlled surgery
obstructions for the case n ≡ 0(4) in terms of forms. In Proposition 1.1 we
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show how to obtain from this the Hermitian form of the uncontrolled surgery
obstruction.

In Sect. 2 we introduce relevant surgery spaces and L-spectra. We fol-
low the Nicas description [13] (which goes back to Quinn [15]). The surgery
spaces and spectra are defined semi-simplicially, i.e. by adic surgery prob-
lems. According to the targets of the surgery problems, one obtains spectra
denoted by L, resp. LPD. Here, the targets in L

PD are adic Poincaré duality
complexes, whereas in L they are adic manifolds.

Then we prove that the natural inclusion L → L
PD is a homotopy

equivalence (cf. Proposition 2.2). In particular,

πn(L) ∼= πn(LPD),

and as shown by Wall [20],

πn(LPD) ∼= Ln({1}),

the Wall group of the trivial group. We note that this problems was not
addressed by Nicas [13].

In Sect. 2.2, we describe elements of the L-homology group. The spec-
trum L is not connected, in fact,

π0(L) = L0
∼= Z.

There is a fiber sequence of spectra

L〈1〉 → L → K(Z, 0)

with L〈1〉 the connected covering of L, and K(Z, 0) the Eilenberg–Mac Lane
spectrum. We study the induced map

Hn(B,L) → Hn(B,L0)

and give an explicit formula in Sect. 2.3 (cf. Corollary 2.6). It has particular
significance when determining the resolution invariant of Quinn [16,17].

In Sect. 3, we treat Hn(B,L) as the controlled Wall group and we present
the main result of this paper—an alternative proof that Hn(B,L) is the
obstruction group for controlled surgery problems (cf. Theorem 3.3). Finally,
in Epilogue we discuss controlled Wall realizations of elements in Hn+1(B,L)
on n-manifolds X.

1. Controlled and Uncontrolled Surgery Obstructions

I. In this section, we denote by B a finite connected polyhedron with funda-
mental group π = π1(B), giving rise to the group ring Λ = Z[π]. We shall
restrict ourselves only to the oriented situation, i.e. when the usual orienta-
tion map π → {±1} is 1. More precisely, we shall work in the category of
oriented topological manifolds and topological bundles. Normal degree one
maps

(f, b) : Mn → Xn

are defined as in Wall [20] (here, M in X are n-manifolds, possibly with
nonempty boundary ∂M and ∂X, respectively).
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We add to this a reference map q : X → B. In the controlled case,
it serves as the control map, where B is equipped by a metric given by an
embedding B ⊂ R

m as a subcomplex, for a sufficiently large m. For controlled
surgery, we assume that q is a UV 1-map, i.e. for each contractible open set
U ⊂ B, π1(q−1(U)) = 0 (cf. e.g. Ferry [4]).

For dim X ≥ 5, it was proved by Bestvina that q is homotopic to a
UV 1-map (cf. [1, Theorem 4.4]). In the case when ∂X 	= 0, one must also
assume that

q|∂X : ∂X → B is UV 1,

so in this case one must have dim X ≥ 6. Suppose that f restricts to a simple
homotopy equivalence on the boundary ∂X. The map f can be made highly
connected.

To complete the surgery in the middle dimension, a surgery obstruction
σ(f, b), belonging to the Wall group Ln(π), must vanish. Here, we may assume
without loss of generality that

q∗ : π1(X)
∼=−→ π1(B).

Of course, this holds if q is UV 1. If σ(f, b) = 0, then we get a simple homotopy
equivalence M ′ → X relative the boundary, if n ≥ 5, which is normally
cobordant to M → X.

Controlled surgery is much more delicate (cf. [2]). One can define an
obstruction σc(f, b), belonging to the controlled Wall group Ln(B, ε, δ) (in
the notations of Pedersen, Quinn and Ranicki [14]). Here, ε > 0 is smaller
than a certain ε0 > 0 which depends on B and dimX, and δ > 0 is determined
by ε.

When q is UV 1 and n ≥ 4, the following holds: If σc(f, b) = 0 then

(f, b) : M → X is normally cobordant to a δ-homotopy equivalence M ′ f ′
−→ X

over B. The map f ′ : M ′ → X is unique up to ε-homotopy.
This means that there exist a homotopy inverse g′ : X → M and ho-

motopies

ht : f ′ ◦ g′ ∼ IdX , gt : g′ ◦ f ′ ∼ IdM ′

such that the tracks of the homotopies

q ◦ ht, q ◦ f ′ ◦ gt

are smaller than δ, measured in the metric of B. If ∂X 	= ∅, one has to
additionally assume that f |∂M is already a δ-homotopy equivalence, and f ′

is then a δ-homotopy equivalence relative to the boundary.
There is an obvious morphism

Ln(B, ε, δ) → Ln(π),

forgetting the control, also considered as the assembly map. This is because
controlled surgeries are done in small pieces which can be glued together to
obtain the global result. We shall come back to this point in Sect. 3.

Here, we point out how one can obtain the Wall obstruction σ(f, b) from
the controlled obstruction σc(f, b) (cf. Part IV below). We shall do this for
n ≡ 0(4). This is the case which is interesting for the resolution obstruction.
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II. Let now n = 2k, where k is even. If f : M → X is highly connected then
one is left with the following exact sequence:

0 → Kk(f,Λ) → Hk(M,Λ) → Hk(X,Λ) → 0.

