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DIMENSION OF PRODUCTS WITH CONTINUA

A. N. DRANISHNIKOV, D. REPOVS! AND E. V. SCEPIN

ABSTRACT. We construct a subset W C R? and a con-
tinuum Y with the dimension of the product dim(W x
Y) = dim W = 2. This solves negatively a long standing
problem in dimension theory.

0. INTRODUCTION

It has been known ever since the 1930’s that the logarithmic
law for dimension, dim(X x Y) = dim X + dimY’, fails to
hold for arbitrary compact metric spaces. The first known
counterexamples are due to L. S. Pontryagin (see e.g. [8]). His
compacta, now called Pontryagin surfaces, lie in R* and are
2-dimensional whereas the dimension of their product is equal
to three.

The ingredients of Pontryagin’s construction come from al-
gebraic (rather than point-set) topology. Note that it follows
from a classical theorem of P. S. Aleksandrov [8] that there are
no such counterexamples in R3.

It is well known that the product inequality dim(X x Y) <
dim X+dim Y always holds. Also, for compact spaces X and Y
of dimension > 1 it is also known that dim(X xY") > dim X +1.
On the other hand, as it was shown in [2], for any fixed n =
dim X and m = dim Y this inequality cannot be improved any
further.

Approximately 40 years ago, K. Morita [10] proved that for
every X (not necessarily compact), multiplication of X by the
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interval I increases dimension by one, dim(X x ) > dim X +1.
A natural question arose whether the inequality dim(X xY) >
dim X +1 holds for an arbitrary compactum Y with dimY > 1
(see [8], [11; Problem (42.5)]).

The purpose of this paper is to give a negative answer to
this question. Namely, we construct a 2-dimensional subset
W C R® and a 1-dimensional metric continuum Y such that
dim(W x Y) = 2. Although this solves a problem in general
topology, this paper, like in Pontryagin’s case [8], belongs es-
sentially to algebraic topology.

1. SUPERSOLENOIDS

Every sequence of numbers {m; > 1};cy defines a solenoid
as the limit space of the inverse system {S'; p?l}ieN where
each projection pi*! is an m; times winding of the circle S’
onto itself. When m; = p for all i, the solenoid is called the
p-adic solenoid and it’s denoted by X,,.

Let (C,c*) be a continuum with a fixed pair of points ¢*, ¢~ €
C'. Attach an arc I to C at the points ¢ and denote such a
continuum by C. The exact sequence of the pair (C,C) pro-
duces the short exact sequence

0—Z— H(C)— HY(C) =0 (%)

for the Cech cohomology with integer coefficients. Note that
the pair (C, {c*, ¢ }) produces exactly the same sequence. The
problem of splitting this exact sequence has a direct relation
to the Generalized homotopy problem and was considered in
[1], [12]. In the case when C'is a solenoid we give the following
splitting criterion: Let (C, c¢*) be a solenoid. Then the sequence
(x) can be split if and only if ¢t and ¢~ can be connected by a
path in C. For the p-adic solenoid Y, this criterion claims, in
algebraic terms, that c¢* generate a splittable sequence (x) if
and only if the pair ¢* is homotopic to a pair a* with a* —a~ €
Z C A, C ¥,. Here A, denotes the group of p- adic integers
and C means ‘is a subgroup of’. Note that every pair ¢* in 3,
is homotopic to a pair in a® € A,,.
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Let Z,) denote the localization of Z in p. Then there exist
the inclusions Z C Z,) C A,.

Proposition 1.1. Let C'be a p-adic solenoid. Then there exist
¢t € C such that Hom(w,Z) = 0, where 7 = H(C).

Proof: We will consider the Steenrod-Sitnikov homology. When-
ever we omit the coefficient group we mean the integers. By [9]

Hom(m,Z) = H,(C). Since C is one-dimensional, the
Steenrod homology Hi(C) coincides with the Cech homology
H,(C) [13]. So it suffices to prove that the one-dimensional
Cech homology group of C' is trivial.

We do that here for any c* with ¢t —c= € A, —Zp). Actually,
we can prove a criterion which claims that a pair ¢t produces
the nontrivial Hom(7, Z) if and only if it is homotopic to a pair
a® such that a™ —a™ € Z,).

