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Abstract. Let M3 be a 3-dimensional manifold with fundamental group π1(M)
which contains a quaternion subgroup Q of order 8. In 1979 Cappell and Shaneson
constructed a nontrivial normal map f : M3 × T 2 → M3 × S2 which cannot be
detected by simply connected surgery obstructions along submanifolds of codi-
mension 0, 1, or 2, but it can be detected by the codimension 3 Kervaire-Arf
invariant. The proof of non-triviality of σ(f) ∈ L5(π1(M)) is based on considera-
tion of a Browder-Livesay filtration of a manifold X with π1(X) ∼= π1(M). For a
Browder-Livesay pair Y n−1 ⊂ Xn, the restriction of a normal map to the subman-
ifold Y is given by a partial multivalued map Γ: Ln(π1(X)) → Ln−1(π1(Y )), and
the Browder-Livesay filtration provides an iteration Γn. This map is a basic step
in the definition of the iterated Browder-Livesay invariants which give obstruc-
tions to realization of surgery obstructions by normal maps of closed manifolds. In
the present paper we prove that Γ3(σ(f)) = 0 for any Browder-Livesay filtration
of a manifold X4k+1 with π1(X) ∼= Q. We compute splitting obstruction groups
for various inclusions ρ → Q of index 2, describe natural maps in the braids of
exact sequences, and make more precise several results about surgery obstruction
groups of the group Q.
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1. Introduction

Let M3 be a 3-dimensional manifold with fundamental group π1(M) which contains
the quaternion subgroup

Q = {x, y|x2 = y2, yxy−1 = x−1} (1.1)
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of order 8. Consider a map

f : M3 × T 2 −→ M3 × S2 (1.2)

where T 2 = S1 × S1 is the torus equipped with the Lie group invariant framing
[1], and T 2 −→ S2 is a normal map with a nontrivial Kervaire-Arf invariant. In
1979 Cappell and Shaneson [1] proved that surgery obstruction σ(f) is nontrivial.
The nontriviality of σ(f) cannot be detected by simply connected surgery obstruc-
tions along submanifolds of codimension 0, 1, and 2, but it can be detected by the
codimension 3 Arf-invariant (see [1] and [5]).

Recall that a pair of manifolds

Y n−1 ⊂ Xn (1.3)

is called a Browder-Livesay pair if Y is a codimension one locally-flat closed subman-
ifold and the natural inclusion π1(Y ) → π1(X) induces an isomorphism of fundamen-
tal groups. In what follows we shall consider only the case when dimY = n− 1 ≥ 5.
For a Browder-Livesy pair, we can write down a push-out square of fundamental
groups

π1(∂U)
∼=→ π1(X \ Y )

↓ ↓
π1(Y ) → π1(X)

=
ρ → ρ

↓ i− ↓ i+
G− → G+

(1.4)

where ∂U is the boundary of a tubular neighborhood of Y in X, and X \ Y is the
closure of the complement of a tubular neighborhood. The groups in square (1.4)
are equipped with orientation. The upper horizontal map and the vertical maps
agree with orientations. The bottom horizontal map preserves the orientation on the
images of the vertical maps which are inclusions of index 2 and reverses orientation
outside of these images. We shall denote this fact by superscript “+” or “−”. We
shall omit this superscript if the orientation is clear from the context.

For a Browder-Livesay pair (1.3) we have a braid of exact sequences (see [3]
and [8]):

→ Ln(ρ) i∗−→ Ln(G) ∂→ LNn−2 →
↗ ↘ s ↗ ↘ ↗ ↘

LPn−1 Γ ↓ Ln(i∗)
↘ ↗ q ↘ ↗ ↘ ↗
→ LNn−1

c−→ Ln−1(G−)
i!−−→ Ln−1(ρ) →

(1.5)

where LPn−1 = LPn−1(F ) ∼= Ln(i!−) are surgery obstruction groups for the manifold
pair (X,Y ), LNn = LNn(ρ → G) are the splitting obstruction groups, and Ln(i∗)
are the relative surgery obstruction groups for the inclusion map i (see [3], [8] and
[9]). The horizontal rows in (1.5) are chain complexes and Γ is an isomorphism of
the corresponding homology groups. The maps s and q are the natural forgetful
maps, and the map c denotes passing from surgery problem inside the manifold Xn

to an abstract surgery problem. For a normal map f : M → X, the restriction to a
transversal preimage f |f−1(Y ) : f−1(Y ) → Y n−1 is a normal map to Y n−1, and the
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corresponding map of surgery obstruction groups is given by a partial multivalued
map Γ: Ln(π1(X)) → Ln−1(π1(Y )).

Let X be a filtration

Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X (1.6)

of a closed n-dimensional manifold X by means of locally flat closed submanifolds. A
filtration in (1.6) is called a Browder-Livesay filtration, if every pair of submanifolds
(Xi, Xi+1) (0 ≤ i ≤ k − 1) is a Browder-Livesay pair (see [2], [5] and [7]). In what
follows we shall assume that dim Xk = n− k ≥ 5.

Let Fi (0 ≤ i ≤ k − 1) be a square of fundamental groups in the splitting
problem for a manifold pair (Xi, Xi+1) of a filtration in (1.6), Gi = π1(Xi), and ρi =
π1(∂Ui+1) ∼= π1(Xi \Xi+1), where ∂Ui+1 is a boundary of a tubular neighborhood
of Xi+1 in Xi. Then LN∗(ρi → Gi) are the splitting obstruction groups for the
manifold pair (Xi, Xi+1).

