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The primary purpose of this paper concerns the relation of (compact) generalized 
manifolds to finite Poincaré duality complexes (PD complexes). The problem is 
that an arbitrary generalized manifold X is always an ENR space, but it is not 
necessarily a complex. Moreover, finite PD complexes require the Poincaré duality 
with coefficients in the group ring Λ (Λ-complexes). Standard homology theory 
implies that X is a Z-PD complex. Therefore by Browder’s theorem, X has a Spivak 
normal fibration which in turn, determines a Thom class of the pair (N, ∂N) of a 
mapping cylinder neighborhood of X in some Euclidean space. Then X satisfies 
the Λ-Poincaré duality if this class induces an isomorphism with Λ-coefficients. 
Unfortunately, the proof of Browder’s theorem gives only isomorphisms with 
Z-coefficients. It is also not very helpful that X is homotopy equivalent to a 
finite complex K, because K is not automatically a Λ-PD complex. Therefore it 
is convenient to introduce Λ-PD structures. To prove their existence on X, we use 
the construction of 2-patch spaces and some fundamental results of Bryant, Ferry, 
Mio, and Weinberger. Since the class of all Λ-PD complexes does not contain all 
generalized manifolds, we appropriately enlarge this class and then describe (i.e. 
recognize) generalized manifolds within this enlarged class in terms of the Gromov–
Hausdorff metric.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with compact oriented generalized manifolds, mostly without boundary, and of dimension 
≥ 5. Topological manifolds belong to this class. Conversely, by the well-known characterization theorem of 
Edwards [14] and the resolution theorem of Quinn [24,25], topological manifolds can be recognized in the 
class of generalized manifolds. This is briefly described in Section 2, thereby stabilizing basic notations used 
later on.
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A generalized manifold Xn has the fundamental class [X] ∈ Hn(X, Z) and it satisfies the Poincaré duality 
(PD) with respect to Z coefficients. However, it is not a Poincaré duality complex in the sense of Wall [30]
(see also Appendix). Therefore it is appropriate to introduce the concept of the simple Λ-PD structure on X, 
where Λ = Z[π1(X)] denotes the integral group ring of π1(X). It consists of a (simple) symmetric algebraic 
Poincaré chain complex (D#, Φ) together with a (simple) chain equivalence

α : (D#,Φ) → (S#(X̃),Δ[X]),

where S#(X̃) denotes the singular chain complex of the universal cover X̃ of X. We introduce this in 
Section 3.2.

To construct such a structure the following is convenient: Let N be a mapping cylinder neighborhood 
of an embedding X ⊂ Rm, and r : ∂N → X the retraction. Then X is a Z-PD space, but by Browder’s 
theorem [1, Theorem A], the map r : ∂N → X has the structure of a spherical fibration, hence there is a 
Thom class, represented by a cycle

[U ] ∈ Cm−n(N, ∂N,Z).

Here, C#(·, G) stands for the cellular chain complex with coefficients in G. Let

[Σ] = [U ] ∩ [N ] ∈ Cn(N,Z),

where [N ] ∈ Cm(N, ∂N, Z) is the fundamental cycle of the manifold N . It is not obvious that C#(N, Λ) =
C#(Ñ), together with [Σ], determines a symmetric Poincaré chain complex (see Remark 3.7 in Section 3.2). 
In Section 3.3 we present a different approach, based on constructions used in [4,5].

Roughly speaking, one approximates X by Poincaré duality complexes K, obtained by gluing manifolds 
Wn and V n along a controlled homotopy equivalence y : ∂W → ∂V between their boundaries. Applying 
Chapman’s extensions of the Whitehead torsion theory to ANR spaces [9], one obtains symmetric simple 
Λ-PD chain complexes (D#, Φ) with simple chain equivalences

α : (D#,Φ) → (S#(X̃),Δ[X]).

In Section 3.4 these are called simple Λ-Poincaré duality types on X.
Section 4 is an attempt to distinguish generalized manifolds. This requires a class of spaces containing 

all generalized manifolds, and then describe generalized manifolds in this class. In Section 4.2 we introduce 
an appropriate class B consisting of compact separable metric ENR’s B satisfying the Z-Poincaré duality. 
Moreover, these spaces B come equipped by simple Λ-PD types. Of course, this class contains the class of 
finite Λ-PD complexes in the sense of Wall.