By duality and the Hurewicz–Whitehead theorems, one has to kill

Kk(f,Λ) ∼= πk+1(X,M)

by surgeries. Here, Kk(f,Λ) is a stable free-based Λ-module, finitely gener-
ated, and carrying a Hermitian Λ-bilinear form

λ : Kk(f,Λ) × Kk(f,Λ) → Λ

which is refined by a quadratic form μ, deduced from the bundle map b. In
Wall [20, p. 47], this is called a special Hermitian form. Equivalence classes of
such special Hermitian forms constitute the Wall group L2k(π) (cf. Wall [20,
Chapter 5] for precise constructions). Hence,

σ(f, b) = [Kk(f,Λ), λ, μ] ∈ L2k(π).

III. We are now going to describe the controlled surgery obstructions. It was
Quinn who explicitly constructed them (cf. Quinn [16, Sect. 2]). His aim
was to prove the existence of resolutions of generalized manifolds. For this
purpose, it was not necessary to construct controlled Wall groups (cf. also
Quinn [17]). A detailed construction can be found in Ferry [5]. To obtain
controlled results one has to work with the chain complex C#(X,M) instead
of homology. Here are the main steps:

Step 1. (f, b) : M → X is normally cobordant to (f, b) : M → X so that
Cg(X,M) = 0 for j ≤ k. This can be obtained for any surgery prob-
lem. To continue, we recall that manifolds M satisfy the controlled
Poincaré duality, i.e. the cap product with a fundamental cycle is a
δ-chain equivalence C#(M) → Cn−#(M), and this implies a δ-chain
equivalence

C#(X,M) → Cn+1−#(X,M)

for arbitrary δ > 0.
Step 2. Using the δ-chain equivalence

C#(X,M) → Cn+1−#(X,M)

and controlled cell trading, one proves that C#(X,M) is δ-chain
equivalent to a chain complex of the type

0 → Dk+1 → Dk → 0.

By doing surgery on small k-spheres in M, according to the
basis of Dk, one obtains a chain complex of the type

0 → Ak+1 → 0.

Let M ′ be the result of this surgery.
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Step 3. By Quinn [16, Proposition 2.4], the pair (X,M ′) is δ-homotopy
equivalent to a pair (X ′,M ′) such that

C#(X ′,M ′) =

{
Ak+1 # = k + 1
0 otherwise.

Since the chain equivalence in Step 1 is a δ-equivalence for arbitrary small δ,
we have the same situation in Step 3. So the composition

q′ : X ′ ∼−→ X
g−→ B

is a UV 1(δ)-map. This will be sufficient for our purpose (cf. e.g. Ferry [5],
Quinn [16], Yamasaki [21] for the concept of geometric algebra of chain com-
plexes, UV 1(δ), and δ-chain equivalences).

By Step 3, our original surgery problem M → X is replaced by a normal
degree one map

(f ′, b′) : M ′ → X ′,

where b′ is a bundle map between the normal bundle νM ′ of M ′ and the
bundle ξ over X ′, induced by the map X ′ → X from the normal bundle νX

of X.
The result is a finitely generated geometric Z-module Ck+1(X ′,M ′),

with obvious intersection number

λZ : Ck+1(X ′,M ′) × Ck+1(X ′,M ′) → Z,

refined by a quadratic form μZ, determined by the normal data, such that
the radius of λZ is δ-small: for basis elements

a, b ∈ Ck+1(X ′,M ′)

one has

λZ(a, b) = 0 provided that d(q′(a), q′(b)) > δ.

The equivalence class of

[Ck+1(X ′,M ′), λZ, μZ] ∈ Ln(B, ε, δ)

is the controlled surgery obstruction of the surgery problem

(f ′, b′) : M ′ → X ′.

One notes that the Wall obstructions σ(f, b) and σ(f ′, b′) in Ln(π) co-
incide.

IV. The map Ln(B, ε, δ) → Ln(π).
We are given σ(f, b) ∈ Ln(π) which we represent by the triple (Kk(f ′,Λ),

λ, μ). One first notes that

Kk(f ′,Λ) = Ck+1(X ′,M ′) ⊗Z Λ.

Let

a1, . . . ar ∈ Ck+1(X ′,M ′)

be a Z-basis. Then

ãi = ai ⊗ 1, i = 1, . . . r
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is a Λ-basis of Kk(f ′,Λ). To calculate λZ(ai, aj), one observes that the ais
are represented by small maps

(Dk+1, Sk) → (X ′,M ′),

where ∂ai : Sk → M ′ are framed immersions in general position. Let

∂ai ∩ ∂aj = {p1, . . . , pm}.

Then

λZ(ai, aj) =
m∑

i=1

εi, where εi = ±1

is the usual algebraic intersection number at the point pi.
The elements

ã1, . . . , ãr ∈ Kk(f ′,Λ) ∼= Ck+1(X̃ ′, M̃ ′)

are considered as liftings of ∂a1, . . . , ∂ar in the universal covering M̃ ′ of M ′.
Alternatively, ã1, . . . , ãr are immersed spheres in M ′ together with connecting
paths to a base point of M ′. We state our observation in the following:

Proposition 1.1. With the above assumptions and notations, we have

λ(ãi, ãj) = λZ(ai, aj)gij ∈ Λ,

where gij ∈ π is determined by the paths connecting ãi, ãj to the base point.

Proof. Since the radius of λZ is as small as we want, and the immersed
spheres are small, we may assume that their images in B are contained in a
contractible subset. By the UV 1 property we conclude that

ãi(Sk) ∪ ãj(Sk) ⊂ U ⊂ M ′ with π1(U) = {1}.

Calculating λ(ãi, ãj) as in the proof in Wall [20, Theorem 5.2], one obtains
the claim. �

The case when π is the fundamental group of the n-torus, this was
first proved by Mio and Ranicki [12, Sect. 10.1]. Since any surgery problem
(f, b) : Mn → Xn between n-manifolds without boundaries can be considered
as a controlled problem over Id : X → X, we can get the following:

Corollary 1.2. Let n ≡ 0(4). Then

σ(f, b) ∈ Ln(π1(X))

has a representation (G,λ, μ) with G a free Λ-module with basis b1, . . . , br

such that

λ(bi, bj) = nijgij , nij ∈ Z, and gij ∈ π1(X).