Every inclusion ρi → Gi of index 2 of oriented groups gives a commutative
braid of exact sequences (1.5). Putting together central squares from these diagrams
(see [4], [5] and [7] ) we obtain a commutative diagram

−→ Ln(G0)
∂0−→ LNn−2(ρ0 → G0)

s ↗ ↘p

LPn−1(F0) Γ ↓ Ln(ρ0 → G0)
q ↘ ↗r

−→ Ln−1(G1)
∂1−→ LNn−3(ρ1 → G1)

s ↗ ↘p

LPn−2(F1) Γ ↓ Ln−1(ρ1 → G1)
q ↘ ↗r

−→ Ln−2(G2)
∂2−→ LNn(ρ2 → G2)

s ↗ ↘p

LPn−3(F2) Γ ↓ Ln−2(ρ2 → G2)
q ↘ ↗r

Ln−3(G3)
...

−→ Ln−m(Gm) ∂m−→ LNn−l(ρm → Gm)
s ↗ ↘p

LPn−k(Fm) Γ ↓ Ln−m(ρm → Gm)
q ↘ ↗r

Ln−k(Gk)

(1.7)

where m = k − 1, l = k + 1.

In this diagram we denote by s, q, p, and r similar maps from different diagrams.
However, in what follows, it will be clear from the context which map is under
consideration. Note that the groups and the maps in diagram (1.7) are defined by
the subscripts taken mod 4.
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Now we recall an inductive definition of the sets

Γj(x) ⊂ Ln−j(Gj) for (0 ≤ j ≤ k)

and the iterated Browder-Livesay j-invariants (1 ≤ j ≤ k) with respect to filtration
(1.6) (see [5] and [7]).

Definition 1.1. Let x ∈ Ln(G0). By definition,

Γ0(x) = {x} ⊂ Ln(G0).

The set Γ0(x) is said to be trivial if x ∈ Image{Ln(ρ0) → Ln(G0)}. Let a set

Γj(x) ⊂ Ln−j(Gj) (0 ≤ j ≤ k − 1)

be defined. For j ≥ 1, it is called trivial if 0 ∈ Γj(x).
If Γj(x)(0 ≤ j ≤ k − 1) is defined and nontrivial, then the (j + 1)-th Browder-

Livesay invariant with respect filtration (1.6) is the set

∂j(Γj(x)) ⊂ LNn−j−2(ρj−1 → Gj−1).

The (j + 1)-th invariant is nontrivial if 0 /∈ ∂j(Γj(x)).
If the (j + 1) − th (1 ≤ j ≤ k − 1) Browder-Livesay invariant is defined and

trivial then the set Γj+1(x) is defined as

Γj+1(x)
def
= Γ(Γj(x))

def
= {qs−1(z)|z ∈ Γj(x), ∂j(z) = 0} ⊂ Ln−j−1(Gj+1).

Theorem 1.2. (See [5].) Let x ∈ Ln(G0) be an element with a nontrivial j-th Browder-
Livesay invariant for some j ≥ 1 relative to a Browder-Livesay filtration X of the
manifold X. Then the element x cannot be realized by a normal map of closed man-
ifolds.

Note that the necessary condition for nontriviality of the j-th Browder-Livesay
invariant of x ∈ Ln(G0) (1 ≤ j) is nontriviality of Γj−1(x).

Taking in (1.2) a 3-dimensional manifold M with π1(M) ∼= Q we obtain a
surgery obstruction σ(f) ∈ L1(Q) (see [1]). The proof of nontriviality σ(f) in [1] is
based on a consideration of the Browder-Livesay filtration

X3 ⊂ X2 ⊂ X1 ⊂ X0 = X, (dimX3 ≥ 5) (1.8)

with π1(X) = Q, π1(X1) = Q+,−, π1(X2) = Q−,−, and π1(X3) = Q. In particular,
it follows from [1], that Γ3(σ(f)) = 0 for filtration in (1.8).

In [5] was introduced the notion of a type of any element x ∈ Ln(π) and it
was proved that the elements of the first and the second type cannot be realized
by normal maps of closed manifolds. For any element x of the second type there
exists an “infinite” Browder-Livesay filtration for which Γk(x) is nontrivial for all
k ≥ 0. Every element x ∈ Ln(π) which lays in the subgroup generated by surgery
obstructions of normal maps of closed manifolds has the third type. And if an element
x has the third type, then for any Browder-Livesay filtration there exists a finite k,
such that Γk(x) is trivial. In all known to the authors cases Γ3(x) is trivial for the
elements of the third type.
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In the present paper, we prove that Γ3(σ(f)) is trivial for any Browder-Livesay
filtration of a manifold X4k+1 with π1(X) ∼= Q, where σ(f) ∈ L1(Q). We compute
splitting obstruction groups LN∗ and surgery obstruction groups LP∗ for various
inclusions ρ → Q of index 2, describe natural maps in the braids of exact sequences
in (1.5), and make more precise several results about surgery obstruction groups of
the group Q.

We use the surgery and splitting obstruction groups equipped with decoration
“s” and we do not mention this in designations.

2. Browder-Livesay filtrations for a manifold X4k+1 with
π1(X) = Q

Let Q be the quaternion group from (1.1). We define an orientation homomorphism
w : Q → {±1} on generators x and y and denote it by superscripts in the following
way:

w(x) = w(y) = 1, (Q,w) = Q+;

w(x) = 1, w(y) = −1, (Q,w) = Q+,−;

w(x) = −1, w(y) = 1, (Q,w) = Q−,+;

and
w(x) = −1, w(y) = −1, (Q,w) = Q−,− (in this case w(xy) = 1).

Let ρ = Z/4 be the cyclic group with generator t. There are only two homomor-
phisms of orientation on the group ρ (homomorphisms Z/4 into the group ±1), and
we shall write ρ+ = Z/4+ in the case of trivial orientation and ρ− = Z/4− in the
opposite case. The group Q has only three different subgroups of index 2 generated
by x, y, and xy. All these subgroups are isomorphic to Z/4.

