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1. Introduction

In this paper, motivated by recent advances in the study of nonlinear problems with unbalanced growth,
we are interested in the mathematical analysis of standing wave solutions of some classes of Dirichlet
boundary value problems driven by nonhomogeneous differential operators of the type

div[ϕ′(|∇u|2)∇u], (1)

where ϕ ∈ C1(R+,R+) has a different growth near zero and at infinity. Such a behaviour occurs, for instance,
if ϕ(t) = 2(

√
1 + t− 1), which corresponds to the prescribed mean curvature differential operator (capillary
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surface operator), namely

div

⎛⎝ ∇u√
1 + |∇u|2

⎞⎠ .

More generally, ϕ(t) can behave like tq/2 for small t and like tp/2 for large t, where 1 < p < q. Such a growth
is fulfilled if

ϕ(t) = 2
p

[(1 + tq/2)p/q − 1],

which generates the differential operator

div
(

(1 + |∇u|q)(p−q)/q|∇u|q−2∇u
)
.

A case intensively studied in recent years corresponds to

ϕ(t) =

⎧⎪⎨⎪⎩
2
q
tq/2 if t < 1

2
p
tp/2 − 2(q − p)

pq
if t ⩾ 1.

It follows that
ϕ(|∇u|2) ≃

{
|∇u|p, if |∇u| ≫ 1;
|∇u|q, if |∇u| ≪ 1.

This potential produces the (p, q)-Laplace operator ∆p + ∆q, which generates a “double-phase energy”
(according to the terminology of Marcellini and Mingione).

We briefly recall in what follows the roots of double-phase problems. To the best of our knowledge,
problems of this type have been first considered by Ball [6,7] in the context of problems with cavities in
nonlinear elasticity.

Let Ω ⊂ RN (N ⩾ 2) be a bounded domain with smooth boundary. If u : Ω → RN is the displacement
and if Du is the N ×N matrix of the deformation gradient, then the total energy is defined by

E(u) =
∫
Ω

f(x,Du(x))dx, (2)

where f = f(x, ξ) : Ω × RN×N → R is quasiconvex with respect to ξ. The simplest example considered by
Ball is given by functions f of the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative convex functions, which
satisfy the growth conditions

g(ξ) ⩾ c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p < N is necessary to study the existence of
equilibrium solutions with cavities, that is, minima of the integral (2) that are discontinuous at one point
where a cavity forms. In fact, every u with finite energy belongs to the Sobolev space W 1,p(Ω ,RN ), and
thus it is a continuous function if p > N .

In accordance with these problems arising in nonlinear elasticity, Marcellini [17,18] considered continuous
functions f = f(x, u) with unbalanced growth that satisfy

c1 |u|p ⩽ |f(x, u)| ⩽ c2 (1 + |u|q) for all (x, u) ∈ Ω × R,

where c1, c2 are positive constants and 1 ⩽ p ⩽ q. We also point out the contributions of Baroni, Colombo
and Mingione [8,9] in the framework of non-autonomous functionals characterized by the fact that the energy
density changes its ellipticity and growth properties according to the point.
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These contributions are in relationship with the work of Zhikov [28], who described the behaviour of
some phenomena arising in nonlinear elasticity. In fact, Zhikov intended to provide models for strongly
anisotropic materials in the context of homogenization. For instance, Zhikov considered the “double-phase”
energy functional defined by

Pp,q(u) :=
∫
Ω

(|∇u|p + a(x)|∇u|q)dx, 0 ⩽ a(x) ⩽ L, 1 < p < q, (3)

where the modulating coefficient a(x) dictates the geometry of the composite made by two differential
materials, with hardening exponents p and q, respectively. The functional Pp,q falls in the realm of the
so-called functionals with nonstandard growth conditions of (p, q)–type, according to Marcellini’s terminol-
ogy. These are functionals of the type in (2), where the energy density satisfies

|ξ|p ⩽ f(x, ξ) ⩽ |ξ|q + 1, 1 ⩽ p ⩽ q.

General models with (p, q)-growth in the context of geometrically constrained problems have been recently
studied by De Filippis [13]. This seems to be the first work dealing with (p, q)-conditions with manifold
constraint. Refined regularity results are proved in [13], by using an approximation technique relying on
estimates obtained through a careful use of difference quotients. Other recent works dealing with nonlinear
problems with unbalanced growth (either isotropic or anisotropic) are the papers by Bahrouni, Rădulescu
and Repovš [5], Cencelj, Rădulescu and Repovš [11], and Papageorgiou, Rădulescu and Repovš [19].