Remark 1.3. If ∂M, ∂X are nonempty, the restriction f |∂M has to be a δ-
controlled homotopy equivalence. In the case of Id : X → X as the control
map this implies that f |∂M is a homeomorphism. However, if f |∂M is a δ-
homotopy equivalence for some UV 1-map q : X → B, then the proof goes
through.
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2. L-Spectra and L-Homology

2.1. On the Geometric Construction of the L-Spectrum

The geometric L-spectrum was introduced in Quinn [15] as a semi-simplicial
Ω-spectrum. Details can also be found in Nicas [13] which we shall follow. We
define surgery spaces Lr(B), where B is a polyhedron. We are only interested
in the case B = {∗} and we shall write Lr = Lr{∗}.

An s-simplex σ ∈ Lr is a normal degree one map between (r + s)-
dimensional oriented (s + 3)-ads of manifolds

(M,∂0M, . . . , ∂sM,∂s+1M) → (X, ∂0X, . . . , ∂sX, ∂s+1X)

such that f restricted to ∂s+1M is a homotopy equivalence. To each σ belongs
a reference map of (s + 3)-ads

(X, ∂0X, . . . , ∂sX, ∂s+1X) → (Δs, ∂0Δs, . . . , ∂sΔs,Δs)

to the standard s-simplex Δs. Note that the last face ∂s+1X maps to the
interior of Δs, and plays a special role in the constructions.

Let Lr(s) be the set of s-simplices. Then Lr is a pointed semisimplicial
complex with base points the empty problem and there is a homotopy equiv-
alence to the simplicial loop space of Lr−1 (cf. Nicas [13, Proposition 2.2.2]):

Lr → ΩLr−1.

The collection of surgery spaces {Lr, r ∈ Z} defines a spectrum L
+ such

that its homotopy groups πn(L+) are the Wall groups Ln(1). In the notation
of [18], L

+ = L〈1〉, whereas L denotes the periodic L-spectrum with the
0-term = Z × G/TOP .

To do this we have to address two problems. The first one comes from
the following easily proved (and well known) lemma.

Lemma 2.1. The surgery space L0 defined above satisfies π0(L0) = {0}.
Proof. Recall, that we are working in the simplicial category. A typical ele-
ment σ ∈ L0(0) is a map of degree one of the type {±y1, . . . ,±yk} → {x}.
By the degree one property one can reorder it as follows:

{y1,+y2,−y2, . . . ,+yl,−yl} → {x}.

The 1-simplex {I1, . . . , Il} → J , with Ij denoting the interval with ∂Ij =
{yj ,−yj}, shows that σ is equivalent to ({y1} → {x}). Here we view J as a
degenerate 1-simplex consisting of a single point. Moreover, ({y} → {x}) is
equivalent to the empty set. Therefore, π0(L0) = 0. �

The second problem arises from comparison with the Wall groups in
Wall [20, Chapter 9] (cf. the proof of Nicas [13, Proposition 2.2.4]). The point
is that in Wall [20], Poincaré duality spaces are used as targets, whereas in [13]
manifolds are used. This point was not addressed in Nicas [13]. It might be
not the same for a generic polyhedron B, but it gives the same result when
B = {∗}.

To see this, we introduce the surgery spaces LPD
r in the same way as Lr,

but Poincaré-ads as targets (this was used in Quinn [15]). One also proves that
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L
PD
r is homotopy equivalent to ΩL

PD
r−1. There is an obvious map Lr → L

PD
r ,

and

π0(Lr) ∼= π0(LPD
r ) = {0}.

We can define Ω-spectra L
+ and L

PD using this.
To match up with the usual notation, we write

L
+ = {L−r, r ≥ 0}, L

PD = {LPD
−r , r ≥ 0}.

Both spectra are connected and L
+ becomes L〈1〉 in the notations of Ran-

icki [18].

Proposition 2.2. The map L
+ → L

PD is a homotopy equivalence.

Proof. We shall show that the induced morphism

πn(L+) → πn(LPD)

is an isomorphism for n ≥ 0. The assertion will then follow by the Whitehead
theorem.

Observe that

πn(LPD) ∼= πn+r(LPD
−r ) ∼= πn(LPD

0 ) ∼= π0(Ωn
L

PD
−n).

However, the last one coincides with the group L1
n({∗}), considered by Wall

[20, Chapter 9]. We begin with the higher dimensional case.

Case I: n ≥ 5. Wall defines a restricted set

L2
n({∗}) ⊂ L1

n({∗})

consisting of simply connected surgery problems (an adic version of this was
considered by Nicas [13, Chapter 2]). He shows that

L2
n({∗}) → L1

n({∗})

is bijective for n ≥ 4 (cf. Wall [20, Theorem 9.4], for the adic case cf. Nicas [13,
Proposition 2.2.7]). A corollary of this is that the surgery obstruction map

Θ : L1
n({∗}) → Ln (= Wall group of π1 = {1})

is an isomorphism for n ≥ 5 (cf. [20, Corollary 9.4.1.]). Since the composition

Ln = πn(L+) → πn(LPD) ∼= L1
n({∗}) Θ−→ Ln

is the identity, this proves that we indeed have an isomorphism

πn(L+)
∼=−→ πn(LPD)

for all n ≥ 5.