Since C' = lim{S* U I}, where each bonding map sends S*

onto S', winding p times around, and sends I onto I homeo-
morphically, it follows that H,(C) = lim{;(S*UI), O Y ien.

We are going to describe the bonding maps ¢! : Z & Z —
Z & Z. Note that A, is identified with a fiber of the projec-
tion ¥, — S'. Without loss of generality, we may assume that
¢~ = 0. Let ¢ be represented as an element of A, in the fol-
lowing way: ¢t = ng+mp+ -+ +np* + -+ [7]. To choose
a basis in H{(S* U I), fix an orientation on the circle S and
on the interval I and consider this oriented circle as the first
basis element, and the cycle generated by the interval I and a
part of the circle with proper orientation as the second basis

element. Then a homomorphism ¢! is defined by the matrix

_ [P N
Al_<0 1).

- + : AN —
Claim. If ¢* ¢ Z,) then l&n{Z ©Z; A} =0.

11
Indeed, we may consider A;' = ( pO nllp ) over Q.

Let ¢, denote the truncated c¢*: ¢, = ng + nip + -+ - + npp”.
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Then

pkAlzlo-..oAQ_IOAl_1:<é pik>
First, show that the projection of the limit group on the
first level is trivial. Choose an arbitrary (n,m) € Z & Z. If
there is an element in the limit group which is projected to
(n,m) then for each i, the number n — ¢;m is divisible by p*.
Let us consider a p-adic number 3 = n — ¢tm. Then the
p-adic norm of f3 is zero hence 3 = 0 and mc*™ € Z. Therefore
ct =2 cQnA, =Zgy) so we get a contradiction.
Thus, by the above argument we can prove that the projec-
tion on the second level is trivial, and so on. This proves the
claim and also the proposition. O

Proposition 1.2. In the p-adic solenoid C' there are points ct
for which the inclusion-induced homomorphism Hy({c™,c"}) —
Hy(C) is a monomorphism.

Proof: Consider the exact sequence of the pair (C,c*) for
the points ¢* from Proposition 1.1. It suffices to show that
H,(C'/c*) = 0. This was proved above. [

For convenience, instead of the triple (C,c*) we shall con-
sider sometimes a continuum with hands, i.e. a continuum C
with two arcs [b7,c¢”] and [¢*,b"] attached to the marked
points. We denote a continuum with hands obtained from
(C,cF) by (C',bF).

Definition. Let (C',b%) be a continuum with hands. A com-
pactum X with the property
(xx)for every closed subset A C X and every continuous map

@ : A— {b",b"} this is an extension ¢ : X — C”

is called a (C, c*)-compactum. We call X a (C, ¢*)-continuum
if it is in addition a continuum. (Note that hands are inessen-
tial here.) A (C,c*)-continuum for solenoid C' we shall call a
supersolenoid.



DIMENSION OF PRODUCTS WITH CONTINUA 61

Proposition 1.3. Let X be a (C, c¢F)-compactum and let A C
X be a closed subset. Then

(a) Ais a (C, c*)-compactum; and

(b) X/Ais a (C, c¢*)-compactum.

The proof easily follows from the definition.

Proposition 1.4. Suppose that X and Y are (C, ¢*)-compacta
and that dim(XNY) = 0. Then XUY is a (C, ¢*)-compactum.

Proof: For arbitrary ¢ : A — {c*} first extend ¢ over X NY
to get 1 : AU(X NY) — {c*}. Then extend 1) separately over
X and over Y. [

Proposition 1.5. Let 7 = H'(C). Then for every (C,c®)-
compactum X there exists an epimorphism &m — H'(X).

Proof: There is a natural projection w : C' — S! with one
non-trivial preimage. Since X has the property (xx) it follows
that for every map f : X — S! there is a homotopy lifting
f": X = C. Let {fi}ien be a countable family of maps to
the circle, representing all cohomologies of X, and let {f/};en
be a family of liftings. Consider the diagonal product Af/ :
X — ]__[C_'. It induces an epimorphism for the 1-dimensional

)

cohomologies. It remains to note that H([[C) = &r. O

Theorem 1.6. 1) For every triple (C, ¢*) there exists a (C, ¢*)-
continuum. .

2) Suppose that a cohomology theory h* is trivial on a one-
dimensional continuum C. Then for every n, there exists an
n-dimensional (C, ¢*)-continuum.