The main theorem of [5, Theorem 9.1] leads to the following important characterization of generalized 
manifolds:

Characterization Theorem. If X ∈ B has formal dimension ≥ 6 then X is a generalized n-manifold if the 
following is satisfied:

(1) either X is the limit of an inverse sequence

X = lim←−−{Kε1 ← Kε2 ← . . . ← Kεi ← . . .}

of εi-controlled Λ-PD complexes of dimension n and controlled homotopy equivalences Kεi+1 → Kεi

(2) or X is the cell-like-image f : Y → X of a generalized manifold Y of type (1).
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In Section 4.1 we recall some definitions and facts about controlled PD spaces, controlled homotopy 
lifting properties and approximate fibrations. In summary, this leads to the formulation that “generalized 
manifolds are controlled Λ-Poincaré complexes”, which however is not appropriate.

It follows from the Daverman and Husch theorem [13] that X is a generalized manifold if r : ∂N → X

is an approximate fibration, where ∂N is the boundary of a mapping cylinder neighborhood N of X ⊂ Rm

(see also [24, Example 2.3]). Hence a necessary and sufficient condition for X to be a generalized manifold 
is that the spherical Spivak fibration νX of X reduces to an approximate fibration in a controlled manner, 
i.e. that there is a controlled homotopy equivalence ∂EνX → ∂N over X. This leads to the following:

Recognition Criterion. Suppose that B belongs to the class B. Then B is a generalized manifold if B admits 
an ε-Λ-PD structure for all ε > 0.

In Section 4.3 we characterize generalized manifolds as isolated limits in the metric Gromov–Hausdorff 
space. If B belongs to B then its isometry class is an element of this space. Given two elements B, B′ of B, 
the Gromov–Hausdorff distance dG(B, B′) ∈ R+ is well-defined.

The approximation of generalized manifolds by 2-patch spaces (see Lemma 3.8 below) leads to the 
following criterion:

Gromov–Hausdorff Limit Criterion. Any neighborhood of a generalized manifold B contains non-generalized 
manifolds. Moreover, any generalized manifold B is the limit of 2-patch spaces.

Note that both limit criteria, the inverse limit criterion and the Gromov–Hausdorff limit criterion, are 
consequences of the constructions in [5], specifically Lemma 7.2 therein.

In a slightly modified spirit of Mardešić and Segal [19,20], one can state the following: An ANR space 
X is a generalized n-manifold if X is a Cn-space, where Cn is the class of n-dimensional 2-patch spaces. 
A more precise description can be given in terms of the Gromov–Hausdorff space which contains Cn. It is a 
complete metric space with respect to the Gromov–Hausdorff metric dG.

We prove in Section 4.3 that a compact generalized n-manifold is a limit of elements of Cn with respect 
to the metric dG, i.e. the frontier of Cn in the Gromov–Hausdorff space consists of compact generalized 
n-manifolds (here n ≥ 6, as usual).

2. Manifolds and generalized manifolds

2.1. Preliminaries

Definition 2.1. Let X be a nonempty separable metric space and k ≥ 0 any integer. Then

• X is said to have dimension at most k, dimX ≤ k, if for any open covering {Uα}α∈J of X there is an 
open refinement {Vi}i∈L such that any k + 1 elements of {Vi}i∈L have empty intersection;

• X is said to be k-dimensional, dimX = k, if dimX ≤ k and dimX � k − 1.
• X is said to be infinite-dimensional, dimX = ∞, if dimX � k for every k ≥ 0.

Definition 2.2. A topological space X is called a Euclidean neighborhood retract (ENR) if X embeds in some 
m-dimensional Euclidean space Rm as a closed subset so that there is a neighborhood N ⊂ Rm of X which 
retracts onto X.

It’s well-known that a separable metric space X is an ENR if X is locally contractible and dimX < ∞.
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Definition 2.3 (see [8]). A topological space X is called a generalized n-manifold, n ∈ N, if it satisfies the 
following properties:

(i) X is an n-dimensional separable metric ENR; and
(ii) for every x ∈ X, H∗(X, X \ {x}, Z) ∼= H∗(Rn, Rn \ {0}, Z).

Furthermore, X is called a generalized n-manifold with boundary ∂X ⊂ X, if ∂X is also an ENR, and 
the boundary ∂X of X is characterized by the following property: H∗(X, X \ {x}, Z) ∼= 0 for every x ∈ ∂X

(see [22]).

Instead of ENR generalized manifolds, one often considers ANR generalized manifolds.

Remark 2.4 (see [8]). For a separable metric X with dimX < ∞, the following conditions are equivalent:

(1) X is an ANR.
(2) X is locally contractible.
(3) dimX = k and X is locally k-connected.