Consider the Browder-Livesay filtration

X3 ⊂ X2 ⊂ X1 ⊂ X0 = X, (dimX3 ≥ 5) (2.1)

of a manifold X with π1(X) ∼= Q.
Filtration in (2.1) yields a commutative diagram

ρ2 ρ1 ρ0
↙ ↘ ↙ ↘ ↙ ↘

π1(X3)
∼=−→ π1(X2)

∼=−→ π1(X1)
∼=−→ π1(X0)

(2.2)

where every triangle corresponds to the square Fi, since we have isomorphisms of
oriented groups ρi = π1(∂Ui+1) ∼= π1(Xi \Xi+1) for 0 ≤ i ≤ 2.

The diagram in (2.2) is commutative as a diagram of groups, and the skew maps
are inclusions of index 2 preserving the orientations. The horizontal maps in (2.2)
preserve the orientation on the images of skew maps and reverse the orientation
outside these images. Two diagrams as in (2.2) are isomorphic if there exists an
isomorphism between them preserving orientations.
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Theorem 2.1. Let Xn, n ≥ 8, be a closed topological manifold with π1(X) ∼= Q. Then
the diagram (2.2) is isomorphic to one of the following diagrams

Z/4+
Z/4− Z/4+

k ↙ ↘ k j ↙ ↘ j i ↙ ↘ i

Q−,+
∼=−→ Q−,−

∼=−→ Q+,− ∼=−→ Q+
(2.3)

where skew homomorphisms are given on the generator t by the maps i(t) = x, j(t) =
y, k(t) = xy;

Z/4+
Z/4+

Z/4+

k ↙ ↘ k ↙ ↘ ↙ ↘
Q−,+

∼=−→ Q+ ∼=−→ Q+,− ∼=−→ Q+
(2.4)

where k : Z/4 → Q is given on the generator t by the map t → y and other skew
homomorphisms are given on the generator t by the map t → x;

Z/4+
Z/4+

Z/4+

↙ ↘ ↙ ↘ ↙ ↘
Q+,− ∼=−→ Q+ ∼=−→ Q+,− ∼=−→ Q+

(2.5)

where all homomorphisms Z/4 → Q are given on the generator t by the map t → x;

Z/4− Z/4− Z/4+

k ↙ ↘ k j ↙ ↘ j i ↙ ↘ i

Q−,+
∼=−→ Q−,−

∼=−→ Q+,− ∼=−→ Q+
(2.6)

where skew homomorphisms are given on the generator t by the maps i(t) = x, j(t) =
y, k(t) = y;

Z/4− Z/4− Z/4+

k ↙ ↘ k j ↙ ↘ j i ↙ ↘ i

Q−,+
∼=−→ Q−,−

∼=−→ Q+,− ∼=−→ Q+
(2.7)

where skew homomorphisms are given on the generator t by the maps i(t) = x, j(t) =
y, k(t) = x.

For any diagram from the list (2.3)–(2.7) there exists a Browder-Livesay filtra-
tion (2.1) of the manifold Xn which gives this diagram.

Proof. There exist isomorphisms of the oriented groups

Q+,− ∼= Q−,+ ∼= Q−,−

since there exist automorphisms of the group Q permuting x, y, and xy. We have
only three index 2 subgroups of Q generated by x, y, and xy, which are isomorphic to
Z/4. From this follows that all skew maps in (2.3) are inclusions of Z/4 to Q preserv-
ing orientation. Now a consideration of various cases which agree with orientation
conditions on the horizontal maps gives the first statement of the proposition. Con-
sider the characteristic map φ : Xn → RPN (N sufficiently large) of the subgroup
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i(Z/4+) = i(ρ+) ⊂ Q+ generated by x such that Kerφ = ρ+. The transversal preim-
age of RPN−1 gives a submanifold X1 ⊂ X such that X1 ⊂ X is a Browder-Livesay
pair with the commutative triangle

ρ+

↙ ↘
Q+ ∼= π1(X) −→ π1(X1) ∼= Q+,−

of groups (see [3] and [5]). Iteration of this construction gives the second statement
of the theorem. �

Every diagram from Theorem 2.1 induces diagram (1.7). The surgery obstruc-
tion groups fitting into the diagram (1.7) are well known [10]:

i = 0 1 2 3
Li(Z/4+) ∼= Z

3 0 Z⊕ Z/2 Z/2
Li(Z/4−) ∼= 0 0 Z/2 (Z/2)2

Li(Q) ∼= (Z)5 |4| Z/2 (Z/2)2

Li(Q+,−) ∼= |4| 0 Z⊕ Z/2 |4|,
where |4| denotes a two-group of order 4.

Let n = 4k+1 and π1(Xn) ∼= Q. In this case commutative diagram (2.3) induces
a diagram (see [1])

0 = L1(Z/4+) 0→ L1(Q+)
↗ ↘p

LP0(F0) Γ ↓ L1(Z/4+ → Q+)
↘ ↗r

LN0(Z/4+ → Q+) 0→ L0(Q+,−)
||

0 = L0(Z/4−) 0→ L0(Q+,−)
↗ ↘p

LP3(F1) Γ ↓ L0(Z/4− → Q+,−)
↘ ↗r

LN3(Z/4− → Q+,−) 0→ L3(Q−,−)
||

Z/2 ∼= L3(Z/4+)
φ(mono)−→ L3(Q−,−)

↗ ↘
LP2(F2) Γ ↓ L3(Z/4+ → Q−,−)

↘ ↗
LN2(Z/4+ → Q−,−) → L2(Q+,+)

(2.8)

where the groups LN0(Z/4+ → Q+) = 0 and LN3(Z/4− → Q+,−) = 0 were com-
puted in [1].