The differential operator defined in (1) and which is generated by a potential with variable growth was
introduced by Azzollini et al. [2,3] in relationship with wide classes of nonlinear PDEs with a variational
structure. We refer to Chorfi and Rădulescu [12] for the study of a related problem driven by this general
differential operator. We also refer to the recent monograph [20,26] for some of the abstract methods used
in the present paper.

2. Functional setting and main results

We are concerned with the existence of nontrivial solutions of the following quasilinear Schrödinger
problem with double-power nonlinearities:

− div[ϕ′(|∇u|2)∇u] + |u|α−2
u = λ |u|s−2

u in Ω ⊂ RN (N ⩾ 2), (4)

where λ is a positive parameter.
This equation was studied in [3] if Ω = RN and under the assumption that the reaction dominates the

left-hand side of the problem. In fact, Azzollini, d’Avenia and Pomponio [3] proved that this equation has a
nontrivial non-negative radially symmetric solution, provided that 1 < p < q < min{N, p∗}, 1 < α ⩽ p∗q′/p′,
and max{q, α} < s < p∗. A crucial tool in their arguments is a certain compactness property of a Sobolev-
type space of radially symmetric functions into Lebesgue spaces. Our purpose in this paper is to consider
the same equation but on exterior domains of the Euclidean space. We aim to prove related existence or
non-existence results depending on the values of the parameter λ and the competition between the left-hand
side of Eq. (4) and its reaction. More precisely, we are first concerned with the following nonlinear eigenvalue
problem {

− div[ϕ′(|∇u|2)∇u] + |u|α−2
u = λ |u|s−2

u in Ω
u = 0 on ∂Ω .

(5)

Here, we assume that λ is a positive parameter and Ω ⊂ RN (N ⩾ 2) is the complement of a bounded
domain with smooth boundary.

The existence of solutions of problem (5) was studied by Berestycki and Lions [10] in the case of the
Laplace operator and without the presence of the nonlinear term |u|α−2

u. In this case, the authors assumed
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that the reaction is a double-power nonlinearity that has a subcritical behaviour at infinity and a supercritical
growth near the origin.

In order to describe the main results of this paper, we start with the basic hypotheses.
Throughout this paper we assume that α, p, q are real numbers satisfying the following hypothesis:

1 < p < q < N and 1 < α <
p∗q′

p′ . (6)

We assume that the function ϕ : R+ → R+ is of class C1 and has the following properties:
(ϕ1) ϕ(0) = 0;
(ϕ2) there exists c > 0 such that ϕ(t) ⩾ ctp/2 if t ⩾ 1 and ϕ(t) ⩾ ctq/2 if 0 ⩽ t ⩽ 1;
(ϕ3) there exists C > 0 such that ϕ(t) ⩽ Ctp/2 if t ⩾ 1 and ϕ(t) ⩽ Ctq/2 if 0 ⩽ t ⩽ 1;
(ϕ4) there exists 0 < µ < 1 such that 2tϕ′(t) ⩽ sµϕ(t) for all t ⩾ 0;
(ϕ5) the mapping t ↦→ ϕ(t2) is strictly convex.
Since our hypotheses allow that ϕ′ approaches 0, problem (5) is degenerate and no ellipticity condition is

assumed.
For all 1 ⩽ r ⩽ ∞, we denote by ∥ · ∥r the norm on the Lebesgue space Lr(Ω).

Definition 1. Let Ω ⊆ RN be an open set. We define the function space Lp(Ω)+Lq(Ω) as the completion
of C∞

c (Ω) in the norm

∥u∥Lp+Lq := inf{∥v∥p + ∥w∥q; v ∈ Lp(Ω), w ∈ Lq(Ω), u = v + w}.

We set
∥u∥p,q := ∥u∥Lp(Ω)+Lq(Ω).