Remarkable properties of compact ENR’s, hence of compact generalized manifolds, are expressed by the 
following result.

Theorem 2.5. The following properties are equivalent:

(a) X is an ENR.
(b) For some m, there exist an embedding ϕ : X ↪→ Rm and a mapping cylinder neighborhood N ⊂ Rm of 

ϕ(X) in Rm.
(c) For some n, X is the cell-like image of a compact manifold Mn (possibly with boundary ∂Mn).

Here, (b) means that N is homeomorphic to the mapping cylinder of a map r : ∂N → X, denoted as 
∂N × I ∪

r
X. The homeomorphism N ∼= ∂N × I ∪X is the identity on ∂N and X. To explain (c), we recall 

the notion of a cell-like map and some of its properties (see for instance [15,18]).

Definition 2.6. A compact subset C ⊂ IntMn, where Mn is a topological n-manifold, is said to be cellular
in Mn if it can be represented as follows:

C =
∞⋂
i=1

Bi, where Bi ⊂ IntMn are n-balls such that Bi+1 ⊂ IntBi, for i = 1, 2, . . . .

Definition 2.7. A surjective map f : Y → X is said to be cell-like if for every x ∈ X, the preimage f−1(x)
is a cell-like set, i.e. there exists an embedding

ϕ : f−1(x) ↪→ IntMn

into some topological n-manifold Mn such that ϕ(f−1(x)) is cellular in Mn.

The following characterization is very useful (see [18]).

Theorem 2.8. Let X and Y be ENR spaces and f : Y → X a surjective proper map. The following properties 
are equivalent:
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(a) The map f is cell-like.
(b) For all open contractible subsets K ⊂ X, f−1(K) ⊂ Y is contractible.
(c) For all open subsets U ⊂ X, the restriction f |f−1(U) : f−1(U) → U is a proper homotopy equivalence.

The properties of cell-like maps are related to controlled topology, and this is extremely important, 
because it links the resolution problem [14] to Quinn’s invariant [25]. There is extensive literature on the 
subject, let us mention [3,8,15,16,18,23,28]. Here are some definitions and properties.

Definition 2.9. A mapping f : Y → X between compact ENR’s Y and X is said to have:

• the UV k(ε)-property, where k ∈ N and ε > 0, if for every pair (K, L) of complexes L ⊂ K of dimension 
≤ k + 1 and every pair of maps (α, α0) : (K, L) → (X, Y ), the commutative diagram

L

K

Y

X

α0

∩

α

f
α

can be completed by a map α : K → Y such that α|L = α0 and there is a homotopy H : K × I → X

between f ◦ α and α with tracks {H(x, t)|t ∈ I} of diameter < ε.
• the UV k-property, where k ∈ N, if it has the UV k(ε)-property for all ε > 0.
• the UV ∞(ε)-property, where ε > 0, if it has the UV k(ε)-property for all k ∈ N.
• the UV ∞-property, if it has the UV k-property for all k ∈ N.

Definition 2.10. The homotopy H : K × I → X in Definition 2.9 is called an ε-homotopy. It is now obvious 
what an ε-homotopy equivalence means.

The following was proved in [18]:

Theorem 2.11. Let f : Y → X be a surjective map between compact ENR’s. Then the following properties 
are equivalent:

(i) f : Y → X is a cell-like map.
(ii) f : Y → X is an ε-homotopy equivalence for all ε > 0.
(iii) f : Y → X is a UV ∞-map.

2.2. Recognizing topological manifolds among generalized manifolds

Obviously, every topological n-manifold is a generalized n-manifold. An answer to the converse problem 
was given by Edwards [14]:

Definition 2.12. A metric space X is said to have the disjoint disks property (DDP) if for any ε > 0
and any maps α1, α2 : D2 → X of the 2-disk D2 into X, there exist maps β1, β2 : D2 → X such that 
dist(αi(x), βi(x)) < ε for all x ∈ D2, i ∈ {1, 2}, and β1(D2) ∩ β2(D2) = ∅.
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Theorem 2.13. Let Xn be a generalized n-manifold, n ≥ 5, and suppose that Xn satisfies the DDP. Then 
Xn is homeomorphic to a topological n-manifold if there exist a is a topological n-manifold Mn and a 
cell-like-map f : Mn → Xn. In fact, such f can then be approximated by homeomorphisms.