Case II: n = 4. The surgery obstruction map Θ is defined for n = 4 and the
composition

L4 = π4(L+) → π4(LPD) ∼= L1
4({∗}) Θ−→ L4

is the identity. Therefore,

π4(L+) → π4(LPD)
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is injective. Since,

L2
4({∗})

∼=−→ L1
4({∗}),

we can represent an element in π4(LPD) by

(f, b) : M → X with π1(X) = {1}.

Assume first that ∂X = ∅. Then G = H2(X,Z) is Z-free and the intersection
form

λX : G × G → Z

is unimodular. By Freedman [6, Theorem 1.5], there is a simply-connected 4-
manifold M ′ realizing (G,λX). However, by Milnor [11], M ′ is homotopically
equivalent to X; therefore,

(f, b) : M → X

is equivalent to the surgery problem

(f ′, b′) : M → M ′

arising from π4(L+). Now assume that ∂X 	= ∅. Then

f |∂M : ∂M → ∂X

is a homotopy equivalence. We obtain a closed surgery problem by glueing

Id : M → M and f : M → X

along the boundary

N = M ∪
Id

M
Id∪f−−−→ M ∪

f |∂M

X = Y.

By the van Kampen theorem, π1(Y ) = {1}. It is now easy to see that the
class of N → Y represents the same as the classes of

(f, b) : M → X and Id : M → M

in L1
4({∗}) (cf. Supplement below). However, Id : M → M represents the

trivial class, so we are back in the closed case.

Case III: n = 3. (See also a short proof in Supplement below.) Let

(f, b) : M3 → X3

be given. As in the case n = 4, we may assume that ∂X = ∅. There is a
commutative diagram of well-known isomorphisms of Hurewicz maps between
cobordism groups

Ω3(X) ΩPD
3 (X)

H3(X,Z)

μ
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It follows that μ is an isomorphism and since f is of degree one, M is PD-
cobordant to X over X.

Let q : Z → X be a PD4-complex over X with

q|X = Id and q|M = f.

The Spivak fibration νZ of Z restricts to the Spivak fibration νX and νM ,
and we have the maps of the m-sphere into the Thom spaces

(Sm × I, Sm × {0}, Sm × {1}) → (TνZ , T νX , T νM ).

Since M is a manifold, let us for simplicity write νM also for the stable normal
bundle of M ⊂ Sm, i.e.

b : νM → ξ,

where ξ is a certain topological reduction of νX . �

Claim. If νZ has a topological reduction ω which restricts to ξ on X, then

(f, b) : M → X

is equivalent to a normal degree one map

(f ′′, b′′) : M ′′ → M, where b′′ : νM ′′ → η and η = ω|M .

This is obtained by taking the transverse inverse images of the compo-
sition of (Z,X,M):

(Sm × I, Sm × {0}, Sm × {1}) → (TνZ , T νX , T νM ) h−→ (Tω, Tξ, Tη),

where h comes from the reduction ω of νZ .
Now, the obstructions to existence of such ω belong to

Hr+1(Z,X, πr(G/TOP));

hence, there is only one in

H3(Z,X, π2(G/TOP)) ∼= H3(Z,X,Z2).

Since X ⊂ Z
q−→ X is the identity, the homomorphism

Hr(Z,Z2) → Hr(X,Z2)

is surjective, i.e. the short cohomology sequence

0 → H3(Z,X,Z2) → H3(Z,Z2) → H3(X,Z2) → 0

is exact.
The image of the obstruction in H3(Z,Z2) is 0 because νz has topolog-

ical reduction (cf. Hambleton [7]). Therefore, such ω exists which proves the
surjectivity of

{0} = π3(L+) → π3(LPD),

i.e. π3(LPD) = {0}.

Case IV: n = 1, 2. These two cases are obvious since for n = 1, 2 all PD-
complexes are manifolds.

This completes the proof of Proposition 2.2. �
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Supplement. We add two remarks here.
1. In the case n = 4 and ∂X 	= ∅, a normal cobordism between

N = M ∪
Id

M → M ∪
f |∂M

X, M
(f,b)−−−→ X, and Id : M → M

can be constructed as follows: replace X by

X ′ = X ∪
f |∂M

∂M × I

being homotopy equivalent to X with a collared boundary ∂M ⊂ X ′. Then
glue

M × I
·∪ X ′ × I at M × {0} ∪ X ′ × {0}

along the collar

∂M × [1 − ε, 1] ⊂ M ∩ X ′.

This gives a PD5-complex V 5. A similar construction on

M × M
·∪ M × I

gives a 5-manifold W 5. An obvious degree one normal map can be constructed
from IdM and (f, b). Note that

∂W = M
·∪ M

·∪ M ∪
Id

M and ∂V = X
·∪ M

·∪ M ∪
f |∂M

X.

2. In the case n = 3 it seems that one can replace the PD4-complex Z by
Z ′ with ∂Z ′ = ∂Z and π1(Z ′) = {1} by Poincaré surgeries. The obstruction
to finding a reduction ω of νZ′ such that

ω|X = ξ and ω|M = νM

belongs to

H3(Z ′,M
·∪ X,L2) ∼= H1(Z ′, L2) = 0.

Then we get a normal bordism between

(f, b) : M → X and Id : M → M ;

hence, the class of (f, b) is trivial.

2.2. Concerning the Elements of Hn(B,L)
We shall write as before L for the periodic spectrum L〈0〉, and L

+ = L〈1〉
for its connective covering spectrum. Recall the fibration sequence (cf. Ran-
icki [18, Sect. 15])

L
+ → L → K(L0, 0),

where K(L0, 0) is the Eilenberg–Mac Lane spectrum. We shall study the
homology of this sequence in Sect. 2.3.

