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Abstract

In this paper we study the semigroup .#5 (N) of partial cofinal monotone bijective
transformations of the set of positive integers N. We show that the semigroup T4 (N)
has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its
non-trivial group homomorphisms are either isomorphisms or group homomo;phisms. We
also prove that every locally compact topology 7 on .4 (N) such that (#% (N),7) is a
topological inverse semigroup, is discrete. Finally, we describe the closure of (fo/c: (N),7)
in a topological semigroup.

1. Introduction and preliminaries

Our purpose is to study the semigroup % (N) of partial cofinal mono-
tone bijective transformations of the set of positive integers N. We shall show

that the semigroup fo/o (N) has algebraic properties similar to the bicyclic
semigroup: it is bisimple and all of its nontrivial group homomorphisms are
either isomorphisms or group homomorphisms. We shall also prove that

every locally compact topology 7 on fO/O(N) such that (ﬂO/O(N),T) is a
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topological inverse semigroup is discrete and we shall describe the closure of
(ﬂ£(N), 7') in a topological semigroup.

In this paper all spaces will be assumed to be Hausdorff. Furthermore
we shall follow the terminology of [5, 6, 8]. We shall denote the first infinite
cardinal by w and the cardinality of the set A by |A|. If Y is a subspace of a
topological space X and A £ Y, then we shall denote the topological closure
and the interior of A in Y by cly(A) and Inty (A), respectively.

An algebraic semigroup S is called inverse if for any element = € S there
exists a unique 7! € S such that zz~'z = 2 and 2 'zz~! = =1, The ele-
ment z 7! is called the inverse of x € S. If S is an inverse semigroup, then
the function inv : S — S which assigns to every element x of S its inverse
element ! is called an inversion.

If S is a semigroup, then we shall denote the band (i.e. the subset of
idempotents) of S by E(S). If the band E(S) is a nonempty subset of .S,
then the semigroup operation on S determines the partial order < on E(S):
e < fif and only if ef = fe = e. This order is called natural.

A semilattice is a commutative semigroup of idempotents. A semilat-
tice E is called linearly ordered or chain if the semilattice operation admits
a linear natural order on E. A mazimal chain of a semilattice F is a chain
which is properly contained in no other chain of F. The Axiom of Choice
implies the existence of maximal chains in any partially ordered set. Accord-
ing to [11, Definition I1.5.12] a chain L is called an w-chain if L is isomorphic
to {0,—1,—2,-3,...} with the usual order <. Let F be a semilattice and
e€ E. Wedenote le={fecFE|f<elandte={f€E|e= f}.

A topological (inverse) semigroup is a topological space together with
a continuous multiplication (and an inversion, respectively). Let .#)\ de-
note the set of all partial one-to-one transformations of a set X of cardi-
nality A together with the following semigroup operation: z(af) = (za)S
if z € dom(af) = {y € doma | ya € dom 5}, for «, f € #£,. The semigroup
) is called the symmetric inverse semigroup over the set X (see [6]). The
symmetric inverse semigroup was introduced by Wagner [12] and it plays a
major role in the theory of semigroups.

Let N be the set of all positive integers. We shall denote the semigroup of
monotone, non-decreasing, injective partial transformations of N such that

the sets N\ dom ¢ and N\ rank ¢ are finite for all ¢ € .5 (N) by .74 (N).
Obviously, % (N) is an inverse subsemigroup of the semigroup .#,. The

semigroup f£(N) is called the semigroup of cofinite monotone partial bijec-
tions of N.
We shall denote every element o of the semigroup foé (N) by
<n1 2 T3 T ) and this means that o maps the positive integer
mi Mg M3 Mg ...

n; into m; for all ¢ = 1,2,3,... . In this case the following conditions hold:
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(i) the sets N\ {n1,ng,nz,ng,...} and N\ {my, ma, mg, my,...} are finite;
and

(1) n1 <mg<ng<ng<...andmyg <mg <mz<myg<....
We observe that an element « of the semigroup .#, is an element of the
semigroup .75 (N) if and only if it satisfies the conditions (i) and (7).