At this point, Quinn invented controlled surgery theory to construct maps fε : Mn
ε → X which are 

ε-homotopy equivalences (over X) between n-manifolds Mn
ε , n ≥ 5. Choosing a sequence {εi} with εi → 0, 

one can construct a “telescope”-manifold Nn+1 with an end-manifold Mn (applying End Theorem [24]), 
and a map being an ε-homotopy equivalence for all ε > 0. Hence f : M → X is a cell-like map.

The manifolds Mn
ε and the maps fε : Mn

ε → X are constructed by controlled surgery ([16,24,25], revised 
in [7], see also [8]), starting from a controlled surgery problem (g, b) : V n → Xn, where b is an appropriate 
bundle map.

As usually, there are obstructions to complete surgery in the middle dimension to obtain an ε-homotopy 
equivalence. It turns out that there is only an integer obstruction i(X) if one starts with an appropriate 
problem (g, b) : V n → X (see [24,25]). Actually, the proof given in [24] (and later corrected in [25]) is of 
local nature. The existence of a canonical controlled surgery problem (g, b) : V n → X follows from results 
in [17].

3. Poincaré duality structures on generalized manifolds and simple type

A generalized manifold Xn is not à priori a Poincaré duality complex in the sense of Wall [30]. First of all, 
X is not a CW complex. Even if we know that Xn is homotopy equivalent to a finite CW complex K [31], it 
is not at all clear that K is a Poincaré duality complex with respect to local coefficients, i.e. that K satisfies 
the Poincaré duality with coefficients in Λ = Z[π1(K)] (shortly, Λ-PD complex).

It appears that the notion of “Λ-PD complex structure” is appropriate in this context. Moreover, Wall’s 
definition requires that the PD isomorphism is a simple equivalence on the chain complex level, i.e. its 
Whitehead torsion vanishes. For details we refer to [9–11,15,16,21,29]. In the sequel, X will denote a compact 
oriented generalized n-manifold without boundary (if necessary, n ≥ 5).

3.1. The Poincaré duality over Z

Sheaf-theoretical methods imply that there is a fundamental class [X] ∈ Hn(X, Z) such that

∩[X] : Hq(X,Z) → Hn−q(X,Z)

is an isomorphism. A representing cycle of [X] (also denoted [X]) defines a chain equivalence Sq(X) →
Sn−q(X) on the singular (co-)chain level.

At this point we know that there is an embedding X ⊂ Rm, for m sufficiently large, a mapping cylinder 
neighborhood N of X, and a map r : ∂N → X, which is homotopy equivalent to a spherical fibration 
(Spivak fibration) ∂EνX → X (see [1, Theorem A]).

3.2. Λ-PD complex structures

The neighborhood N of X is a (smooth) manifold with boundary, hence a simplicial complex. Let 
C#(N, Λ) be the cellular chain complex of the universal cover Ñ of N , and

C#(N,Λ) = HomΛ(C#(N,Λ),Λ)

the cellular cochain complex. Similarly, C#(N, ∂N, Λ) and
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C#(N, ∂N,Λ),Λ = Z[π1(X)].

Note that C#(N, Λ) is equivalent to C#
c (Ñ), the cochain complex of Ñ with compact support ([6, 

pp. 358–360]).
Let [N ] ∈ Cm(N, ∂N) represent the fundamental class, and let [U ] ∈ Cm−n(N, ∂N) represent the Thom 

class in Hm−n(N, ∂N, Z) coming from the spherical fibration ∂EνX → X. Then we have the following 
obvious diagram

S#
c (X̃)

Sn−#(X̃)

C#(N,Λ) Cm−#(N, ∂N,Λ)

Cn−#(N,Λ)

r#

• ∩ [X]

∩[N ]

∩[U ]

r#

∩[Σ]

(1)

(see Remark 3.7 at the end of Section 3.2). Here, [Σ] ∈ Cn(N) is the image of [N ] ∈ Cm(N, ∂N), under the 
map Cm(N, ∂N) → Cn(N).

Lemma 3.1 (see [27]). The pair (C#(N, Λ), [Σ]) is a symmetric (algebraic) complex of dimension n.

Proof. For details we refer to [27]. The symmetric property of the chain equivalence

∩[Σ] : C#(N,Λ) → Cn−#(N,Λ)

is defined as the image of [Σ] under the usual diagonal approximation

Δ : Cn(N) → W ⊗
Z[Z/2]

(C#(N,Λ) ⊗
Δ
C#(N,Λ)),

where W denotes the free Z[Z/2]-module resolutions of Z (the generator of Z/2 acts on Z by multiplication 
by −1). �
Remark 3.2. C#(N, Λ) is Λ-free and finitely generated, hence

W ⊗
Z[Z/2]

(C#(N,Λ) ⊗
Λ
C#(N,Λ)) ∼= HomZ[Z/2](W,HomΛ(C#(N,Λ), C#(N,Λ)).