Here, we want to describe elements x ∈ Hn(B,L), where B ⊂ Sm is
a finite polyhedron. We follow Ranicki [18, Sect. 12], to represent x by a
cycle, using a dual-cell decomposition of Sm. This is justified by Ranicki [18,
Remark 12.5].
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If σ is a simplex of Sm, let D(σ, Sm) be its dual cell. It has a canonical
(m − |σ| + 3)-ad structure, where |σ| = dimσ and

m − |σ| = dimD(σ, Sm).

The element x is then represented by a simplicial map

(Sm, Sm\B) → (Ln−m, ∅)

(one should merely replace Sm\B with the supplement of B, as done in
Ranicki [18]). Let us first consider the case when

x : (Sm, Sm\B) → (L+
n−m, ∅)

represents an element of Hn(B,L+), i.e.

x(σ) ∈ L
+
n−m(m − |σ|).

However, this is the surgery space described above, i.e. x(σ) is a degree one
normal map

(fσ, bσ) : Mn−|σ|
σ → Xn−|σ|

σ

between (n−|σ|)-dimensional (m−|σ|+3)-ads with a reference map X
n−|σ|
σ →

D(σ, Sm). The cycle condition implies that they can be assembled (the col-
imit) to a degree one normal map (f, b) : Mn → Xn with boundaries ∂M, ∂X,
so that f |∂M is a homotopy equivalence, together with a reference map
X → B. Note that x(σ) = ∅ if σ /∈ B, and X → B is the colimit of all

Xn−|σ|
σ → D(σ, Sm) ⊂ Sm

with a retraction onto B (cf. Nicas [13, Theorem 3.3.2], or Laures and Mc-
Clure [10, Proposition 6.6]). Moreover, the boundary map ∂M → ∂X is the
colimit of the various homotopy equivalences

∂m−|σ|+1M
n−|σ|
σ → ∂m−|σ|+1X

n−|σ|
σ .

To consider the general case x ∈ Hn(B,L) we recall two properties:

(a) (Periodicity): Suppose that dimB − 1 ≤ r. Then there is a natural
isomorphism Hr(B,L) → Hr+4(B,L) (cf. Ranicki [18, p. 289-290]);

(b) If dim B < r, then Hr(B,L+)
∼=−→ Hr(B,L).

Both properties also easily follow from the Atiyah–Hirzebruch spectral
sequence

Hp(B, πq(L))
p+q=r−−−−→ Hr(B,L),

and the periodicity of the L-spectrum:

Lr
∼= Ls if r − s ≡ 0(4).

To represent x ∈ Hn(B,L), we choose r sufficiently large with r − n ≡
0(4), and represent x as an element of Hr(B,L) ∼= Hr(B,L+) as above.
Assembling (colimit) then gives a degree one normal map (f, b) : P r → Qr

with the reference map q : Qr → B, and f |∂P a homotopy equivalence.
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A specific construction of the degree one normal map P r → Qr is given
using the identification Hn(B,L) with the controlled Wall group Ln(B, ε, δ),
as established by Pedersen, Quinn and Ranicki [14]. Here are some details.
Suppose that also n ≡ 0(4). Then x corresponds to a triple {G,λZ, μZ} as
described in Sect. 1. It can be considered as an element of Lr(B, ε, δ) by the
periodicity, r − n ≡ 0(4), and it can be realized in a controlled way, in the
sense of Wall on the boundary ∂N of a regular neighbourhood N ⊂ R

r of
B ⊂ R

r.
We obtain P r

0 which can be written as

P r
0 = N ∪ ∂N × I ∪ {∪kD

r
2 × D

r
2
}

.

Here, k = rank G, and λZ, μZ are realized as framed immersions

S
r
2 × I → ∂N × I.

The handles D
r
2 ×D

r
2 are attached to the top along the framed embeddings.

By the controlled Hurewicz–Whitehead theorem and the α-approximation
theorem one gets a degree one normal map P r

0 → N of r-manifolds with
boundary, such that ∂P r

0 → ∂N is a homeomorphism. Then we can close this
in the usual way to get

P r = P r
0 ∪∂ N → N ∪∂ N = Qr.

It is more convenient to consider P r
0 → N and we shall denote it by

P r → N with ∂P r → ∂N a homeomorphism. Let q : N → B be the re-
traction. It can be made transverse to the dual cell decomposition, the map
P r → N is in the natural way a surgery mock bundle (cf. Nicas [13, Sect. 3.2])

Remark 2.3. If conversely, we are given a degree one normal map (f, b) :
P r → Qr with the reference map q : Qr → B, one can define an element
x ∈ Hr(B,L+) by splitting (f, b) into pieces using transversality of q with
respect to the dual cell-decomposition of B ⊂ Sm.

2.3. The Homomorphism Hn(B,L) → Hn(B,L0)

Without loss of generality we may assume that dim B = n. Let B(n−1) be
the (n − 1)-skeleton of B. This implies that

Hn(B,L) ∼= Zn(B) ⊗ L0 ↪→ Cn(B) ⊗ L0
∼= Hn(B,B(n−1), L0)

is injective. Here, Zn(B) are the n-cycles of B and Cn(B) are the n-chains.
Moreover, from the Atiyah–Hirzebruch spectral sequence one easily gets that

Hn(B,B(n−1),L)
∼=−→ Hn(B,B(n−1), L0).