All maps p and r in (2.8) are monomorphisms, and the surgery obstruction
σ(f) ∈ L1(Q+) has the following properties [1]:

p(σ(f)) = r(σ(g)) for some element σ(g) ∈ L0(Q+,−),
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p(σ(g)) = r(σ(h)) for some element σ(h) ∈ L3(Q−,−),
and

σ(h) = φ(a)
where a ∈ L3(Z/4+) ∼= Z/2 is the nontrivial element.

Note, that the results of [1] immediately imply that Γ3(σ(f)) = 0 for the dia-
gram (2.3).

3. Computing Γi for Browder-Livesay filtrations

In this section we prove the following result: let X4k+1 (4k + 1 ≥ 9) be a manifold
with π1(X) ∼= Q. Consider the Browder-Livesay filtration of X with a diagram
of inclusion (2.3) – (2.7). Then Γ3(σ(f)) = 0 for the Cappell-Shaneson surgery
obstruction σ(f) ∈ L1(Q+).

The statement of the theorem for diagram (2.3) follows from diagram (2.8) and
results of [1]. We shall give the statement of the theorem for other diagrams (2.4) –
(2.7) in Theorems 3.1 and 3.4 of this section.

We introduce the following notations (see [10]):

T−,− = Z[Q−,−], T̂−,−2 = Ẑ2[Q−,−],
R+ = Z[Z/4+], R̂+

2 = Ẑ2[Z/4+],

and similarly for other orientations. Denote by Lrel
n (T−,−) the relative groups

Ln(T−,− −→ T−,−2 ) fitting into the relative exact sequence

→ Ln(T−,−) −→ Ln(T̂−,−2 ) −→ Ln(T−,− −→ T−,−2 ) −→ Ln−1(T−,−) →
and similarly for other group rings and orientations. ¿From the isomorphisms Q+,− ∼=
Q−,+ ∼= Q−,− which were described in Section 2, we obtain isomorphisms

T−,− ∼= T−,+ ∼= T+,−,
T̂−,−2

∼= T̂+,−
2

∼= T̂−,+2

and isomorphisms

LY
n (T−,− −→ T−,−2 ) ∼= LY

n (T+,− −→ T+,−
2 ) ∼= LY

n (T−,+ −→ T−,+2 ).

We shall consider the L-groups with decorations “prime”. For the case of a group ring
Z[π] these L-groups coincide with surgery obstruction groups. We have isomorphisms
(see [1] and [10])

LNn(Z/4+ → Q+,+) ∼= Ln

(
Z[Z/4], Id,−t2

)
= Ln(B)

and the relative exact sequence

→ Ln

(
Z[Z/4], Id,−t2

) → Ln(Ẑ2[Z/4], Id,−t2) → Lrel
0

(
Z[Z/4], Id,−t2

) →
Denote

Ln(B) = Ln

(
Z[Z/4], Id,−t2

)
and

Ln(B̂2) = Ln

(
Ẑ2[Z/4], Id,−t2

)
.
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By [1], we have

LNn(Z/4− j→ Q−,−) ∼= Ln

(
Z[Z/4], D,±t2

)
= Ln(A)

where D(t) = −t. In particular, we have an isomorphism

LNn(Z/4− j→ Q−,−) ∼= LNn+2(Z/4−
j→ Q−,−).

Denote
Ln(A) = Ln

(
Z[Z/4], D,±t2

)
and

Ln(Â2) = Ln

(
Ẑ2[Z/4], D,±t2

)
.

These groups fit into the relative exact sequence

→ Ln

(
Z[Z/4], D,±t2

) → Ln(Ẑ2[Z/4], D,±t2) → Lrel
n

(
Z[Z/4], D,±t2

) →
Braid of exact sequences (1.5) also exists for relative groups (see [6] and [10]). For
the inclusions Z/4± → Q+,±, all relative groups and all groups for the the group
ring over the ring Ẑ2 are known [10]. In particular, we have

n = 0 1 2 3
LY
n (R+ → R+

2 ) ∼= 0 Z
3 ⊕ (Z/2)2 0 Z

LY
n (T+ → T+

2 ) ∼= 0 Z
5 ⊕ (Z/2)4 Z/2 (Z/2)2

LY
n (B → B̂2) ∼= Z/2 (Z/2)2 0 (Z)2 ⊕ (Z/2)2

LY
n (R− → R−2 ) ∼= Z/2 Z/2 ⊕ Z/2 0 0

LY
n (T−,− → T−,−2 ) ∼= Z/2 Z/2 ⊕ Z/2 0 Z

LY
n (A → Â2) ∼= 0 Z 0 Z

(3.1)

Consider the diagram

0=L1(Z/4+) 0−→ L1(Q+)
s↗ ↘∼=

Γ↓ L1(Z/4+→Q+)
q↘ ∼=↗

0=LN0(Z/4+→Q+) 0−→ L0(Q+,−)
||

L0(Z/4+)
Im=Z/2−→ L0(Q+,−)

s↗ ↘
Γ↓ L0(Z/4+→Q+,−)=Z/2

q↘ ↗
Z/2=LN3(Z/4+→Q+,−) mono−→ L3(Q+,+)=(Z/2)2

||
L3(Z/4+) mono−→ L3(Q+,+)

s↗ ↘epi

Γ↓ L3(Z/4+→Q−,−)=Z/2
q↘ ↗

LN2(Z/4+→Q+,+) −→ L2(Q+,−).

(3.2)

which is defined by diagram (2.4). Diagram (3.2) is similar to diagram (2.8). In the
group L0(Q+,−) lies the element σ(g) which is the image of the element σ(f) ∈
L1(Q+) under the upper map Γ in (3.1) as follows from [1].
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Theorem 3.1. In diagram (3.2), the element σ(g) ∈ L0(Q+,−) lies in the image of
the map

L0(Z/4+) −→ L0(Q+,−),
and hence Γ2(σ(f)) = 0. From this it immediately follows that Γ2(σ(f)) = 0 for
diagrams (2.4) and (2.5).