The image of [N ] therefore gives a sequence of Λ-chain-maps

Φs : Cr(N,Λ) → Cn−r+s(N,Λ), s = 0, 1, 2, . . . ,

such that Φ0 = • ∩ [Σ].

Definition 3.3. A symmetric algebraic Λ-chain complex is a couple (D#, Φ), where D# is a free Λ-complex, 
and Φ = (φs) is an element in

HomZ[Z/2](W,HomΛ(D#, D#)).

It is a symmetric (algebraic) Λ-Poincaré complex if φ0 is a Λ-chain equivalence. If φ0 is a simple Λ-chain 
equivalence, (D#, Φ) is called a simple symmetric Λ-Poincaré complex.
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Definition 3.4. Let X be a generalized manifold as above. A (simple) Λ-PD structure on X is a commutative 
diagram

S#
c (X̃)

Sn−#(X̃)

D#

Dn−#

α#

• ∩ [X]

α

Φ0

with (D#, Φ) a (simple) symmetric Λ-Poincaré complex and α a chain equivalence.

Lemma 3.5. Under the conditions as above, the restriction map r : N → X and (C#(N, Λ), [Σ]) determine 
a symmetric Λ-Poincaré structure on X. It is unique up to an equivalence.

A proof of Lemma 3.5 will be given in Section 4.2.

Definition 3.6. Two (simple) Λ-PD structures (D#, Φ), (D′
#, Φ′) on X are said to be equivalent if there is a 

chain equivalence γ : D# → D′
# such that

D#

Dn−#

S#
c

Sn−#(X̃)

D′ #

D′
n−#

α#

Φ0

α

∩[X]

α′

α′ #

Φ′
0

γ#

γ

commutes, and γ respects Φ and Φ′ (for details see [27]).

Uniqueness of (C#(N, Λ), [Σ]) is due to the stability of the homotopy equivalence

(N, ∂N) ∼ (EνX , ∂EνX),

where EνX is the mapping cylinder of ∂EνX → X.
The question if (C#(N, Λ), [Σ]) is a simple Λ-PD structure reduces to whether

• ∩ [U ] : C#(N, ∂N,Λ) → C#−(m−n)(N,Λ)

is a simple Λ-chain equivalence. This will follow from an alternative approach presented in the following 
subsections.

Remark 3.7 (Comments on [1, Theorem A]). In Diagram (1), the maps r# and r# are chain equivalences, 
and we want that • ∩ [Σ] is also a chain equivalence. However, this cannot be deduced from [1, Theorem A]. 
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The strategy of the proof is to embed X into a simply-connected Poincaré space Wn+1 of dimension 
n + 1 (more precisely, X × I is embedded in Wn+1), and then apply Spivak’s result to W , to get the 
fibration νW . Then restricting it to X, one gets the Spivak fibration over X. Hence the Thom class of νX
is the restriction of the Thom class of νW , so the cap product with it inherits only a Z-chain equivalence, 
and not a Λ-equivalence.

3.3. Simple Λ-PD structures on X

The construction here uses ideas and results from [4,5]. More specifically, [5, Lemma 7.2] contains the 
following fact:

Lemma 3.8. Given X as above with dimX = n ≥ 6, and given ε > 0, there is a space Xε and an ε-homotopy 
equivalence Xε → X over X, where Xε = W ∪

S
V is patched together from n-manifolds with boundary ∂W

and ∂V along an ε-homotopy equivalence S : ∂W → ∂V over X (see[5]).

It is of course, required that π1(∂W ) ∼= π1(W ) and π1(∂V ) ∼= π1(V ). We may assume that W , V are 
simplicial complexes and S : ∂W → ∂V is simplicial, hence Xε is a complex. It is proved that Xε is an 
ε-controlled PD complex. We are only interested if Xε is a simple Λ-PD complex, which follows from the 
standard Mayer–Vietors argument and a vanishing Whitehead torsion. For convenience we write down the 
relevant diagrams:

. . . Hq−1(W ∩ V,Λ) Hq(Xε,W ∩ V,Λ) Hq(Xε,Λ) . . .

