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Decompositions of R", n > 4, into
Convex Sets Generate Codimension 1
Manifold Factors
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Abstract. We show that if G is an upper semicontinuous decomposition
of R", n > 4, into convex sets, then the quotient space R"/G is a
codimension 1 manifold factor. In particular, we show that R™/G has
the disjoint arc-disk property.
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1. Introduction

A space X is said to be a codimension 1 manifold factor provided that X xR is
a manifold. It is a long standing unsolved problem as to whether all resolvable
generalized manifolds are codimension 1 manifold factors [9]. This is the so-
called Product With a Line Problem and it is the essence of the famous
Generalized R. L. Moore Problem [21, 25, 26].

The Product With a Line Problem speaks directly to one of the most
fundamental questions in geometric topology, which is how to recognize mani-
folds [6, 15, 27, 28, 29]. Because manifolds have a rich structure which is useful
to exploit in many areas of mathematics and its applications, it is important
to recognize when one is dealing with a space that is a manifold. One notable
example is the relevance of the Product With a Line Problem to the famous
Busemann Conjecture in metric geometry [3, 4, 5, 19].

One might wonder even if a decomposition of R™ into convex sets could
give rise to a decomposition space topologically distinct from R”™. This prob-
lem was investigated for several years beginning with Bing in the 1950’s
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[1, 2, 8, 14, 23]. In 1970, Armentrout [1] produced the first example of a de-
composition of R? into convex sets that yields a non-manifold. Then in 1975,
Eaton [14] demonstrated that a certain decomposition of R? into points and
straight line segments, originally proposed by Bing [2], is indeed topologically
distinct from R3. Hence, this type of complexity is significant. It should also
be noted that there are no known examples of a non-manifold resulting from
a decomposition of R”Z* into convex sets.

In this paper we shall investigate how the type of complexity represented
by decompositions of R™ into convex sets can affect the classification of a de-
composition space as a codimension 1 manifold factor. We shall demonstrate
that decompositions of R™, n > 4, into convex sets are always codimension
1 manifold factors. In particular, we shall show that such spaces have a par-
ticularly strong general position property, the disjoint arc-disk property.

2. Preliminaries

We briefly review some basic definitions and notations. Recall that a map
f: X — Y is said to be proper if whenever C is a compact subset of Y, then
f~Y(C) is compact.

There are various equivalent definitions of upper semicontinuous decom-
positions [11], but the following will be the most useful for our purposes:

Definition 2.1. A decomposition G of M into compact sets is said to be
upper semicontinuous (usc) if and only if the associated decomposition map
m: M — M/G is a proper map.

A compact subset C' of a space X is said to be cell-like if for each
neighborhood U of C' in X, C can be contracted to a point inside U [24].
A usc decomposition G of M is said to be cell-like if each element g € G is
cell-like. A map f: Y — X is said to be cell-like if for each x € X, f~(x)
is cell-like. A resolvable generalized n-manifold is an n-dimensional space X
that is the image of a cell-like map f : M — X where M is an n-manifold.

Convex sets are contractible, and hence they are cell-like. Thus, a usc
decomposition G of R™ into convex sets is a cell-like decomposition and the as-
sociated decomposition map 7 : R” — R"/G is a cell-like map. The fact that
R™/G is finite-dimensional follows from a result of Zemke (see [30, Theorem
5.2]). Therefore, in this setting, R™ /G is a resolvable generalized n-manifold.

For resolvable generalized manifolds, we have the following very use-
ful approximate lifting theorem, which follows from [11, Theorem 17.1 and
Corollary 16.12B]:

Theorem 2.2. Suppose that G is a cell-like decomposition of a manifold M,
with decomposition map 7 : M — M/G, and that the quotient space M /G is
finite-dimensional. Then for any map f: Z — M/G of a finite-dimensional
compact polyhedron Z, and any € > 0, there exists a map F : Z — M such
that mF' is an e-approximation of f.
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General position properties are very useful in detecting codimension 1
manifold factors [12, 16, 17, 18, 20]. For our results, we shall only need to
employ the following:

Definition 2.3. A space X is said to have the disjoint arc-disk property
(DADP) provided that any two maps a : I — X and f : D> — X can
be approximated by maps with disjoint images, where I denotes the unit
interval and D? denotes a disk.