Proof. Follows by Lemma 3.2 and Lemma 3.3.

Lemma 3.2. Let a be the nontrivial element of the relative group L0(T−,− → T̂−,−2 ) =
Z/2 and

∂ : L0(T−,− → T̂−,−2 ) → L3(T−,−)
be a map from the corresponding relative exact sequence. Then

∂(a) = σ(h) = φ(x), where x ∈ L3(Z/4+), x 
= 0.

Proof. Consider the commutative diagram

Z/4+ → Q+,+

↓ ↓
Z/2 → Z/2+ ⊕ Z/2+

(3.3)

in which vertical maps are natural projections. By [10], the vertical maps in (3.3)
induce a retraction of the braid of exact sequences of relative groups for the top
inclusion in (3.3) to the corresponding braid of exact sequences of relative groups
for the bottom inclusion in (3.3).

As the kernel of this retraction we obtain a braid of exact sequences with known
groups and easily computed maps. All relative groups for the inclusion Z/2+ →
Z/2+ ⊕ Z/2+ are known from [10]:

n = 0 1 2 3
Ln(Z[Z/2] → Ẑ2[Z/2]) ∼= 0 (Z⊕ Z/2)2 0 0

Ln(Z[(Z/2)2] → Ẑ2[(Z/2)2]) ∼= 0 (Z⊕ Z/2)4 0 0.

All relative groups for the inclusion Z/4+ → Q+,+ were given in (3.1) (see [10]).
From this we conclude that the map

Z/2 = Lrel
0

(
Z[Z/4], Id,−t2

) ξ−→ Lrel
0 (T+,−) = Z/2 (3.4)

of relative groups is an isomorphism. The map ξ from (3.4) lies in the commutative
diagram

0=L0(Z[Z/4],Id,−t2) −→ L0(Ẑ2[Z/4],Id,−t2) mono−→ Lrel
0 (Z[Z/4],Id,−t2)=Z/2

↓0 ↓ ∼=↓ξ
|4|∼=L0(T+,−)

epi−→ L0(T̂
+,−
2 )(=Z/2) 0−→ Lrel

0 (T+,−)=Z/2
(3.5)

in which top row is a part of relative exact sequence for an inclusion B → B̂2, the
left group in top row is trivial by [1], the bottom row is the part of the relative
exact sequence for an inclusion T+,− → T̂+,−

2 , and the group and the maps in the
bottom row were described in [10]. Since the map ξ is an isomorphism, we obtain
from commutativity of diagram (3.5) that

L0(Ẑ2[Z/4], Id,−t2) = 0.
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Consider a part

Z/2=L3(R̂+
2 ) → L3(T̂

−,−
2 )(=Z/2) → L3(Ẑ2[Z/4],Id,−t2) → L1(T̂

+,+
2 )

↓Γ ↓Γ ↓Γ ↓Γ
0=L0(Ẑ2[Z/4],Id,−t2) → L2(T̂

+,+
2 )(=Z/2) → L2(R̂2)

∼=→ L2(T̂
−,−
2 )

(3.6)

of the two-row diagram for the inclusion R̂+
2 → T̂−,−2 which corresponds to the

inclusion Z/4+ → Q−,− given by the map t → xy. The rows of diagram (3.6) are
chain complexes with isomorphic homology groups. The right bottom horizontal
map is an isomorphism Z/2 → Z/2 (Arf-invariant), hence the homology group in
the member L2(T̂

+,+
2 ) is Z/2. Hence in top row the homology group in the member

L3(T̂
−,−
2 ) is Z/2 and hence the induced by the inclusion Z/4+ → Q−,− (t → xy)

map
α : Z/2 = L3(R̂+

2 ) → L3(T̂
−,−
2 ) = Z/2 (3.7)

is trivial.
The inclusion Z/4+ → Q−,− (t → xy) induces the map of relative exact se-

quences, and we obtain the commutative diagram

0=L0(R+→R̂+
2 ) 0→ L3(R+)=Z/2

∼=→ L3(R̂+
2 )=Z/2

↓ φ↓mono 0↓
Z/2=L0(T−,−→T̂−,−

2 ) mono−→
∂

L3(T−,−)=|4| epi−→ L3(T̂
−,−
2 )=Z/2

(3.8)

where the right hand vertical map is trivial as we have proved. Now the statement
of Lemma 3.2 follows from diagram (3.8). �

For the inclusion Z/4− → Q+,− (t → y) we consider the following part of
diagram (3.2)

L0(Q+,−)
↘p

L0(Z/4− → Q+,−)
r ↗

L3(Q−,−)

(3.9)

where σ(g) ∈ L0(Q+,−) and σ(h) ∈ L3(Q−,−). We have a natural map of the corre-
sponding diagram of relative groups to diagram (3.2) and hence a map of a diagram
of relative groups to diagram (3.9). Thus we obtain the commutative diagram

0 
= b ∈ (Z/2)2 = L1(T+,− → T̂+,−
2 )

Im=Z/2−→
δ

L0(Q+,−) � σ(g)

↓ epi p ↓ mono

Z/2 = L1

(
R− → R̂−2
↓ ↓

T+,− → T̂+,−
2

)
mono−→ L0(Z/4− → Q+,−)

↑ ∼= r ↑ mono

0 
= a ∈ Z/2 = L0(T−,− → T̂−,−2 ) mono−→
∂

L3(Q−,−) � σ(h)

(3.10)

in which the maps p and r are monomorphisms by [1]. The middle horizontal map
in (3.10) is a monomorphism since the diagonal map