Hq(W,∂W,Λ) ⊕Hq(V, ∂V,Λ)

. . . Hn−q(W ∩ V,Λ) Hn−q(W,Λ) ⊕Hn−q(V,Λ) Hn−q(Xε,Λ) . . .

∼=

∼= ∼=

∼=

Here, we consider W, V ⊂ Xε. The left vertical isomorphism fits into the diagram of Λ-PD isomor-
phisms

Hq−1(∂W,Λ)

Hn−q(∂W,Λ)

Hq−1(W ∩ V,Λ) Hq−1(∂V,Λ)

Hn−q(W ∩ V,Λ) Hn−q(∂V,Λ)

∼= ∼=

∼= ∼=

∼= ∼=

S∗

S∗
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C#(∂W,Λ)

Cn−1−#(∂W,Λ)

C#(W ∩ V,Λ) C#(∂V,Λ)

Cn−1−#(W ∩ V,Λ) Cn−1−#(∂V,Λ)

S#

S#

defining two simple Λ-PD structures on W ∩ V .
Now, S is an ε-equivalence, hence it follows by [10, Theorem 1’] that S#, and S# are simple chain 

equivalences for sufficiently small ε > 0. It then follows by [30, Proposition 2.7], that Xε is a simple Λ-PD 
complex. The induced chain equivalence of Xε → X determines a simple Λ-PD structure on X:

S#
c (X̃)

Sn−#(X̃)

C#(Xε,Λ)

Cn−#(Xε,Λ)

• ∩ [X] • ∩ [Xε]

3.4. The simple Λ-Poincaré duality type

The simple Λ-PD structure on a generalized manifold X, given by Xε → X, can be improved by requiring 
that it is a simple homotopy equivalence. However, this requires the extension of the Whitehead torsion 
theory to ENR spaces as done in [9]: To any homotopy equivalence f : X → Y between ANR’s one can 
assign an element τ(f) ∈ Wh(π1(M)) such that:

(i) If X, Y are finite CW complexes then τ(f) = τ(f), where τ denotes the classical torsion.
(ii) τ(f) = 0 if and only if there exists an ANR Z and cell-like-maps Z α−→ X, Z β−→ Y such that

X

Z

Y

α

f

β

commutes up to homotopy. Any ANR X has a simple homotopy type given by Id : X → X.
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Applying this to our situations we obtain that Xε → X is a simple homotopy equivalence because it is 
an ε-homotopy equivalence, assuming that ε > 0 is sufficiently small [10, Theorem 1’].

If N is the mapping cylinder neighborhood of r : ∂N → X, then r : N → X is a simple homotopy 
equivalence with inverse the inclusion i : X ↪→ N . One has

τ(Xε → X
i
↪−→ N) = τ(Xε → X) + τ(i) = 0.

Corollary 3.9. The map

• ∩ [Σ] : C#(N,Λ) → Cn−#(N,Λ)

is a simple chain equivalence.

Proof. This follows from the diagram

C#(N,Λ)

C#(Xε,Λ)

Cn−#(N,Λ)

Cn−#(Xε)

• ∩ [Σ]

• ∩ [Xε]

�
Definition 3.10. A simple Λ-PD type on X is defined as a simple symmetric Λ-PD structure (D#, Φ)

S#
c (X̃)

Sn−#(X̃)

D#

Dn−#

α#

• ∩ [X]

α

Φ0

with α a simple chain equivalence. Two types are said to be equivalent if the chain equivalence D#
γ−→ D′

#
is simple.

In this sense we have the following:

Summary 3.11. Any compact oriented generalized n-manifold X has a simple Λ-PD type, unique up to 
equivalence determined by a mapping cylinder neighborhood N of X ⊂ Rm, where n ≥ 6 and m is sufficiently 
large.

Remark 3.12. Strictly speaking, it does not make sense to state that α : D# → S#(X̃) is a simple chain 
equivalence. However, the extension of Whitehead torsion to compact ANR spaces is built on the fact that 
there is a cell-like map K ×Q → X, where Q is a Hilbert cube manifold and K is a finite complex. Then 
“simple” refers to the finite complex K.
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4. Recognizing generalized manifolds among ENR spaces with simple Λ-PD type

4.1. Controlled Poincaré duality complexes and approximate fibrations

Controlled Poincaré duality complexes are a bridge between simple Λ-PD complexes and generalized 
manifolds. There is a controlled geometric aspect linked to [4, Proposition 4.5] (see also [24, Example 2.3]). 
The geometric aspect leads to approximate fibrations introduced in [12].