Proof: We prove 2) so that the construction for 2) is valid also
for 1).

We construct an n-dimensional (C, ¢*)-continuum X as the
limit space of an inverse system {X;, pit'}icn. The system will
be constructed by induction.
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Define X, 22 S™. Note that h*(Xj) is a nontrivial group.

For each 7, we define a finite covering U; of a compact space
X; by closed sets A of diameter < 1/i and moreover with diam-
eters of projections p;(A) less than 1/i, for all k < i. Denote by
B; the set of all disjoint pairs (B~, B*) consisting of the unions
of elements of U;. For every element 3 = (B~,B*") € B; fix a
map g : B~ U BT — {b7,b"}, by setting ¢3(B~) = b~ and
os(B*) = b,

Now we can describe a step of the induction from k to k+1.
We suppose the set Lk,l B; has a numeration: {f, s, ..., O }-

=0
Choose 3 = 3. We have = (B~, Bt) € B; for some i < k.
The map ¢ produces a map ¢ : (pF)~' (B~ U B") — {b*}.

Let 7 : C" — [—1, 1] be a projection which sends [b~, ¢~ onto
[—1,0] and [¢T, b*] onto [0, 1] and C' in 0. There is an extension
1 of the composition map mo ¢ with dim(¢)=1(0)) < n—1 (see
for instance [5]). Define X}, as the pull-back of the following
diagram:

The projection pﬁ“ is defined as a projection of the pull-

back onto X;. Note that:
k+1)*

(a) A homomorphism (pj is an isomorphism for h* by
virtue of the Vietoris-Begle theorem.

(b) Dimension of X, is < n because Xj; consists of an
open subset which is homeomorphic to a subset of X
and a closed set 1) ~1(0) x C which is n-dimensional.

(c) The map ¢z has an extension as a map to C’ on the
k +1 level. Indeed, ¢ = s o pF™ has an extension ¢'.
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Choose a covering Uy, and define By, and add it to the

union |J B; with the corresponding numbering.
i<k

Properties a) and b) will imply the n-dimensionality of the
limit space. Since all X; are continua the limit space is also a
continuum.

The property ¢) and the construction guarantee the condi-
tion (#*). Indeed, if ¢ : A — {b*} is a map, there exists

3 = (B~,B%) € U B; such that (p°)"'(B~ U B*) > A and
i=0

©sOPIA = P Byiche construction there is an extension in C’
of ¢z onto some level k£ > 4. Hence ¢ has an extension. [

Corollary 1.7. . For any family of primes ¢ and for every
pair #¥ € %, there exist the (-adic supersolenoid of arbitrary
dimension n > 0.

T ok

Proof: Let p € (. Then H (X;Z,) =0, where Z, = Z/pZ. O

2. CONNECTEDNESS WITH RESPECT TO A GROUP

We call a space Y connected with respect to an abelian
group G if its reduced Steenrod-Sitnikov 0-dimensional homol-
ogy group with the coefficients in G is trivial. For example,
Proposition 1.2 implies that a p-adic solenoid is disconnected
with respect to the integers. This is also true for the corre-
sponding supersolenoid.

Proposition 2.1. . Suppose that the inclusion ¢* C C in-
duces a monomorphism of homology groups. Then for any
(C, c¢*)-compactum X and for arbitrary pair ¥ C X, the in-
clusion induces a monomorphism.

Proof: Extend the map {z*} — {c¢*} to a map X — C. Then
our homomorphism is a left divisor of a monomorphism. [

Proposition 2.2. Let a one-dimensional continuum X be the
limit space of an inverse system {X;, 7™ }icn, all projection of
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which are retractions. Then lim YHom(H'(X;),n)} = 0 for an

(2
arbitrary group 7.

Proof: Let (3 be a left inverse to (ri™)*, ie. B0 (ritt)* =
id. Show that every homomorphism h; : Hom(H"(X4,), 7) —
Hom(H'(X;), ) is an epimorphism. Let f : H'(X;) — 7 be
an arbitrary homomorphism. Note that h;(f o 3;) = (f o ;) o

() =fo(Bio(ri™))=f O

Proposition 2.3. Let (X, D) = l(iLn{(Xi,Di);rl:H where X

)

>~

is a 1-dimensional continuum, D; = D are two-point sets
and 7"! are retractions. Suppose that for all 7, the bound-
ary homomorphism H,(X;/D;;m) — Hy(D;, ) is an epimor-
phism. Then the boundary homomorphism 0 : H(X/D;7) —
Hy(D; ) is also an epimorphism.