The bicyclic semigroup % (p, q) is the semigroup with the identity 1, gen-
erated by elements p and ¢, subject only to the condition pg = 1. The bicyclic
semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every non-annihilating homomorphism A of
the bicyclic semigroup is either an isomorphism or the image of % (p, ¢) un-
der h is a cyclic group (see [6, Corollary 1.32]). The bicyclic semigroup plays
an important role in algebraic theory of semigroups and in the theory of
topological semigroups.

For example, the well-known result of Andersen [1] states that a (0-
)simple semigroup is completely (0—)simple if and only if it does not contain
the bicyclic semigroup. The bicyclic semigroup admits only the discrete
topology and a topological semigroup S can contain % (p, q) only as an open
subset [7]. Neither stable nor I'-compact topological semigroups can contain
a copy of the bicyclic semigroup [2, 10]. Also, the bicyclic semigroup does
not embed into a countably compact topological inverse semigroup [9].

Moreover, the conditions were given in [3] and [4] when a countable com-
pact or pseudocompact topological semigroup does not contain the bicyclic
semigroup. However, Banakh, Dimitrova and Gutik constructed, using set-
theoretic assumptions (Continuum Hypothesis or Martin Axiom), an exam-
ple of a Tychonoff countably compact topological semigroup which contains
the bicyclic semigroup [4].

We remark that the bicyclic semigroup is isomorphic to the semigroup
én(a, 8) which is generated by partial transformations o and S of the set of
positive integers N, defined as follows:

(na=n+1 if n=21, and m)=n—-1 1if n>1.

Therefore the semigroup gL (N) contains an isomorphic copy of the bicyclic
semigroup % (p, q).

2. Algebraic properties of the semigroup 4 (N)

PROPOSITION 2.1. The following properties hold:
(1) ﬂo/o(N) is a simple semigroup.

(i) aZp (L) in jO/O(N) if and only if doma =dompj (ranka =
rank f3).
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(131) I in f£(N) if and only if o= .
(iv) For every e, € E(JO/O((N)) there exists o € 95 (N) such that ca™" =
e and o ta = 1.
(v) fO/O(N) is a bisimple semigroup.
(vi) If e,1 € E(,ﬂofo(N)) , then ¢ < v if and only if dome € dom .
(vii) The semilattice E(ﬂo/(;(N)) is isomorphic to (P<,(N), <) under the
mapping (€)h = N\ dome.

(viti) Every mazimal chain in E(ﬁ£(N)) is an w-chain.

PROOF. (i) Let

a:<n1 ng N3z Ny ) and 6:<];11 k‘Q k‘g k‘4 >

mi M2 mgz my lo Iz Iy

be any elements of the semigroup foé (N), where n;, m;, ki,l; € N for i =
1,2,3,.... We put

N = kl k?g k3 ]{74 and § = miy mo M3 MMy ... )
ny N2 N3 nNg ... l1 lg l3 l4

Then we have that yad = 3. Therefore .75 (N)-a- N4 (N) = ﬂé(N) for any

o€ I4 (N) and hence % (N) is a simple semigroup.
Statement (i7) follows from definitions of relations # and £ and Theo-
rem 1.17 of [6]. Also, (4i) implies (ii7). For the idempotents

c— mi1 Mg M3 My ... and L — ll 12 l3 l4
mp Mmoo M3 M4 ... ll l2 l3 l4

_ (M1 m2 m3 My
we put a = (ll ly I3 Iy
hence (iv) holds. Also, (v) follows from (i7). All other assertions are triv-
ial. g

> Then aa™! =¢ and o ta = ¢, and

PROPOSITION 2.2. For every a, 3 € 94 (N), both sets {xe IL(N) |

a-x=p} and {x € JO/O(N) | x- =B} are finite. Consequently, every
right translation and every left translation by an element of the semigroup

5 (N) is a finite-to-one map.
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PRrRooOF. We denote
A={xeILN) |a-x=p} and B={x e ILN) [a ' -a x=a" B}.