L0(T−,− → T̂−,−2 ) → L0(Z/4− → Q+,−)
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from bottom square is a monomorphism as follows from Lemma 3.2. The left hand
upper vertical map in (3.10) is an epimorphism by [10]. Hence from commutativity
of (3.10) we obtain that there exists an element

b ∈ L1(T+,− → T̂+,−
2 )

such that δ(b) = σ(g) ∈ L0(Q+,−).
Consider the map of relative exact sequence of the inclusion R+ → R̂+

2 to
relative exact sequence of the inclusion T+,− → T̂+,−

2 which is induced by the
inclusion Z/4+ → Q+,−. We can write down the commutative diagram

Z
3⊕(Z/2)3=L1(R+→R̂+

2 )
epi−→ L0(R+)=Z

3

↓Im=Z/2 ↓
0 	=b∈(Z/2)2=L1(T+,−→T̂+,−

2 )
Im=Z/2−→

δ
L0(T+,−)=|4| (� σ(g)=δ(b))

(3.11)

where the left hand vertical map follows from [10].

Lemma 3.3. The map

Z
3 = L0(R+) i∗→ L0(T+,−)

in diagram (3.11) has the image Z/2 and hence the element σ(g) lies in the image
of this map.

Proof. Commutative diagram (3.3) induces a commutative diagram

LN1(Z/4+ → Q+,+) −→ L3(Q+,+) = (Z/2)2

↓ epi ↓ mono

LN1(Z/2+ → Z/2+ ⊕ Z/2+) mono−→ L3(Z/2+ ⊕ Z/2+) = (Z/2)3

||
L3(Z/2+) = Z/2

(3.12)

in which the right vertical map is a monomorphism by [1] and the left vertical map
is an epimorphism as follows from the long exact sequence of the pull-back diagram
(see [1])

(Z[Z/4], Id,−t2) → (Z[i], Id, 1)
↓ ↓

(Z[Z/2], Id,−1) → (Z/2[Z/2], Id, 1),

where LNi(Z/4+ → Q+,+) = Li(Z[Z/4], Id,−t2). Thus the image of the upper
horizontal map in (3.12) is Z/2. Now consider the following part of the two-row
diagram for the inclusion Z/4+ → Q+,−

0=L1(Q+,−) −→ LN1(Z/4+→Q+,+)
Im=Z/2−→ L3(Q+,+)=(Z/2)2 −→ L3(Z/4+)

↓Γ ↓Γ ↓Γ ↓Γ
Z
5=L0(Q+,+)

coker=Z/2−→ L0(Z/4+)=Z
3 i∗−→ L0(Q+,−)=|4| −→ LN0=0

(3.13)

in which rows are chain complexes with isomorphic homology groups and vertical
maps Γ are isomorphisms of homologies. The map

Z
5 = L0(Q+,+) → L0(Z/4+) = Z

3
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has cokernel Z/2 as follows from consideration of the corresponding diagram of
relative groups. It follows now that image i∗ in (3.13) is Z/2 and the lemma is
proved. �

Now Theorem 3.1 is proved. �

On the base of diagram (2.6) we can write down the following commutative
diagram of surgery obstruction groups

0 = L1(Z/4+) 0→ L1(Q+)
↗ ↘ p

Γ ↓ L1(Z/4+ → Q+)
↘ ↗ r

0 = LN0(Z/4+ → Q+) 0→ L0(Q+,−)
||

0 = L0(Z/4+)
j∗=0−→ L0(Q+,−)

↗ ↘ p
Γ ↓ L0(Z/4− → Q+,−)

↘ ↗ r

LN3(Z/4− → Q+,−) 0→ L3(Q−,−)
||

Z/2 ⊕ Z/2 ∼= L3(Z/4−)
j∗−→ L3(Q−,−)

↗ ↘
Γ ↓ L3(Z/4− → Q−,−)

↘ ↗
LN2(Z/4− → Q−,−) −→ L2(Q+,−)

(3.14)

which is similar to diagram (2.8). By [1], σ(g) ∈ L0(Q+,−), σ(h) ∈ L3(Q−,−), and
p(σ(g)) = r(σ(h)).

Theorem 3.4. The map

Z/2 ⊕ Z/2 = L3(Z/4−)
j∗−→ L3(Q−,−)

in diagram (3.14) is an isomorphism. Hence Γ3(σ(f)) ∈ L2(Q+,−) is trivial for
diagram (3.14). From this it follows that Γ3(σ(f)) = 0 for diagrams (2.6) and (2.7).

Proof. For the inclusion j : Z/4− → Q+,−, consider a two-row diagram of relative
L-groups, which is part of the braid of exact sequences of relative L-groups

Z/2 Z/2 0 0 0 0
|| || || || || ||

j!→Lrel
0 (R−) → Lrel

0 (T−) → Lrel
2 (A) → Lrel

2 (T−) → Lrel
2 (R−) → Lrel

2 (T−)→
↓Γ ↓Γ ↓Γ ↓Γ ↓Γ ↓Γ

→Lrel
3 (A) → Lrel

3 (T−) → Lrel
3 (R−) → Lrel

3 (T−) → Lrel
1 (A) → Lrel

1 (T−)→
|| || || || || ||
Z Z 0 Z Z (Z/2)2

(3.15)
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0 Z/2
|| ||

→Lrel
0 (A) −→ Lrel

0 (T−)
j!→

↓Γ ↓Γ
→Lrel

1 (R−)
j∗−→ Lrel

1 (T−)→
|| ||

(Z/2)2 (Z/2)2

Now we shall prove Lemmas 3.5, 3.6, 3.7, and 3.8 which yields a proof of Theorem
3.4.

Lemma 3.5. In diagram (3.15), the map

Z = Lrel
3 (A) −→ Lrel

3 (T−) = Z

is isomorphism, and the map

Z = Lrel
3 (T−) −→ Lrel

1 (A) = Z

is a multiplication by 2 with coimage Z/2.