Proof: First, we show that the limit homomorphism

is an epimorphism. We have the functor l(iLn applied to the
short exact sequence:

0 — Hi(X;;7) — Hi(X;/Ds;m) — Ho(Dj;m) — 0
hence by [9] we have an exact sequence
l(iLn H(X;/D;;m) — l(iLn Ho(Dj;m) — l(iLanl(Xi; ).

Since X; are one-dimensional, Hy(X;;7) = Hom(HY(X;), ).
Apply Proposition 2.2 to obtain the required epimorphism.
Since X is 1-dimensional, in dimension one Steenrod homolo-
gies coincide with the Cech homologies and hence
l(iLnHl(Xi/Di;ﬂ) = H{(X/D;7). Tt is easy to check that
Ho(D; ) = lim Hy(D;; w) and our epimorphism coincides with
0. O



DIMENSION OF PRODUCTS WITH CONTINUA 65

Lemma 2.4. Let X be a (C, c*)-compactum and suppose that
dimC = 1. Then the inclusion-induced homomorphism
Hy(c*: HY(X)) — Ho(C; H'(X)) is trivial (the points ¢~ and
¢t are H'(X)-connected in C.

Proof: Tt is sufficient to show that the boundary homomor-
phism is an epimorphism. The boundary homomorphism is
generated by the functor Hom( , H(X)) from the co-boundary

homomorphism & : HO({c*}) — H(C/c*). Choose an arbi-
trary homomorphism f : H°({c*}) — H'(X) and consider the
extension problem. This extension problem diagram

¢ . s

Nl

can be obtained from the diagram by applying cohomologies
H'. Here g represents f(1) and the horizontal arrow is the
collapsing of C' in C' to the point (see §1).

Since X is a (C,c*)-compactum there exists a homotopy
lifting ¢’ of g. O

Proposition 2.5. For any one-dimensional compactum X there
is a map of the Cantor discontinuum f : K — X which induces
an epimorphism f, : Hy(K; G) — Hy(X; G) for every group G.

Proof: We define a sequence of finite tilings #; = {H?} of X
by closed subsets with nonempty interiors such that
a) the diameter of H; is less than 1/i;
2) dim(H? N HF) < 0 for all 4, j, k;
3) H;y1 is a refinement of H;; and
4) each H; has an one-dimensional nerve.
This sequence defines an inverse system {X;, pi™' }ien with

X, = X and with the limit space homeomorphic to the Cantor
set . Denote by E; = U(H! N HF). Fix embeddings X; C R
ok
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and X;;; C R® and consider a graph of pi*! in R® x R3. For
every v € E; we join the points in (pi™')~'(x) by a straight
interval in {z} x R®. The resulting space we shall denote by
Xi.1. Since the projection of X; ; on X; is a cell-like map, the
inclusion-induced homomorphism Hy(X;,1; G) — Ho(X;41; G)
coincides with the bonding homeomorphism (p;™).,.

In order to prove that every bonding homomorphism is an
epimorphism it is sufficient to show that Hy(X;, X;;G) = 0
for every i. Note that Hy(X;, Xi;G) =Ext(H'(X;, X;),G).
This Ext group is trivial because of H'(X;, X;) = H'(S' x
Ei—la {pt} X Ei—l) = HI(SI X Ei—l) = HO(Ei_1> = PZis a free
abelian group. [

Proposition 2.6. Let X be a separable metrizable space and
G be an abelian group. Suppose that X is G-connected and lo-
cally G-connected, i.e. for every two-points subset D C X the
inclusion-induced homomorphism Hy(D;G) — Hy(X;G) is
trivial and if diameter of D is small enough then the inclusion-
induced homomorphism is trivial in a small neighbourhood.
Then Hy(X;G) = 0.