Lemma 2.4. The natural map

Hn(B,L) → Hn(B,B(n−1),L)

factorizes as

Hn(B,L) → Hn(B,L0) ⊂ Hn(B,B(n−1), L0) ∼= Hn(B,B(n−1),L).
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Proof. This follows by the commutativity of the diagram:

−−−−→ Hn(B,L) −−−−→ Hn(B,B(n-1),L) −−−−→⏐⏐	 ⏐⏐	∼=

−−−−→ Hn(B,L0) −−−−→ Hn(B,B(n-1),L0) −−−−→
induced by the map of spectra L → K(L0, 0). �

To prepare the next lemma we must study the spectral sequence

E2
pq

∼= Hp(B,Lq) ====⇒
p+q=m

Hm(B,L)

in more detail. First, we note that

E∞
n,m−n ⊂ E2

n,m−n,

since, Hp(B,Lq) = 0 for p > n. Moreover,

E∞
n,m−n = Fn,m−n/Fn−1,m−n+1,

where

Fn,m−n = Im(Hm(B(n),L) → Hm(B,L)) ∼= Hm(B,L).

We consider the composite map

α : Hm(B,L) → E∞
n,m−n ⊂ E2

n,m−n
∼= Hn(B,Lm−n) ∼= Zn(B) ⊗ Lm−n.

Lemma 2.5. Let B ⊂ Sm, dim B = n, and m − n ≡ 0(4). Then

Hn(B,L) −−−−→ Hn(B,L0) ∼= Zn(B) ⊗ L0⏐⏐	∼= ∼=
⏐⏐	β

Hm(B,L) −−−−→
α

Zn(B) ⊗ Lm-n

commutes. Here,

Hn(B,L)
∼=−→ Hm(B,L)

and

β : Zn(B) ⊗ L0

∼=−→ Zn(B) ⊗ Lm−n

are isomorphisms induced by periodicity.

The proof follows by the spectral sequences. �
We now describe the image of x ∈ Hn(B,L) in

Hn(B,L0) ∼= Zn(B) ⊗ L0 ⊂ Cn(B) ⊗ L0.

It can be written as
∑

kτ · τ , where τ ranges over the n-simplices of B.

Step 1. Consider x ∈ Hm(B,L+) ∼= Hm(B,L) ∼= Hn(B,L).
Step 2. Represent x as the cycle x : (Sm, Sm\B) → (L0, ∅).
Step 3. Consider x(τ) : (fτ , bτ ) : Pm−n

τ → Qm−n
τ for τ < B, |τ | = n.
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One observes that ∂Qm−n
τ = ∂Pm−n

τ = ∅ because its boundaries are
composed of elements x(ρ), with |ρ| > n (because the boundary ∂D(τ, Sm)
is formed from cells of type D(ρ, Sm), |ρ| > n). Now dim B = n, so (fτ , bτ )
is a closed surgery problem.

To summarize, we have obtained

Corollary 2.6. Let dim B = n, B ⊂ Sm, with m − n ≡ 0(4). An element
x ∈ Hn(B,L) has the image in

Hn(B,L0) ∼= Zn(B) ⊗ L0
∼= Zn(B) ⊗ Lm−n

equal to ∑
τ<B(n)

nττ

with nτ = image of σ(fτ , bτ ) under

Lm−n(π1(Qm−n
τ )) → Lm−n

∼= L0.

Supplement to Lemma 2.5 and Corollary 2.6.
The diagram in Lemma 2.5 can be rewritten as

Hn(B,L) −−−−→ Hn(B,L0)⏐⏐	∼=
⏐⏐	∼=

Hm(B,L) −−−−→ Hn(B,Lm-n),
where the map

Hm(B,L) → Hn(B,Lm−n)

is the composition of

Hm(B,L) ∼= Hm(B,L〈m − n〉)
(cf. Ranicki [18, p. 156]) and

Hm(B,L〈m − n〉) → Hn(B,Lm−n)

(cf. Ranicki [18, p. 289]). Note also the following commutativity:

Ln(B, ε, δ) ∼= Hn(B,L)⏐⏐	∼=
⏐⏐	∼=

Lm(B, ε, δ) ∼=Hm(B,L).
The above calculation resulting in Corollary 2.6 follows from the com-

positions

Hn(B,L) → Hm(B,L) → Hn(B,Lm−n)

of the above diagrams.
For the other composition, one has to determine the map Hn(B,L) →

Hn(B,L0). This was done by Ranicki [18]. In Prop. 15.3(II) therein an explicit
formula is established using, however, the algebraic version of the L-spectrum.
In fact, Proposition 15.3(II) is the formula for the case of the symmetric L-
spectrum, but it is similar for the quadratic L-spectrum.
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3. Hn(B,L) as the Controlled Wall Group

We mentioned in Sect. 1 the controlled Wall group Ln(B, ε, δ). It can be
defined for any n ≥ 0. As before, we assume that B is a finite polyhedron.

Based on the work of Yamasaki [22], Quinn, Pedersen and Ranicki [14]
proved the following result.

Theorem 3.1. For finite dimensional ANRs there is a morphism Hn(B,L) →
Ln(B, ε, δ) which is an isomorphism for suitable ε > 0 and δ > 0.

Remark 3.2. In the paper by Pedersen, Quinn and Ranicki [14], L is the
spectrum of quadratic algebraic Poincaré ads, and the morphism mentioned
above is an assembling map. The proof of the theorem consists of showing
that an element of Ln(B, ε, δ) can be split into pieces giving an element of
Hn(B,L). Now, the algebraic L-spectrum is homotopy equivalent to the geo-
metric one (cf. Ranicki [18]), so Hn(B,L) can be considered as the controlled
Wall group.

As in the classical surgery theory, the controlled version leads to the
controlled surgery sequence (cf. Ferry [5, Theorem 1.1.]). This involves the
controlled structure set for which one needs the ”stability properties” as
proved in Ferry [5, Theorem 10.2].

We shall now present the main result of this paper— an alternative proof
that Hn(B,L) is the obstruction group for controlled surgery problems.