The following theorem was demonstrated in [10, Proposition 2.10]:

Theorem 2.4. A resolvable generalized manifold having DADP is a codimen-
sion 1 manifold factor.

Useful in discussions of the DADP is the local 0-co-connectedness prop-
erty. A set Z C X is said to have the local 0-co-connectedness property (0-
LCC) in X if for every z € ZNCl(X — Z), each neighborhood U of z contains
another neighborhood V of z so that any two points in V' are path connected
in U. Note that if Z is nowhere dense in X, then Z = ZNCl(X — Z).

The following theorem can be found in [11, Corollary 26.2A]:

Theorem 2.5. Fach k-dimensional closed subset of a generalized n-manifold,
where k <n — 2, is 0-LCC.

Since a k-dimensional closed subset of a generalized n-manifold X, where
k <n —1, is nowhere dense in X, we have the following corollary:

Corollary 2.6. If Z is a k-dimensional closed subset of a generalized n-
manifold X, where k < n — 2, then any path o : I — X can be approximated
by a path o : I — X — Z.

3. Main Results
The main result of this paper is the following theorem:

Theorem 3.1. Let G be an upper semicontinuous decomposition of R™ into
convex sets, where n > 4. Then R™/G is a codimension 1 manifold factor.

This theorem will follow immediately as a corollary of Theorem 2.4 and the
following theorem:

Theorem 3.2. Let G be an upper semicontinuous decomposition of R™ into
convex sets, where n > 4. Then R™/G has the DADP.

Proof. Let f : D> — R"/G and ¢ > 0. It follows from Corollary 2.6 that it
suffices to show that there is an e-approximation f’: D? — R"/G of f such
that f’(D?) is 2-dimensional.

Let F : D? — R™ be a piecewise linear map, that is an e-approximate
lift of f. We shall show that f’ = 7 F is then the desired map.
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Let T denote a triangulation of F(D?). We claim that if o is a 2-simplex
of T, then f’(o) is 2-dimensional. To see this, let G, be the decomposition in-
duced over 7(0), i.e. G, is the decomposition of R™ having as the only nontriv-
ial elements, the nontrivial elements of G that meet 0. Let w : R” — R"/G,,
be the associated decomposition map. Note that w is necessarily a proper
map, being a decomposition induced over a closed set in the decomposition
space of a usc decomposition.

Let P be the 2-dimensional plane in R™ that contains ¢. Let w denote
the restriction of w to P. Then w is also a proper map. Thus w determines a
usc decomposition of the plane into convex sets, elements that do not separate
the plane. It now follows from a classical result of Moore [25, 26], that w is
a near-homeomorphism onto its image. Thus w(o) is at most 2-dimensional.

But w(o) is homeomorphic to w(eo), which in turn is homeomorphic to
m(0). Thus 7(o) is at most 2-dimensional subset of R™/G. Hence

= )

oceT ()

is a 2-dimensional subset of the generalized n-manifold R"/G [22]. O

4. Conclusions

As we have seen, the complexity represented by decompositions into con-
vex sets does not inhibit a decomposition space from being a codimension 1
manifold factor. The fact that such spaces satisfy the DADP is a pleasant
result.

It is well known that not all codimension 1 manifold factors satisfy the
DADP, and hence the DADP is not a general position property that provides
a characterization of codimension 1 manifold factors. In fact, the DADP con-
dition is a relatively weak tool for detecting codimension 1 manifold factors,
compared to other general position properties such as:

the disjoint homotopies property [16];

the plentiful 2-manifolds property [16];

the 0-stitched disks property [18];

the method of §-fractured maps [17]; and

the disjoint topographies (or disjoint concordance) property [12, 20].

It is these stronger properties that must be utilized to demonstrate that
spaces such as the Totally Wild Flow [7] and the Ghastly Spaces [13] are
codimension 1 manifold factors.

In conclusion, we have demonstrated that we must look to other types
of complexities to realize a counterexample to the Generalized R. L. Moore
Problem, if such an example does indeed exist.
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