Proof: We show that for every compact Y C X, the inclusion-
induced homomorphism i, is trivial. Choose an arbitrary a €
Hy(Y;G). By Proposition 2.5, there exist a map f: K — Y
of the Cantor set and an element 5 € Hy(K;G) such that
f«(B) = a. There are maps p, : K — D™ and ¢, : D" — K
such that lim g, op,, =idgx. Here D™ is a 2™-point set. Since X
is locally G-connected, any two close enough maps of K in Y
send a given element of the 0-dimensional homology of K into
the same element of Hy(X;G). Therefore for some n, we have
that i.(a) = 6 fu(B) = 6 fu(@n)«(Pn)«(B). The right hand side
of this equality is trivial because the cycle (p,).(f) has a finite
support. O
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3. CONTINUA NETS AND THEIR COMPLEMENTS IN R3.

Let N* C R® be the integer lattice and let NV} = (5#N)?
denote the corresponding subdivision of N*. Two points in N,
are called neighbor points if they agree in two coordinates and
they differ in the third by 5¢. Let (X, 2*) be a one-dimensional
continuum. We construct a 1-dimensional net 7}, by attaching

to every neighbor points a copy of X at the points z~ and .

Proposition 3.1. For every 1-dimensional continuum (X, z%)
there exists a sequence of nets T, with the following proper-
ties:
(a) all examples X in T} intersect each other only in the
vertices of NV}, at their marked points;
(b) for every n >k, T, N T,, = N},; and

(c) every example X of T} has diameter < o

2k *

The proof easily follows by general position property in R®. ]

Denote by 7' the union of all T}.

Proposition 3.2. Let (C,c*) be a 1-dimensional continuum
with 7 = H'(C) such that Hom(m,Z) = 0 and let the net T
be constructed by means of (C,c*)-continuum (X, z*). Then
for any compactum Y C T and for any two-point subset D C
Y there exists a proper subcompactum Y’ C Y, D C Y,
such that the inclusion-induced homomorphism H,(Y'/D) —
H,(Y/D) is an epimorphism.

Proof: 1t follows by the Baire Category theorem that there
exists an open set V. C Y — D such that V C T}, for some k.
Define Y’ =Y —V and consider the exact sequence of the pair
(Y/D.Y"/D)

First, note that H,(V) = 0 by dimension reasons, and H, (V) =
Hom(H!(V),Z) = Hom(H'(Z),Z), where Z = CIV/9V. By
Propositions 1.3 and 1.4, Z is a (C, ci)—compactum. By Propo-
sition 1.5, there is an epimorphism &7 — H'(Z). The functor
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Hom gives a monomorphism Hom(H'(Z),Z) — Hom(®,7, 7).
The target is zero by the assumption, therefore Hy(V) =0. O

Lemma 3.3. Let T be as in Proposition 3.2. Then for every
open subset U C T', Hy(U) # 0.

Proof: Suppose to the contrary that Hy(U) = 0. Let D C U
be a two-points set. Then there is a compactum Y D D such
that the inclusion-induced homomorphism Hy(D) — Hy(Y') is
trivial. This means that H,(Y/D) # 0. By the transfinite
induction construct a decreasing sequence of compacta Y; D
Y0+ DY, DY, such that
a) D CY, for every
b) Y1 =Y; and
3) the inclusion Y, C Y induces an isomorphism H,(Y,/D) —
H,(Y/D).

We can do every non-limit step of the induction due to

Proposition 3.2. Let us consider a limit step, a = })’im g.
<a

We define in that case that Y, = NYjs. Since Y,/D is one-
B

dimensional, H,(Y, /D) = lim H,(Y3/D) and the property 3)
holds. Properties 1)-2) hold by trivial reasons. Any decreasing
sequence of distinct closed subsets of a metric compact space
can not be more than countable. But we have constructed such
a sequence of the length w;. This contradiction completes the
proof. [

By the definition, a paracompact space Y has the cohomo-
logical dimension < n with respect to abelian group G (we
write c-dimg (YY) < n) if for every closed subset A C Y and ev-
ery map ¢ : A — K(G,n) to the Eilenberg-MacLane complex
K(G,n) has an extension. It is well known (see e.g. [8]) that
this definition is equivalent to the property that H"*!'(Y, A;
G) = 0, for every closed subset A C Y (here we consider the
Alexander-Spanier cohomologies).

Let us consider the net 17" as in Proposition 3.2. Such a
net exists by virtue of Propositions 1.1 and 3.1. Additionally,
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we may assume the property of (C,c*) from Proposition 1.2.
Denote by W (C, ¢*) the complement of T' in R?.