Proof. Suppose that the map

Z/2 = Lrel
0 (T−)

j!−→ Lrel
0 (R−) = Z/2

in diagram (3.15) is an isomorphism. Then, comparing homology of top and bottom
rows of diagram (3.15), we obtain a contradiction. Hence the map

Z/2 = Lrel
0 (R−)

j∗−→ Lrel
0 (T−) = Z/2

in top row of (3.15) is an isomorphism. From this the result follows by diagram
chasing in diagram (3.15). �

For an inclusion j : Z/4− → Q−, we have a two-row diagram of L-groups

0 |4| ? Z⊕Z/2 Z/2 Z⊕Z/2
|| || || || || ||

→L0(Z/4−) → L0(Q−) → LN2 → L2(Q−) → L2(Z/4−) → L2(Q−)→
↓Γ ↓Γ ↓Γ ↓Γ ↓Γ ↓Γ

→LN3 → L3(Q−) → L3(Z/4−) → L3(Q−) → LN1 → L1(Q−)→
|| || || || || ||
0 |4| (Z/2)2 |4| 0 0

(3.16)

? |4|
|| ||

→LN0 −→ L0(Q−)
j!→

↓Γ ↓Γ
→L1(Z/4−) −→ L1(Q−)→

|| ||
0 0

Lemma 3.6. In diagram (3.16), the map

Z/2 = L2(Z/4−)
j∗−→ L2(Q−) = Z⊕ Z/2

is a monomorphism, and hence the map

L2(Q−)
j!−→ L2(Z/4−)

is trivial.
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Proof. Consider the commutative diagram of oriented groups

Z/4−
j(t)=y−→ Q+,−

↓ t2=1 ↓ x2=y2=1

Z/2− −→ Z/2+ ⊕ Z/2−.
(3.17)

Diagram (3.17) induces the following diagram of L-groups

Z/2 = L2(Z/4−)
j∗−→ L2(Q+,−)

↓ ∼= ↓
Z/2 = L2(Z/2−)

∼=−→ L2(Z/2+ ⊕ Z/2−) = Z/2

(3.18)

in which the left vertical map is isomorphism (Arf-invariant is preserved), and the
bottom horizontal map is an isomorphism (the bottom horizontal map is an inclusion
of a direct summand). Now we obtain the monomorphism of top row in (3.18). The
result follows. �

Lemma 3.7. We have isomorphisms [6]

LN2(Z/4− → Q−3 ) ∼= LN0(Z/4− → Q−3 ) ∼= Z⊕ Z/2

and the map

Z ∼= Lrel
2n+1(A) → L2n(A) ∼= LN2n(Z/4− → Q−3 )

is an inclusion of a direct summand.

Proof. Consider a commutative diagram

Z = Lrel
3 (A)

∼=−→ Z = Lrel
3 (T−)

↓ ∂ ↓ ∂1
LN2 −→ Z⊕ Z/2 = L2(Q−)

(3.19)

in which vertical maps fit into the corresponding relative exact sequences. The right
vertical map ∂1 in (3.19) is an inclusion of a direct summand by [10], and upper
horizontal map is an isomorphism by Lemma 3.5. Hence the left vertical map in
(3.19) is an inclusion of a direct summand. Now from diagram (3.16) we obtain the
diagram

|4| ? Z/2
|| || ||

0 → L0(Q−) → LN2/{Im ∂} → L2(Q−)/{Im ∂1} → 0
↓ Γ ↓ Γ ↓ Γ

0 → L3(Q−) → L3(Z/4−)
j∗−→ L3(Q−) → 0

|| || ||
|4| (Z/2)2 |4|

(3.20)

in which the homology groups in the corresponding places of upper and bottom rows
are isomorphic by isomorphisms Γ. Hence we have the isomorphism

LN2/{Im ∂} ∼= Z/2
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and
LN2 ∼= Z⊕ Z/2.

The isomorphism LN2 ∼= LN0 follows from 2-periodicity. �

Lemma 3.8. The map

Z⊕ Z/2 = LN2 → L2(Q+,−) = Z⊕ Z/2

in diagram (3.16) is an isomorphism

Proof. Consider the commutative diagram

Z⊕Z/2∼=LN0(Z/4−→Q−,−)
∼=−→ L0(Z[Z/4],D,t2) epi−→ L0(Q+,−)

↓epi ↓t2=1 ↓x2=y2=1

Z/2∼=LN0(Z/2−→Z/2−⊕Z/2−)
∼=−→ L0(Z/2−)

∼=−→ L0(Z/2+⊕Z/2−)

(3.21)

in which the top right hand horizontal map is an epimorphism as follows from (3.16).
Hence the left vertical map provides an isomorphism of the torsion part Z/2 of the
group LN0 on the group L0(Z/2−) = Z/2 (the direct summand Z of the group LN0
maps trivially since it factors acroos the corresponding map of relative groups which
is trivial).

Now we can write down a commutative diagram

Z⊕Z/2∼=LN2(Z/4−→Q−,−)
∼=−→ L2(Z[Z/4],D,t2) −→ L2(Q+,−)∼=Z⊕Z/2

↓epi ↓t2=1 ↓x2=y2=1

Z/2∼=LN2(Z/2−→Z/2−⊕Z/2−)
∼=−→ L2(Z/2−)

∼=−→ L2(Z/2+⊕Z/2−)

(3.22)

in which the left vertical map induces an isomorphism of the torsion part Z/2 of
the group LN2 on the group L2(Z/2−) = Z/2 by 2-periodicity. The direct summand
Z of the group LN2 maps isomorphically to the direct summand Z of the group
L2(Q+,−) as follows from Lemma 3.5 and Lemma 3.7. The diagram (3.22) provides
a similar result about torsion subgroups. Lemma 3.8 is proved. Now Theorem 3.4
follows. �

This finishes the proof of Theorem 3.4. �

4. Braids of exact sequences

In this section we give explicit results about braids of exact sequences of L∗-groups
for various index 2 inclusions ρ → Q. The results of this section are direct corollaries
of computations in Section 3 and [1], [6], and [10].