Definition 4.1. An oriented n-dimensional ε-PD complex K (over K) is a finite complex K, an n-cycle 
[K] ∈ Cn(K) such that cap product with it

• ∩ [K] : C#(K,Λ) → Cn−#(K,Λ)

is an ε-chain equivalence over K.

To define ε-chain maps, resp. ε-chain equivalences, one needs the notion of geometric chain complexes. 
We refer to the literature, in particular to [32] and [33, Remark 2 on p. 120] and [16, Definition 2.1]. One 
observes that the ε-Poincaré-duality is a much stronger condition than the simple Poincaré duality, assuming 
that ε is sufficiently small (again [10, Theorem 1’]).

Let N ⊂ Rm be a regular neighborhood of K ⊂ Rm, m sufficiently large, r : N → K the restriction. Then 
by [4, Proposition 4.5], the restrictions of r to ∂N (also denoted by r), r : ∂N → K, has the δ-controlled 
homotopy lifting property. Here ε is sufficiently small and δ depends on ε and K.

Definition 4.2. The δ-controlled homotopy lifting property is defined as follows: Given a separable metric 
space Z, and a commutative diagram

Z × {0}

Z × I

∂N

K

h0

ht

r
H

there is a homotopy H : Z × I → ∂N , such that dist(r ◦ Ht, ht) < δ. (Note the relationship with the 
UV k(ε)-property in Definition 2.9. For details we refer to [3], in particular Theorem 6 therein.)

We emphasize that this holds for some δ = T · ε, where T > 0 is a factor depending on K [4, Propo-
sition 4.5]. However, if this holds for all δ > 0 then one obtains approximate fibrations, more precisely 
(see [12]):

Definition 4.3. An approximate fibration p : E → B is a surjective map between locally compact separable 
metric ANR’s E and B such that the above δ-homotopy lifting property holds for all separable metric spaces 
Z and all δ > 0.

It is remarkable and useful to note that it is sufficient to require the lifting property only for cells [12, 
Theorem 2.2]. The last building stone of the bridge is the following:

Theorem 4.4 ([13]). Suppose that p : M → B is a proper map, where M is a closed connected manifold and 
B is an ANR. Then, if p is an approximate fibration, B is a generalized manifold.
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Putting this together, one can phrase the recognition principle as follows: A Λ-PD complex is a generalized 
manifold if it satisfies the ε-Poincaré duality for all ε > 0. However, generalized manifolds in general do not 
have CW or simplicial structures. It is therefore appropriate to define a class of spaces to which the above 
theorems can be applied to characterize generalized manifolds in this class. This will be done in the next 
section.

4.2. The class of simple Λ-PD types and approximations by controlled PD complexes

In this section we consider the following class B of PD spaces B characterized by

(i) B is a compact separable metric ENR which satisfies Z-Poincaré duality of dimension n.
(ii) B has a simple Λ-PD type, i.e. there is a diagram

S#
c (B̃)

Sn−#(B̃)

D#

Dn−#

α#

• ∩ [B]

α

Φ0

where (D#, Φ) is a simple symmetric algebraic Poincaré duality chain complex and α is a simple chain 
equivalence (Λ = Z[π1B]), see Remark 3.12). We denote this class by B.

Let N ∼= ∂N × I ∪
r
B be a mapping cylinder neighborhood of B ⊂ Rm. It is equivalent to the Spivak 

fibration by [1], and it gives rise to the following diagram (see Section 3)

C#(N,Λ)

Cn−#(N,Λ)

S#
c (B̃) D#

Sn−#(B̃) Dn−#

r# α#

r# α

• ∩ [Σ] • ∩ [B] Φ0

Since r : N → B is a simple equivalence, • ∩ [Σ] is also a simple chain equivalence. This proves Lemma 3.5
from Section 3.2.

As explained in Section 3, generalized manifolds belong to this class, and of course, also finite simple Λ-PD 
complexes. To recognize generalized manifolds within the above defined class B, we define ε-Λ-structures:

Definition 4.5. A (simple) Λ-PD structure (D#, Φ) on B is a (simple) ε-Λ-PD structure on B if it makes 
• ∩ [Σ] : C#(N) → Cn−#(N) a (simple) ε-chain equivalence by means of the diagram

C#(N,Λ)

Cn−#(N,Λ)

S#
c (B̃) D#

Sn−#(B̃) Dn−#

r# α#

r# α

• ∩ [Σ] • ∩ [B] Φ0
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A result of Daverman and Hush (see Theorem 4.4 above) leads to the following:

Theorem 4.6 (Recognition Criterion). Suppose that B belongs to B. Then B is a generalized manifold if for 
every ε > 0, B admits an ε-Λ-PD structure.