Then A € B and the restriction of any partial map x € B to dom(a~! -«

~—

coincides with the partial map a~!- 3. Since every partial map from 74 (N
is monotone and non-decreasing, the set B is finite and hence so is A.

oz

For every v € JO/O(N) Mgom(y) =min{n € N|m € dom~ forallm =2 n
and Man(y) =min{n € N|m €rany for all m =2n} and put M(y)

max { Mdom (7)7 Mrarl(V)} .

LEMMA 2.3. For every idempotent € of the semigroup JO/O(N) there ex-

ists an idempotent €g € E(JO/O(N)) \ E(n(c, B)) such that the following
conditions hold:

(]-) €0 § g;

—

(2) g is the unity of a subsemigroup € of fO/O(N), which is isomorphic
to the bicyclic semigroup; and

3) € Nén(a,B) = 2.

PROOF. Let € be an arbitrary idempotent of the semigroup f£ (N). We
put ng = M(e) + 1 and

_ (no—1 no+1l no+2 no+3 ---
f0= no—1 ng+1l ne+2 ng+3 )

We define the partial monotone bijections & : N — N and 5 : N— N as fol-
lows:

~  (nop—1 no+1 no+2 ne+3 ---
a= (no—l nog+2 ng+3 neg+4 --- and

E_ no—1 no+2 no+3 no+4 ---
“\no—1 ng+1 ng+2 ng+3 ---/°

Let % a semigroup generated by the elements & and 5 Then % satisfies

the conditions (2)—(3) of the lemma and ey = & - 3 is the identity of the
semigroup % such that gy < e. O

LEMMA 2.4. For every \ € fO/O(N) there exist p € én(a, 8) and € €
E(¢n(a,B)) such that \-e =p-c ande-A=c-p.
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ProOOF. The definition of the semigroup gL (N) implies that for ev-

ery v € 74 (N) the notions Mgom (7), Mran(7) and M(v) exist and they are
unique, and hence they are well-defined.

We define partial maps p: N— N and ¢ : N — N as follows: dom y =
{neN|nz2M)} and (i)u = (i) for all i € dom p and dome = {n € N |
n2=M(\)} and (i)u =i for all i € dom . Then we have A& =y ¢ and
e-A=¢c- . O

The proof of the following lemma is similar to the proof of Lemma 2.4.

LEMMA 2.5. For every idempotent ¢ € E(ﬂofo(N)) there exists ¢ €
E(%N(a,ﬁ)) such that ¢ -€ € E(%N(a,ﬁ)) . More than, ¢ -¢ € E(%N(a,ﬁ))
for every ¢ € E(én(w, B)) such that ¢ < e.

LEMMA 2.6. For every idempotent € € E(f£(N)) there exists o €
E(‘KN(Q,/B)) such that ¢ < €.

PROOF. The definition of .#% (N) implies that there exists a maximal
positive integer n. such that n. — 1 ¢ dome. We put

(e ne+l ne+2 ng4+3 -
Y= Ne Mg+l ns~42 n.+3 )
Then we get ¢ € E(%N(a,ﬁ)) and ¢ < e. O

LEMMA 2.7. For every element A € JO/O(N) there exists an idempotent €
of the subsemigroup € (c, B) such that X-e-A"1 A1 .e- X\ € E(%N(a,ﬁ)) .

PROOF. By Lemma 2.4 there exists u € én(a, 8) and € € E(%n(w, B))
such that A\-e = p-e and €- A = ¢ - u. Therefore, we have that

Ae At =XeedT=(0Ne)- Ao =(ue)(u-e)"
=p-eep Tt =poe-pt € B(Gn(a, )

and similarly At e - A=p "t p € E(‘KN(Q,,B)). O
LEMMA 2.8. Let S be a semigroup and h : JO/O(N) — S a homomorphism
such that (e)h = (p)h for some distinct idempotents e,p € E(ﬂo{;(N)) .
Then (e)h = (Y)h, for every ¢ € E(ﬂé(N)) .
PRrROOF. We consider the following cases:
(1) e,0 € E(6n(e, B));
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(2) € and ¢ are distinct comparable idempotents of E(Jo/O (N));