The space Lp(Ω) + Lq(Ω) is an Orlicz space and has been intensively studied by Badiale, Pisani and
Rolando [4, Sect. 2]. This space is a reflexive Banach space, see [4, Corollary 2.11]. We point out that the
space Lp(Ω) + Lq(Ω) is of interest only either p < q or |Ω | = +∞. Indeed, if p = q or |Ω | < +∞, then
Lq(Ω) ⊆ Lp(Ω), hence Lp(Ω) + Lq(Ω) = Lp(Ω).

A key role in our arguments is played by the Banach space

B := C∞
c (Ω)

∥ · ∥
,

where
∥u∥ := ∥∇u∥p,q + ∥u∥α.

As established in Propositions 2.4 and 2.5 of [3], B is a reflexive Banach space. Moreover, if p′ < p∗q′ then
for every 1 < α ⩽ p∗q′/p′, the space B is continuously embedded into Lp∗(Ω); see [3, Theorem 2.6] for more
details. We point out that the loss of compactness of the Orlicz embeddings in the case of unbounded domains
implies refined variational techniques. Some of the papers dealing with problems with lack of compactness
on unbounded domains use particular function spaces where the compactness is preserved, such as spaces of
radially symmetric functions. Such a situation occurs in [3], where the main existence property is obtained
via a compact embedding. We recall that even if the domain is unbounded, standard compact embeddings
remain true, for instance if Ω is “thin at infinity”, in the sense that

lim
R→∞

sup{|Ω ∩B(x, 1)| ; x ∈ RN , |x| = R} = 0.

Such a situation does not hold in our case. Indeed, since Ω is an exterior domain, then it looks like the whole
space RN at infinity and, in particular, it is not a thin domain.
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Definition 2. A solution of problem (5) is a function u ∈ B \ {0} such that for all v ∈ B∫
Ω

(
ϕ′(|∇u|2)∇u∇v + |u|α−2

uv − λ|u|s−2
uv
)
dx = 0.

The real number λ for which problem (5) has a nontrivial solution is an eigenvalue and the corresponding
u ∈ B \ {0} is an eigenfunction of the problem. These terms are in accordance with the related notions
introduced by Fučik, Nečas, Souček and Souček [16, p. 117] in the abstract framework of nonlinear operators.
Indeed, if we set

Su := 1
2

∫
Ω

ϕ(|∇u|2)dx+ 1
α

∫
Ω

|u|αdx and T (u) := 1
s

∫
Ω

|u|sdx

then λ is an eigenvalue for the pair (S, T ) if and only if there exists a corresponding eigenfunction, namely
a solution of problem (5) as described by Definition 2.

We first prove that problem (5) has a solution for any λ > 0, provided that the reaction “dominates” the
growth in the left-hand side. More precisely, we have the following existence result.

Theorem 3. Assume that hypotheses (6), (ϕ1)–(ϕ5) are fulfilled, and max{q, α} < s < p∗. Then the
following properties are true:

(a) problem (5) has a nonnegative solution U for all λ > 0;
(b) U ∈ C1,µ(Ω ∩BR(0)) with µ = µ(R) ∈ (0, 1);
(c) U > 0 in Ω .

Next, we are concerned with the following nonlinear problem with variable potential and lack of
compactness {

− div[ϕ′(|∇u|2)∇u] + |u|α−2
u = λ a(x) |u|s−2

u in Ω
u = 0 on ∂Ω .

(7)

Accordingly, a solution of problem (7) is a function u ∈ B \ {0} such that for all v ∈ B∫
Ω

(
ϕ′(|∇u|2)∇u∇v + |u|α−2

uv − λ a(x) |u|s−2
uv
)
dx = 0.

Hypothesis (6) is now replaced by
max{q, s} < α < p∗. (8)

We assume that the potential a ⩾ 0 is positive on a subset of Ω of positive measure and

aα/(α−s) ∈ L1(Ω). (9)

The second main result of this paper establishes an existence and non-existence property if the reaction
of problem (7) is dominated by the left-hand side. In this case, solutions exist only for high perturbations
of the right-hand side.