Remark 4.7. Clearly, B in Theorem 4.6 is simple, if the ε-Λ-PD structures are simple.

Proof. The hypothesis implies that B is an ε-PD space for all ε > 0. By [4, Proposition 4.5], it follows that 
∂N → B has the T · ε-lifting property for all ε > 0, where T is a factor depending on B. Hence ∂N → B is 
an approximate fibration, i.e. B is a generalized manifold (see Theorem 4.4 above). �
4.3. Generalized manifolds as limits in the Gromov–Hausdorff metric space

The Bryant–Ferry–Mio–Weinberger lemma [5, Lemma 7.2] also allows a characterization of generalized 
manifolds in terms of the Gromov–Hausdorff metric, denoted here by dG. It is defined on the set of isometry 
classes of compact metric spaces, and dG can be proved to be a complete metric (for details see [15], or [16, 
Section 1.V]).

We consider elements of the class B as being points of the Gromov–Hausdorff space and we prove the 
following result.

Lemma 4.8. Let X be a generalized compact n-manifold and let δ > 0 be given. Then there exists a 2-patch 
space X ′ such that dG(X, X ′) < δ.

Remark 4.9. Note that X ′ in Lemma 4.8 is in general not a generalized manifold.

Proof. Let N be a cylindrical (regular) neighborhood of an embedding X ⊂ Rm, m ≥ 2n + 1, m − n ≥ 3. 
If C ⊂ Rm is compact, we denote by �(x, C) the distance of x from C in the metric of Rm, and Cε = {x ∈
Rm|�(x, C) < ε}.

By Lemma 3.8 we can choose an ε-homotopy equivalence f : X ′ → X. We can choose ε > 0 small enough 
to get Xε ⊂ N . Inside Xε we can find a cylindrical (regular) neighborhood Z

p−→ X. By Proposition [4, 
Proposition 4.10], there is an embedding X ′ j−→ Z and a retraction r : Z → X ′ such that �(p(z), r(z)) < 2ε
for z ∈ Z.

For clarity we write down the maps in the diagram

Z = Z ⊂ Xε

X ′ X

r ↪→j p ↪→i
f

For z ∈ Z we therefore get

�(z, r(z)) ≤ �(z, p(z)) + �(p(z), r(z)) < �(z, p(z)) + 2ε < 3ε,

since Z ⊂ Xε. Hence �(z, X ′) < 3ε, for all z ∈ Z, i.e. X ⊂ Z ⊂ X ′
3ε. Since X ′ ⊂ Z ⊂ Xε we get by definition 

of dG that dG(X ′, X) < 3ε. This proves the lemma, since we can choose ε arbitrarily small. �
Caveat 4.10. The notion Xε used in the above proof differs from the notion used in Section 3.3.
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Corollary 4.11. Generalized manifolds are isolated limits of the subspace of 2-patch spaces in the Gromov–
Hausdorff space.

Remark 4.12. Other examples of limits in the Gromov–Hausdorff space were considered in [16, Section 1.V].
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Appendix A. Appendix

The relations between Z-PD and Λ-PD of a space K were always behind the discussion in the previous 
sections. Since it is of general interest and is not explicitly presented in the literature, we state them in the 
following lemma:

Lemma A.1. Let K be a finitely dominated CW complex. If K satisfies Z-PD, then it satisfies Λ-PD, where 
Λ = Z[π1(K)].

For the proof we note the following key facts:

• By Browder’s Theorem [1, Theorem A], K has a Spivak normal fibration π : EνK → K.
• A result of Ranicki [26, Proposition 3.10] shows that the cap product with the Thom class [U ],

∩ : H∗(TνK ,Λ) → H∗−k(K,Λ)

is an isomorphism, where k is the fiber dimension of EνK . The proof of this consists of applying 
Browder’s lemma [2, Lemma I.4.3] to the universal cover K̃ of K.

• Using the homotopy equivalence (N, ∂N) → (EνK , ∂EνK), where N ⊂ Rn+k is a regular neighborhood
of K ⊂ Rn+k, one obtains Λ-PD as the following composite map

H∗(K,Λ) ∼= H∗(N,Λ) → Hn+k−∗(N, ∂N,Λ) ∩[U ]−−−→ Hn−∗(K,Λ). �
We emphasize that this lemma is not helpful for proving the results of this paper.
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