(3) € and ¢ are distinct incomparable idempotents of E(fo/o (N)).
Suppose case (1) holds. Then by Corollary 1.32 of [6] we have that (x)h =
(e)h for every x € E(%n(a,B)). Let ¢ be any idempotent of E(J£(N)
such that ¢ ¢ E(%n(o, 8)). Then by Proposition 2.1(v) there exists v €

JO/O(N) such that v-v~ ! =¢ and y~!-4 =1. By Lemma 2.7 there exist

£0,€1 € E(%n(a, B)) such that v~ -eo -y =e1 € E(%n(a,3)). Therefore,
we have that

Wh=@-)h=(y" vy ) h=(v"e-7)h

= (v )h-(©h-(Mh= (") h-(c)h- (Nh= (7" 7)h
= (61)h = (E)h

Suppose case (2) holds. Without loss of generality we can assume that
e <. Then (e)h = (e1)h = (¢)h for every idempotent e; € E(fo/o(N))
such that € £ e < . Therefore, without loss of generality we can as-

sume that dom¢ \ dome is singleton. Let {nf} = dom¢ \ dome. Let j
be the minimal integer of dome such that (i)e =4 for all ¢ = j. We put

Lp . . . (p . . .
_(n& g g+l g2 .- _(nE j§ j+L j4+2 .-
eo—<n€<p §G 42 > and )\—<j_1 GO a2 ) Then
A loeg-p-eg-Aand A1 gg-e-gp- A are distinct idempotents of the sub-
semigroup @i (c, ). Therefore, we have that

(A eo e A)h= (A" 2)h-(@)h- (0 A)h
= (A" eo)h-(e)h-(e0- Nh= (A" gg-e-g0- A)h,

and hence case (1) holds.

Suppose case (3) holds. Then we have that (¢)h = (¢-e)h = (e)h-(e)h =
(e)h-(p)h = (- ¢)h. Since the idempotents € and ¢ are distinct and incom-
parable we conclude that - ¢ < ¢ and € - ¢ < ¢, and hence case (2) holds. [

THEOREM 2.9. Let S be a semigroup and h : fo{;(N) — S a non-anni-
hilating homomorphism. Then either h is a monomorphism or (JO/O(N)) h
is a cyclic subgroup of S.

PROOF. Suppose that h: fO/O(N) — S is not an isomorphism “into”.

Then (a)h = (B)h, for some distinct o, 8 € #%(N). Since .#% (N) is an
inverse semigroup we conclude that

(a)h=((@h) "

Il
—~
=

=
~—

L

Il
—~
™®

L
~—
=
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and hence (aoz_l) h = (ﬁﬁ_l) h. Therefore the assertion of Lemma 2.8
holds. Since every homomorphic image of an inverse semigroup is an in-

verse semigroup we conclude that (JOC (N)) h is a subgroup of S.

Since the map h : .74 (N) — S is a group homomorphism we have that
h generates a group congruence h on ﬂo/o(N). If ¢ is any congruence on the
semigroup JO/O(N) then the mapping ¢ +— ¢V g maps the congruence ¢ onto

a group congruence ¢V g, where g is the least group congruence on JO/O (N)
(cf. [11, Section III]).
Such a mapping is a map from the lattice of all congruences of the semi-

group Y4 (N) onto the lattice of all group congruences of fofo(N) [11]. By
Lemma II1.5.2 of [11], the elements v and ¢ of the semigroup fo{;(N) are
g-equivalent if and only if there exists an idempotent ¢ € E(fo/o (N)) such

that v-e =9 -e. Lemma 2.4 implies that for every v € % (N) there ex-
ists § € én(a, B) such that ygd. Therefore the least group congruence g on

f£ (N) induces the least group congruence on its subsemigroup én(«, 53).