Theorem 4. Assume that hypotheses (6), (8), (9), and (ϕ1)–(ϕ5) are fulfilled. Then there exists Λ > 0 such
that the following properties are true:

(a) problem (7) does not have any solution for all 0 < λ < Λ;
(b) problem (7) has a positive solution U for all λ ⩾ Λ. Moreover, U ∈ C1,µ(Ω ∩BR(0)) with µ = µ(R) ∈

(0, 1).
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These results remain true if we replace the power-type nonlinearities with general nonlinearities. For
instance, the reaction |u|s−2

u in the statement of Theorem 3 corresponding to problem (5), can be replaced
by a Carathéodory function f : RN × R → R with the following properties:

(f1) f(x, u) = o(uα−1) as u → 0+, uniformly for a.e. x ∈ RN ;
(f2) f(x, u) = O(us−1) as u → +∞, uniformly for a.e. x ∈ RN .
The above results extend some related properties established by Filippucci, Pucci and Rădulescu [15] in

the framework of the p-Laplace operator. We also refer to Chorfi and Rădulescu [12] who studied a related
problem driven by the same differential operator and if Ω = RN .

3. Proof of Theorem 3

We point out that a related property is proved by Azzollini, d’Avenia and Pomponio [3] if Ω = RN .
However, Theorem 1.3 in [3] establishes the existence of a radially symmetric solution and the proof strongly
relies on the compact embedding of a Sobolev-type space of functions with radially symmetry into certain
Lebesgue spaces. In our case, since Ω is unbounded but without any symmetry properties, we are not looking
for radially symmetric solutions.

The energy functional associated to problem (5) is E : B → R defined by

E(u) := 1
2

∫
Ω

ϕ(|∇u|2)dx+ 1
α

∫
Ω

|u|αdx− λ

s

∫
Ω

|u|sdx.

By [3, Proposition 3.1], E is well-defined and of class C1. Moreover, for all u, v ∈ B its Gâteaux directional
derivative is given by

⟨E ′(u), v⟩ =
∫
Ω

(
ϕ′(|∇u|2)∇u∇v + |u|α−2

uv − λ|u|s−2
uv
)
dx.

We first claim that
there exists small r > 0such that inf

∥u∥=r
E(u) > 0. (10)

By (ϕ1) we have for all u ∈ B

E(u) ⩾ c

2

∫
|∇u|⩽1

|∇u|qdx+ c

2

∫
|∇u|>1

|∇u|pdx+ 1
α

∫
Ω

|u|αdx− λ

s

∫
Ω

|u|sdx. (11)

By [3, Theorem 2.6] and our hypothesis max{q, α} < s < p∗, it follows that B is continuously embedded
into Ls(Ω). So, there exists c1 > 0 such that

∥u∥s ⩽ c1 ∥u∥ for all u ∈ B.

Returning to (11) we obtain for all u ∈ B

E(u) ⩾ c

2

∫
|∇u|⩽1

|∇u|qdx+ c

2

∫
|∇u|>1

|∇u|pdx+ 1
α

∥u∥αα − λc1

s
∥u∥s . (12)

Fix r ∈ (0, 1). By (6) and (12) we deduce that there are positive constants c2, c3 and c4 such that for all
u ∈ B with ∥u∥ = 1

E(u) ⩾ c2 (∥∇u∥qp,q + ∥u∥αα) − c3 ∥u∥s

⩾ c4

(
∥u∥max{q,α} − ∥u∥s

)
.

(13)

Since max{q, α} < s < p∗, relation (13) shows that there exists c5 > 0 such that

E(u) ⩾ c5 for all u ∈ B with ∥u∥ = r, (14)
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which proves (10).
Next, we claim that

lim inf
R→+∞

E(u) = −∞. (15)

Indeed, fix ψ ∈ B \ {0} and t > 0. Thus, by (ϕ3),

E(tψ) ⩽
C

2

(
tq
∫
t|∇ψ|⩽1

|∇ψ|qdx+ tp
∫
t|∇ψ|>1

|∇ψ|pdx

)
+ tα

α

∫
Ω

|ψ|αdx− λts

s

∫
Ω

|ψ|sdx

= A1t
q +A2t

p +A3t
α −A4t

s (with A1, A2 ⩾ 0, A3, A4 > 0) → −∞ as t → +∞,

by our hypothesis. This proves (15).
By relations (10), (15) and using the mountain pass theorem, we find (un) ⊂ B such that

E(un) → c0 and E ′(un) → 0 in B∗ as n → ∞. (16)

Here, c0 := infγ∈C maxt∈[0,1] E(γ(t)) > 0, where

C := {γ : [0, 1] → B; γ is continuous, γ(0) = 0, γ(1) = t0ψ},

for some fixed t0 > 0 such that t0∥ψ∥ > c5, where c5 is defined in (14).
Combining (ϕ4) and (ϕ5) we deduce that

ϕ(t) ⩽ 2tϕ′(t) ⩽ sµϕ(t) for all t > 0, (17)

hence sµ > 1. Thus, by (17), ϕ is increasing. It follows that

E(|v|) ⩽ E(v) for all v ∈ B.