Theorem 3.3. Let (f, b) : Mn → Xn be a degree one normal map between
manifolds, n ≥ 5, and π : Xn → B a UV 1-map. Then an element

σc(f, b) ∈ Hn(B,L)

is defined so that σc(f, b) = 0 if and only if (f, b) is normally cobordant to a
δ-homotopy equivalence, uniquely up to ε-homotopy.

Remark 3.4. Note that the UV 1-condition for π is no restriction when n ≥ 5.
The theorem holds for n = 4, if the UV 1-condition is satisfied.

Proof. The map π : X → B can be assumed to be transverse to the dual
cells of B (cf. Cohen [3]), i.e.

π−1(D(σ,B)) = Xn−|σ|
σ

is an (n − |σ|)-dimensional submanifold. If we embed B ⊂ Sm, for m suffi-
ciently large, we have

π−1(D(σ,B)) = π−1(D(σ, Sm)),

and X
n−|σ|
σ has the corresponding (m−|σ|+3)-ad structure. By transversality

we define

Mn−|σ|
σ = f−1(Xn−|σ|

σ ).

The restrictions of b gives a family

{(fσ, bσ) : Mn−|σ|
σ → Xn−|σ|

σ |σ ⊂ B}
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which obviously defines a cycle

z : (Sm, Sm\B) → (Ln−m, ∅),

i.e. an element

[z] = σc(f, b) ∈ Hn(B,L).

We now suppose that [z] = 0, i.e. there is a simplicial map

w : (Sm, Sm\B) × Δ1 → (Ln−m, ∅)

with w(0) = z, and w(1) = ∅ (cf. Ranicki [18, Sect. 12]). This means that
the various (m − |σ| + 3)-ads M

n−|σ|
σ → X

n−|σ|
σ normally bound. Since π is

UV 1, we can assume that these are simply connected surgery problems. If

fσ|∂Mσ
: ∂Mσ → ∂Xσ

is already a homotopy equivalence, it follows that (fσ, bσ) is normally cobor-
dant to a homotopy equivalence. The proof now proceeds by induction on
n − |σ|.

Let

Xq =
⋃

|σ|≥q

Xn−|σ|
σ and Mq =

⋃
|σ|≥q

Mn−|σ|
σ ,

hence

Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 ⊂ X0 = X,

similarly for M .

The induction hypothesis The restriction f to Mq is a homotopy equivalence
with the inverse f : Xq → Mq such that the homotopies of

f ◦ f ∼ IdXq
and f ◦ f ∼ IdMq

are controlled, i.e. when restricted onto X
n−|σ|
σ (resp. M

n−|σ|
σ ) they have

tracks over D(σ,B) when projected down to B. More precisely,

f |Mσ
: Mn−|σ|

σ → Xn−|σ|
σ

is a homotopy equivalence with the inverse

f
∣∣
X

n−|σ|
σ

: Xn−|σ|
σ → Mn−|σ|

σ ,

and the homotopies above restrict to homotopies of

f |Mσ
◦ f

∣∣
Xσ

∼ Idxσ
and f

∣∣
Xσ

◦ f |Mσ
∼ IdMσ

over D(σ,B).

The inductive step Suppose we are given τ ⊂ B with |τ | = q−1, i.e. dimXτ =
dimMτ = n − q + 1, and

∂Mτ =
⋃
σ

Mσ, ∂Xτ =
⋃
σ

Xσ

with |σ| = q, and σ a face of τ . By the inductive hypothesis, f |Mσ
is a homo-

topy equivalence. These can be glued together by the well known homotopy
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theory (cf. Hatcher [8], or Sullivan [19, Lemma H]) to give a homotopy equiv-
alence f |∂Mτ

: ∂Mτ → ∂Xτ . So let

Fτ : (Vτ ,Mτ ,M ′
τ ) → (Xτ × I,Xτ × 0,Xτ × 1)

be a normal cobordism as explained above such that Fτ |Mτ
= fτ , Fτ |M ′

τ
= f ′

τ

are homotopy equivalences, and because surgery was done in the interior of
Mτ , we have that

Fτ |∂Vτ
: ∂Vτ = Mτ ∪ ∂Mτ × I ∪ M ′

τ → Xτ × {0} ∪ ∂Xτ × I ∪ Xτ × {1}
coincides with

fτ ∪ (fτ × I) ∪ f ′
τ

(note that f ′
τ |∂Mτ

= fτ |∂Mτ
).

We denote by f
′
τ : Xτ → Mτ a homotopy inverse of f ′

τ . In our con-
struction we add the cylinders ∂Mτ × I and ∂Xτ × I to M ′

τ and Xτ × 1, and
again denote them by M ′

τ and Xτ × 1. Then f and f ′
τ can be glued to give

a homotopy equivalence

f ∪ f ′
τ : Mq ∪ M ′

τ → Xq ∪ Xτ .

This can be done for every τ ⊂ B with |τ | = q − 1. If Mτ ∩ Mτ ′

are nonempty, they intersect in a common face Mσ, resp. Xσ, where we
have the map f . Glued together they give a homotopy equivalence f ′ :
Mq−1 → Xq−1.

Lemma 3.5. There is a homotopy inverse f
′

: Xq−1 → Mq−1 such that

f
′∣∣∣

Xq

= f , and f
′∣∣∣

Xτ

is a homotopy inverse of f ′
τ for every τ ⊂ B with

|τ | = q − 1.

Proof. We fix τ ⊂ B, |τ | = q − 1. First note that f
∣∣
∂Xτ

∼ f
′
τ

∣∣∣
∂Xτ

(where f
′
τ

is the above introduced inverse of f ′
τ ). This can be seen as follows:

f ◦ f
∣∣
∂Xτ

∼ Id∂Xτ
and fτ ◦ f

′
τ

∣∣∣
∂Xτ

∼ Id∂Xτ

implies

fτ ◦ f
∣∣
∂Xτ

= f ◦ f
∣∣
∂Xτ

∼ fτ ◦ f
′
τ

∣∣∣
∂Xτ

.