We observe that vgd in .#% (N) (or in éx(a, 8)) if and only if there ex-
ists a positive integer ¢ such that the restrictions of the partial mapping ~y
and 6 onto the set {i,7+ 1,4+ 2,...} coincide. Then we define the map

I gL (N) — Z4 onto the additive group of integers as follow:

(1) (v)f=n if (i)y =1+ n for infinitely many positive integers i.

The definition of the semigroup JO/O (N) implies that such a map f is well-
defined. The map f : foé(N) — Z, generates the least group congruence

g on the semigroup fofo (N) and hence f is a group homomorphism. This
completes the proof of the theorem. O

REMARK 2.10. We observe that the following conditions are equivalent:
(i) 780 in S (N);
(7i) there exists ¢ € E(fo/o‘(N)) such that e -y =¢-6;
(i) there exists € € E(%n(a, 8)) such that e -y =¢-§; and
)

(iv) there exists e € E(én(a, 3)) such that y-e =46 -c.
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3. On topological semigroup I (N)

LEMMA 3.1. If E is an infinite semilattice satisfying that Te is finite for
all e € E, then the only locally compact, Hausdorff topology relative to which
FE is a topological semilattice is the discrete topology.

PROOF. Assume that E has a locally compact, Hausdorff topology under
which it is a topological semilattice, and that E has a non-isolated point e in
this topology. Since F is Hausdorff, every neighbourhood of e has infinitely
many elements. Let K be a compact neighbourhood of e. Then there is a net
(€i)ics & Intp(K)\ {e} with lim; e; = e. Since E is a topological semilattice,
e=e2=¢-limje; = lim;(e - e;), and since Te is finite, we can assume that
e-e; < e are distinct for all i € .#. Since e € Intg(K), we can also assume
e-e; € Intg(K) for all . Thus, we can assume e; < e satisfy e; € Intg(K)
for all 4.

Choose one such e;, and then note that e; =e¢;-e=¢;-lim;e; =
lim; (e; - €;). The same argument we just gave for e then implies that e; < e;
for all 4, that lim; e; = e;, and that e; € Intg(K) for all i. We let e; = e;,
and now repeat the argument. Since K is compact, this sequence has a limit
point, s in K, and the continuity of the semilattice operation implies s is
another idempotent and that s < e, for all n. But then 1s is infinite, con-
trary to our hypothesis. Hence F cannot have a nonisolated point, so it is
discrete. g

Proposition 2.2 and Lemma 3.1 imply the following;:

LEmMmaA 3.2, If JOC(N) s a locally compact Hausdorff topological semi-

group, then E(JO/O(N)) with the induces from JO{S(N) topology is a discrete
topological semilattice.

THEOREM 3.3. Every locally compact Hausdorff topology on the semi-
group I%(N) such that 74 (N) is a topological inverse semigroup, is dis-
crete.

Proor. By Lemma 3.2, the band E(fo/o((N)) is a discrete topologi-
cal space. Since ,ﬂo{; (N) is a topological inverse semigroup, the maps h :
IL(N) = E(74(N)) and f: F%(N) = E(.#%(N)) defines by the formu-
lae (a)h = a-a ' and (a)f = a~! -« are continuous and for every two idem-
potents € and ¢ of the semigroup ,ﬂo{; (N) there exists a unique element y in
fo/o((N) such that y - x ' =¢ and x~! - x = ¢, we have that every element
of the topological semigroup gL (N) is an isolated point of the topological
space J4 (N). O
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The following theorem describes the closure of the discrete semigroup
% (N) in a topological semigroup.

THEOREM 3.4. If a topological semigroup S contains ﬂof(N) as a proper,
dense discrete subsemigroup, then fo/o((N) is an open subsemigroup of S and
S\ F4(N) is an ideal of S.

PROOF. The first assertion of the theorem follows from Theorem 3.3.9
of [8].

Suppose that x € S\ ﬂofo(N) and a e S. If x-a€ J£(N) then there
exist open neighbourhoods U(x) and U(«) of x and « in S, respectively,
such that U(x) - U(a) = {x - a}. We observe that the set U(x) N IL(N) is
infinite and fix any point p € U(a) N N4 (N). Hence we have

(U0 NILM) - p S (V) NILM)) - (Ule) N IL(N)) = {x - a}.