We deduce that we can assume that un ⩾ 0 in (16).
If (un) satisfies (16) then

E(un) − 1
s

⟨E ′(un), un⟩ = O(1) + o(∥un∥) as n → ∞. (18)

But, by (ϕ4)

E(un) − 1
s ⟨E ′(un), un⟩ =

∫
Ω

(
1
2 ϕ(|∇un|2) − 1

s
ϕ′(|∇un|2)|∇un|2

)
dx

+
(

1
α

− 1
s

)∫
Ω

|un|αdx

⩾
1 − µ

2

∫
Ω

ϕ(|∇un|2)dx+
(

1
α

− 1
s

)∫
Ω

|un|αdx

= c6

∫
Ω

ϕ(|∇un|2)dx+ c7 ∥un∥αα,

(19)

where c6, c7 > 0.
Next, with an argument similar as the same developed in the first part of this proof, relation (19) implies

that for some c8 > 0

E(un) − 1
s

⟨E ′(un), un⟩ ⩾ c8 (∥∇un∥qp,q + ∥un∥α) for all n ⩾ 1. (20)

Combining (18) and (20) we deduce that

∥∇un∥qp,q + ∥un∥α ⩽ O(1) + o(∥un∥) as n → ∞,
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which shows that (un) is bounded in B.
Until now we have proved that the Palais–Smale sequence (un) of E is bounded. Thus, there exists U ∈ B

such that, up to a subsequence,
un ⇀ U ⩾ 0 in B

and
un → U in Ls(Ω) and Lα(Ω).

We prove in what follows that U is a solution of problem (5). For this purpose we fix v ∈ C∞
c (Ω) and we

set ω := supp v. Define the functional

E0(u) := 1
2

∫
ω

ϕ(|∇u|2)dx+ 1
α

∫
ω

|u|αdx.

By (ϕ5) it follows that E0 is convex. Since it is also continuous, it follows that E0 is weakly lower
semicontinuous. By convexity we have

E0(un) ⩽ E0(U) + ⟨E ′
0(un), un − U⟩.

By (16) we deduce that
lim sup
n→∞

E0(un) ⩽ E0(U).

Using now the weakly lower semicontinuity of E0 we conclude that

lim sup
n→∞

E0(un) = E0(U).

Next, with the same arguments as in [3, p. 210], it follows that

∇un → ∇U in Lp(Ω) + Lq(Ω).

Using (16) and passing to the limit as n → ∞ we deduce that∫
ω

ϕ′(|∇U |2)∇U∇vdx+
∫
ω

|U |α−2
Uvdx− λ

∫
ω

|U |s−2
Uvdx = 0.

By density, this identity is valid for any v ∈ B. Thus, U is a solution of problem (5).
We prove in what follows that U ̸= 0. Indeed, if not, it follows that

un → 0 in Ls(Ω) and Lα(Ω).

Thus, by (16)

c0

2 ⩽ E(un) − 1
2 ⟨E ′(un), un⟩

= 1
2

∫
Ω

(
ϕ(|∇un|2) − ϕ′(|∇un|2)|∇un|2

)
dx+

(
1
α

− 1
2

)∫
Ω

|un|αdx

+λ
(

1
2 − 1

s

)∫
Ω

|un|sdx.

By (ϕ5) it follows that ϕ(t2) − ϕ′(t2)t2 ⩽ 0, hence

0 < c0

2 ⩽

(
1
α

− 1
2

)∫
Ω

|un|αdx+ λ

(
1
2 − 1

s

)∫
Ω

|un|sdx.

Passing to the limit as n → ∞ we get a contradiction.
We conclude that U ̸= 0 and U ⩾ 0.
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(b) By Theorem 1(ii) of Pucci and Servadei [24], which is based on the Moser iteration, we first deduce that
U ∈ L∞

loc(Ω). Next, using the corollary of DiBenedetto [14, p. 830], we conclude that U ∈ C1,µ(Ω ∩BR(0))
with µ = µ(R) ∈ (0, 1). A related argument was applied in the proof of Theorem 1 in Yu [27].