However, fτ is a homotopy equivalence, hence f
∣∣
∂Xτ

∼ f
′
τ

∣∣∣
∂Xτ

.

Let

Ht : ∂Xτ → ∂M ′
τ = ∂Mτ

be a homotopy such that

H0 = f
∣∣
∂Xτ

and H1 = f
′
τ

∣∣∣
∂Xτ

.
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By the Homotopy Extension Property we obtain a homotopy H̃t : Xτ × I →
M ′

τ such that

Xτ × I

⋃

∂Xτ × I ∪ Xτ × {1}
Ht ∪ f

′
τ

� ∂M ′
τ ∪ M ′

τ = M ′
τ

H̃
t

�

commutes. Hence,

f̃τ = H̃0 : Xτ → M ′
τ

is a homotopy equivalence such that f̃τ

∣∣∣
∂Xτ

= f
∣∣
∂Xτ

. Hence,

f ∪ f̃τ : Xq ∪ Xτ → Mq ∪ M ′
τ

is a homotopy inverse of f ′ and it has the desired property. Since at the
intersection Xτ ∩ Xτ ′ the maps f̃τ , f̃τ ′ coincide with f , we can glue them
together to get f

′
: Xq−1 → Mq−1 as claimed. �

In order to complete the proof of Theorem 3.3. it remains to prove that
there are homotopies of f ′ ◦ f

′ ∼ IdXq−1 , and f
′ ◦ f ′ ∼ IdMq−1 with small

tracks. We shall construct such a homotopy for f ′ ◦ f
′ ∼ IdXq−1 . The other

case is similar.
We let Ht : Xq × I → Xq be the homotopy of f ◦ f ∼ IdXq

given by the
inductive hypothesis, so ht = Ht|∂Xτ

is a homotopy of f ◦ f
∣∣
∂Xτ

∼ Id|∂Xτ
.

Recall that Xq ∩ Xτ = ∂Xτ , so f ′
τ ◦ f

′
τ coincides with h0 = fτ ◦ fτ on ∂Xτ .

We consider

ht ∪ f ′
τ ◦ f

′
τ : ∂Xτ × I ∪ Xτ × {0} → Xτ

and apply the homotopy extension property to obtain h′
t = Xτ × I → Xτ

such that
Xτ × I

⋃

∂Xτ × I ∪ Xτ × {0} � Xτ

h ′
t

�

The map h′
1 : Xτ → Xτ is homotopic to IdXτ

, since h′
0 = f ′

τ ◦ f
′
τ and it

satisfies h′
1|∂Xτ

= h1 = Id∂Xτ
.

It follows from Hatcher [8, Proposition 0.19] that h′
1 is homotopic rel-

ative ∂Xτ to IdXτ
by a homotopy h′′

t (note that here IdXτ
is a homotopy

inverse of h′
1). We can therefore compose the homotopies h′

t and h′′
t in the

usual way to get a homotopy

(h′ ∗ h′′)t : Xτ × I → Xτ
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which coincides with Ht on Xq ∩ Xτ , giving a homotopy

Ht ∪ (h′ ∗ h′′)t : (Xq ∪ Xτ ) × I → Xq ∪ Xτ

between (f ◦ f) ∪ (f ′
τ ◦ f ′

τ ) and Id.
If τ, τ ′ ⊂ B are (q+1)-simplices such that Xτ ∩Xτ ′ 	= ∅, they intersect in

a common face σ, |σ| = q, so the above-constructed homotopies coincide with
Ht, i.e. we can glue them together to get the desired controlled homotopies.

One notes that the tracks can be arbitrary small (measured in B) if
we use an arbitrary small cell decomposition of B. This proves the inductive
step.

We have in particular to consider the low-dimensional cases n, n − 1,
and n − 3, because surgery does not apply (note that in dimension 4 one has
to apply Freedman’s result).

By the degree one property we can assume that Mn = Xn. For n−i, 1 ≤
i ≤ 3, the pieces

(fτ , bτ ) : M j
τ → Xj

τ , 1 ≤ j ≤ 3,

are special, namely ∂Xj
τ is a (j − 1)-sphere, because π is UV 1. We can close

∂Xj
τ by a j-disk to get a closed simply connected j-manifold, i.e. a j-sphere.

By the inductive hypothesis, ∂M j
τ must also be a (j − 1)-sphere so M j

τ can
be closed.

The closed problem M j
τ → Xj

τ bounds a problem W j+1
τ → V j+1

τ (be-
cause σc(f, b) = 0). Deleting the (j+1)-disks one obtains a normal cobordism
between

M j
τ → Xj

τ and M ′j
τ = Sj ∼=−→ Xj

τ = Sj .

We can now choose a degree one map

(V j+1
τ \D̊j+1,Xj

τ , Sj) → (Sj × I, Sj × {0}, Sj × {1})

and obtain a composition

Fτ : (W j+1
τ \D̊j+1,M j

τ , Sj) → (Xj
τ × I,Xj

τ × {0},Xj
τ × {1}).

With this map Fτ , the proof proceeds as above, and Theorem 3.3 is finally
proved. �

Epilogue

We shall conclude this paper by a remark on the controlled Wall realization.
In our earlier paper [9], we showed that the controlled structure set of a
manifold X with control map q : X → B is a subgroup of Hn+1(B,X,L). The
controlled Wall action of Hn+1(B,L) on it is then nothing but the canonical
map

Hn+1(B,L) → Hn+1(B,X,L)

of L-homology groups.
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