This contradicts Proposition 2.2. The obtained contradiction implies that
x-a €S\ IL(N).
The proof of the assertion av- x € S\ N4 (N) is similar. O
Theorems 3.3 and 3.4 imply the following:

COROLLARY 3.5. If a topological semigroup S contains fO?(N) as a
proper, dense locally compact subsemigroup, then fO/O(N) is an open sub-
semigroup of S and S\JO/O(N) is an ideal of S.

The following example shows that a remainder of a closure of the discrete

(and hence of a locally compact topological inverse) semigroup 5 (N) in a
topological inverse semigroup contains only a zero element.

EXAMPLE 3.6. Let .75 (N) be a discrete topological semigroup and let S
be the semigroup .74 (N) with adjoined zero &, ie. 0-a=a-0=6-0 = 0
for all & € #% (N). We define a topology 7 on S as follows:

(a) all non-zero elements of the semigroup S are isolated points in (S, 7);
and

(b) the family B(0)={U;(0)|i=1,2,3,...}, where U;(0)={0}U
{ae 5 (N) | IN\ doma| =i and [N\ rana| > i}, determines a base
of the topology 7 at the point & € S.
We observe that (S, 7) is a topological inverse semigroup which contains
f£ (N) as a dense subsemigroup and 7 is not a locally compact topology on
5 (N).
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We recall that a topological space X is said to be:
e countably compact if each closed discrete subspace of X is finite;

o pseudocompact if X is Tychonoff and each continuous real-valued func-
tion on X is bounded;

e sequentially compact if each sequence {x,}, .y £ X has a convergent
subsequence.

A topological semigroup S is called I'-compact if for every z € S the
closure of the set {:U, 2,2, ... } is a compactum in S (see [10]). Since the

semigroup ﬂofo(N) contains the bicyclic semigroup as a subsemigroup the
results obtained in [2], [3], [4], [9], [10] imply that if a topological semigroup
S satisfies one of the following conditions: (i) S is compact; (ii) S is T'-
compact; (iii) the square S x S is countably compact; (iv) S is a countably
compact topological inverse semigroup; or (v) the square S x S is a Tychonoff

pseudocompact space, then S does not contain the semigroup JO/O(N).

The following example shows that the semigroup 5 (N) embeds into a
locally compact topological semigroup as a discrete subsemigroup.

EXAMPLE 3.7. Let Z, be the additive group of integers. Let h:
75 (N) = Z, be a group homomorphism defined by the formula (1). On
the set S = 4 (N) U Z, we define the semigroup operation ‘x’ as follows:

-y, if x,yEﬂ£(N);

z+ (y)h, if z€Zyandye I4(N);
(x)h + vy, if ye 74 (N)and z € Zy;
(x)h + (y)h, if z,y € Zy,

TRy =

where ‘" and ‘4’ are the semigroup operation in fo/o (N) and the group opera-
tion in Z, respectively. The semigroup S is called the adjunction semigroup

of JO/O(N) and Z relative to homomorphism h (see [5, Vol. 1, pp. 77-80]).
Let <. be the canonical partial order on the semigroup .75 (N) (see [11,

Section II.1]), i.e.
a <. if and only if there exists & € E(ﬂofo(N)) such that a=pf-e.

We observe that if a <. § in ,ﬂofo(N), then (a)h = (B)h. For every x € Z,
and a € jo/O(N) such that (a)h = = we put

Ua(z) ={z}u{B e IL(N) | (B)h =z and « gc B}.
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We define a topology 7 on S as follows:

(i) all elements of the subsemigroup .74 (N) are isolated points in (S, 7);
and

(i) the family B(z) = {Ua(z) | (@)h =z} determines a base of the topol-
ogy at the point x € Z,..

Simple verifications show that (S, 7) is a O-dimensional locally compact
topological inverse semigroup.
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