(c) The function U ⩾ 0 satisfies

− div[ϕ′(|∇U |2)∇U ] + |U |α−2
U ⩾ 0 in Ω .

We recall that the generalized maximum principle of Pucci and Serrin [21–23] applied to general canonical
divergence structure inequalities of the type

−div (A(|∇u|)∇u) + f(u) ⩾ 0 in Ω ,

where the function A = A(t) and the nonlinearity f satisfy the following conditions:
(A1) A is continuous in R+;
(A2) the mapping t ↦→ tA(t) is strictly increasing in R+ and tA(t) → 0 as t → 0+;
(F1) f ∈ C(R+

0 );
(F2) f(0) = 0 and f is non-decreasing on some interval (0, δ), δ > 0.

In our case, f(u) = |u|α−2
u satisfies (F1) and (F2). We have A(t) = ϕ′(t2) and tϕ′(t2) is strictly increasing

by our hypothesis (ϕ5). We also observe that (ϕ4) and (ϕ3) imply for all t ∈ (0, 1)

0 < tϕ′(t2) ⩽ sµ

2
ϕ(t2)
t

⩽
sµ

2 tq−1 → 0 as t → 0+.

So, by the Pucci–Serrin maximum principle, we conclude that the non-negative solution U is positive in
Ω . □

4. Proof of Theorem 4

The energy functional associated to problem (7) is F : B → R defined by

F(u) := 1
2

∫
Ω

ϕ(|∇u|2)dx+ 1
α

∫
Ω

|u|αdx− λ

s

∫
Ω

a(x) |u|sdx.

We first establish that F is coercive. Indeed, by (ϕ2) we have for all u ∈ B

F(u) ⩾ c

2

∫
|∇u|>1

|∇u|pdx+ c

2

∫
|∇u|⩽1

|∇u|qdx+ 1
α

∥u∥αα − λ

s

∫
Ω

a(x)|u|sdx. (21)

By Hölder’s inequality and hypothesis (9) we obtain∫
Ω

a(x)|u|sdx ⩽ ∥a∥α/(α−s) ·
(∫

Ω

|u|αdx
)s/α

= C1 ∥u∥sα, (22)

where C1 = C1(a, α, s,Ω).
Since α > s, relations (21) and (22) yield

F(u) ⩾ c

2 ∥∇u∥pp,q + 1
α

∥u∥αα − C1 ∥u∥sα → +∞ as ∥u∥ → ∞,

hence F is coercive and bounded from below.
We prove in what follows that problem (7) does not have any solution, provided that λ > 0 is sufficiently

small. Indeed, we observe that if u solves (7) then∫
Ω

ϕ′(|∇u|2)|∇u|2dx+
∫
Ω

|u|αdx = λ

∫
Ω

a(x) |u|sdx.
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We now estimate the right-hand side of this equality. By hypotheses (8) (9) we have

λ

∫
Ω

a(x) |u|sdx ⩽ λα/(α−s) α− s

α

∫
Ω

a(x)α/(α−s)dx+ s

α

∫
Ω

|u|αdx

= C(s, a, α)λα/(α−s) + s

α

∫
Ω

|u|αdx.

We deduce that if u is a solution of problem (7) then

0 ⩽
∫
Ω

ϕ′(|∇u|2)|∇u|2dx ⩽ C(s, a, α)λα/(α−s) +
( s
α

− 1
)∫

Ω

|u|αdx

< C(s, a, α)λα/(α−s),

by (8).
In conclusion, problem (7) does not have any solution, provided that λ > 0 is small enough. Let

λ∗ := sup{λ > 0; problem (7) does not have a solution} > 0.

The above arguments show that (7) does not have a solution for all λ < λ∗.
In order to obtain sufficient conditions for the existence of solutions, we consider the minimization problem

m := inf
u∈B

F(u) ∈ R.

Let (un) ⊂ B be a minimizing sequence of F . Since F(|un|) ⩽ F(un), we can assume that un ⩾ 0. Moreover,
(un) is bounded so, up to a subsequence, we can assume that

un ⇀ U ⩾ 0 in B.