Theorem 4.1. For an inclusion j : Z/4− → Q−, we have the following two-row dia-
gram of L-groups

0 (Z/2)2 Z⊕Z/2 Z⊕Z/2 Z/2
|| || || || ||

→L0(Z/4−) −→ L0(Q−) 0−→ LN2
∼=−→ L2(Q−)

j!=0−→ L2(Z/4−)→
↓Γ ↓Γ ↓Γ ↓Γ ↓Γ

→LN3 −→ L3(Q−) 0−→ L3(Z/4−)
∼=−→ L3(Q−) −→ LN1→

|| || || || ||
0 (Z/2)2 (Z/2)2 (Z/2)2 0

(4.1)
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Z⊕Z/2 Z⊕Z/2 (Z/2)2

|| || ||
j∗−→

mono
L2(Q−)

Coker=(Z/2)2−→ LN0
epi−→ L0(Q−)

j!=0−→
↓Γ ↓Γ ↓Γ

−→ L1(Q−) −→ L1(Z/4−) −→ L1(Q−)→
|| || ||
0 0 0

Corollary 4.2. There exist isomorphisms

L0(Q−) ∼= L3(Q−) ∼= Z/2 ⊕ Z/2.

Corollary 4.3. Let Y ⊂ X be be a Browder-Livesay pair of manifolds with a push-out
square of fundamental groups

Ψ =
π1(∂U)

∼=−→ π1(X \ Y )
↓ ↓

π1(Y ) −→ π1(X)
=

Z/4− −→ Z/4−

↓ ↓
Q− −→ Q−

in the corresponding splitting problem. Then we have the following isomorphisms

LPn(Ψ) = (Z/2)2,Z/2,Z⊕ (Z/2)3, (Z/2)2

for n = 0, 1, 2, 3 mod4, respectively.

Theorem 4.4. For an inclusion j : Z/4+ → Q+,−, we have the following two-row
diagram of L-groups

0 0 Z/2 (Z/2)2 Z/2
|| || || || ||

→L1(Z/4) −→ L1(Q−) 0−→ LN1
mono−→ L3(Q) 0−→ L3(Z/4)→

↓Γ ↓Γ ↓Γ ↓Γ ↓Γ
→LN2

mono−→ L0(Q)
Coker=Z/2−→ L0(Z/4)

Im=Z/2−→ L0(Q−) −→ LN0→
|| || || || ||
Z
2

Z
5

Z
3 (Z/2)2 0

(4.2)

(Z/2)2 (Z/2)2 (Z/2)2

|| || ||
mono−→ L3(Q−) 0−→ LN3

∼=−→ L1(Q) 0−→
↓Γ ↓Γ ↓Γ

−→ L2(Q) 0−→ L2(Z/4)
∼=−→ L2(Q−) 0→

|| || ||
Z/2 Z⊕Z/2 Z⊕Z/2

where LNi = LNi(Z/4 → Q+) ∼= LNi+2(Z/4 → Q−).

Corollary 4.5. There exists an isomorphism

L1(Q+) ∼= Z/2 ⊕ Z/2.

Corollary 4.6. Let Y ⊂ X be be a Browder-Livesay pair of manifolds with a push-out
square of fundamental groups

Ψ1 =
π1(∂U)

∼=−→ π1(X \ Y )
↓ ↓

π1(Y ) −→ π1(X)
=

Z/4+ −→ Z/4+

↓ ↓
Q+,+ −→ Q+,−
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in the corresponding splitting problem. Then we have the following isomorphisms

LPn(Ψ1) = Z
2,Z⊕ (Z/2)3, (Z/2)2, (Z/2)3

for n = 0, 1, 2, 3 mod4, respectively.

Theorem 4.7. For an inclusion j : Z/4+ → Q+, we have the following two-row dia-
gram of L-groups

0 (Z/2)2 (Z/2)2 (Z/2)2 Z/2
|| || || || ||

→L1(Z/4) −→ L1(Q) 0−→ LN3
∼=−→ L3(Q−) 0−→ L3(Z/4−)mono−→

↓Γ ↓Γ ↓Γ ↓Γ ↓Γ
→LN0 −→ L0(Q−) 0−→ L0(Z/4) mono−→ L0(Q)

epi−→ LN2
0−→

|| || || || ||
0 (Z/2)2 Z

3
Z
5

Z
2

(4.3)

(Z/2)2 Z/2 0
|| || ||

mono−→ L3(Q) 0−→ LN1 −→ L1(Q−)→
↓Γ ↓Γ ↓Γ

0−→ L2(Q−)
Coker=(Z/2)2−→

Ker=Z/2
L2(Z/4)

epi−→ L2(Q)→
|| || ||

Z⊕Z/2 Z⊕Z/2 Z/2

where LNi = LNi(Z/4 → Q+) ∼= LNi+2(Z/4 → Q−).

Corollary 4.8. Let Y ⊂ X be be a Browder-Livesay pair of manifolds with a push-out
square of fundamental groups

Ψ2 =
π1(∂U)

∼=−→ π1(X \ Y )
↓ ↓

π1(Y ) −→ π1(X)
=

Z/4+ −→ Z/4+

↓ ↓
Q+,− −→ Q+,+

in the corresponding splitting problem. Then we have the following isomorphisms

LPn(Ψ2) = (Z/2)2, (Z/2)2, (Z/2)2,Z3 ⊕ (Z/2)2

for n = 0, 1, 2, 3 mod4, respectively.
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