Hypothesis (8) implies that B is compactly embedded into the weighted Lebesgue space Ls(Ω ; a). So, by
weak lower semicontinuity and compactness of the embedding, we have

1
2

∫
Ω

ϕ(|∇U |2)dx+ 1
α

∫
Ω

Uαdx ⩽ lim inf
n→∞

(
1
2

∫
Ω

ϕ(|∇un|2)dx+ 1
α

∫
Ω

uαndx

)
and ∫

Ω

a(x)usndx →
∫
Ω

a(x)Usdx as n → ∞.

It follows that U ⩾ 0 is a minimizer of F , that is, F(U) = m.
We now prove that U is a solution of problem (7), provided that λ is big enough. For this purpose, consider

the minimization problem

m0 := inf
w∈B

{
1
2

∫
Ω

ϕ(|∇w|2)dx+ 1
α

∫
Ω

|w|αdx; 1
s

∫
Ω

a(x)|w|sdx = 1
}
. (23)

If (wn) ⊂ B is a minimizing sequence, then (wn) is bounded. So, up to a subsequence, we can assume that

wn ⇀ w in B

wn → w in Ls(Ω ; a).

It follows that w is a solution of (23), hence F(w) = m0 − λ. We deduce that problem (7) has a solution for
all λ > m0.

We set
λ∗ := inf{λ > 0; problem (7) has a solution}.

Then λ∗ ⩾ λ∗.
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Next, we prove that (7) has a solution for all λ > λ∗. Indeed, if we fix λ > λ∗, then the definition of λ∗

yields some λ∗ < λ < λ such that problem (7) has a solution U corresponding to λ. Then U is a subsolution
of (7). It remains to prove that problem (7) has a supersolution U such that U ⩾ U . For this purpose we
consider the new minimization problem

inf
v∈B

{
1
2

∫
Ω

ϕ(|∇v|2)dx+ 1
α

∫
Ω

|v|αdx− λ

s

∫
Ω

a(x)|v|sdx; v ⩾ U

}
. (24)

Using the same arguments as above we deduce that the constrained minimization problem (24) has a
solution U ⩾ U . We conclude that (7) has a solution for all λ > λ∗.

The definition of λ∗ shows that problem (7) has no solution if 0 < λ < λ∗. Since λ∗ ⩾ λ∗, we conclude
that

λ∗ = λ∗ =: Λ.

Until now we know that (7) has no solution if 0 < λ < Λ but it has at least one non-negative solution U

for all λ ⩾ Λ. We now prove that problem (7) has a non-negative solution if λ = Λ. Indeed, let (λn) be a
sequence of real numbers such that λn ↓ Λ as n → ∞. Let Un ⩾ 0 be a solution of (7) corresponding to λn.
Since (Un) ⊂ B is bounded, we can assume, passing eventually to a subsequence, that

Un ⇀ UΛ in B (25)

Un → UΛ in Ls(Ω ; a) (26)

Un → UΛ a.e. Ω . (27)

Since Un solves (7) for λ = λn, it follows that for all v ∈ B∫
Ω

ϕ′(|∇Un|2)∇Un∇vdx+
∫
Ω

Uα−2
n Unvdx = λn

∫
Ω

Us−2
n Unvdx = 0 for all n ⩾ 1. (28)

Taking n → ∞ in (28) and using (25)–(27), we deduce that UΛ ⩾ 0 is a solution of problem (7) for λ = Λ.
We conclude that problem (7) has a solution U ⩾ 0 for every λ ⩾ Λ.

Next, as in the proof of Theorem 3(b) and using Theorem 1(ii) of Pucci and Servadei [24] in combination
with the Moser iteration, we deduce that U ∈ L∞

loc(Ω). This regularity property implies that U ∈ C1,µ(Ω ∩
BR(0)), where µ = µ(R) ∈ (0, 1) Applying the generalized Pucci–Serrin maximum principle, as in the proof
of Theorem 3(c), we conclude that U > 0 in Ω . □

Final comments

We consider that an interesting research direction with multiple applications concerns the study of
nonlinear problems described by the nonlocal term

M

(∫
ϕ(|∇u|2)|∇u|2

)
,

where ϕ satisfies hypotheses (ϕ1)–(ϕ5). Pioneering results have been established by Pucci at all. [1,25] in
the framework of Kirchhoff problems involving nonlocal operators associated to the standard differential
operators.
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