Theorem 3.4. Under the above conditions the space W (C, ¢*)
is two-dimensional.

Proof: Let B be a 3-dimensional ball in R?. Sitnikov duality
implies Hy(IntBNT) = H*W(C,c*)n B, (C,c*)NdB). By
Lemma 3.3, this group is nontrivial, hence the integral coho-
mological dimension of W (C, ¢*) is greater than or equal to 2.
It is easy to see that it is less than 3. O

Definition [8]. A system of open subsets {U,} is called a
big basis for X if for every closed subset A C X and for every
neighborhood V' O A there exists a locally finite covering of A
by elements of {U,} lying in V.

Ezample [8]. For X C R" the set U(a,r) = {z : d(x,a) <
r} N X is a big basis for X.

Lemma 3.5. [8/ Suppose that X is a paracompact space and
{U,} is a big basis for X. Assume that H"*'(X, X-U,;G) =0
for all . Then c-dimg X < n.

Theorem 3.6. Let W (C, ¢*) be as above and suppose that the
net T is constructed by means of (C,c¢*)-continuum (X, z%).
Then for every (X, x%)-compactum Y, c-dim 1y W (C, ct) =
1.

Proof: Consider a big basis for W (C, ¢*) from the above exam-
ple. For every regular open ball V' C R® we prove that VNT is
connected and locally connected with respect to the coefficient
group H'(Y). We prove the connectedness of VNT. For every
two-point set D = {a,b} C V N T there are two sequences
{a;}ien and {b; }ien converging to a and b respectively, with
the following properties:

(1) a; and b; are neighbor points for some N} and the con-
tinuum X, joining a and b, lies in V'; and
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(2) for every i, points a; and a;41 (also b; and b;41) are
neighbor points for some N} and the corresponding ex-
ample of continuum X joining those points lies in V.

The union of all those continua X defines a compactum Z.
We may assume that Z consists of an infinite chain of continua,
homeomorphic to X, between a and b. Hence the continuum
Z can be represented as the limit space of an inverse system
of continua Z;, consisting of the parts of that chain from a; to
b;. The bonding maps in this system are retractions defined
by collapsing the ends to the end points. Lemma 2.4 implies
that for each space Z;, the inclusion D; = {a;,b;} C Z; induces
trivial homomorphism of the 0-dimensional homology groups
with H'(Y) as coefficients. Apply Proposition 2.3 to obtain
that the inclusion D C Z induces a trivial homomorphism in
the dimension 0.

By Proposition 2.6, Hy(V N T; H'(Y)) = 0. The Sitnikov
duality for the n- sphere S™ says that H(X;G) = H,;_,_,(S"—
X; G), for every nonempty subset X C S™ (c.f. [9; Corollary
(11.21)]). Let us consider the quotient space V/9V ~ S? and
let us apply the Sitnikov duality to U/OU C V/0V, where
U =V NW is an element of our big basis for W = W (C, ¢*).
We obtain that

H*(U/OU; H'(Y)) = Ho(V — W;H'(Y))
~ Hy(VNT;H(Y)) =0

Note also that H2(W, W —U; H(Y)) = H*(U/oU; H*(Y)). 0O

4. THE MAIN RESULT.

The following fact we leave without a proof because it is an
elementary exercise in general topology.

Lemma 4.1. Let {U,} be a big basis for a paracompact space
W and let {Vj3} be a basis for compact space Y. Then {U,xVj3}
forms a big basis for the product W x Y.
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Theorem 4.2. There exist a 2-dimensional subset W C R3
and a 1-dimensional continuum Y with dim(W x Y') = 2.

Proof: We consider W = W(C,c*), where C' 2 %, and ¢*
are as in Proposition 1.2 and the net 7" is constructed by us-
ing a (C,ct-continuum (X,2%). Let Y be a 1-dimensional
(X, 2%)-continuum. For every open subset V' C X, the space
Cl(V)/OV is a (X, z%)-compactum by virtue of Proposition
1.3. By Lemma 4.1 and Lemma 3.5, it suffices to show that
H3(W xY,W xY —U x V)) =0 for every element U of big
basis for W, described in §3, and every open set V C Y.
Note that

H*W xY, WxY —-UxV)
= H}(W,W -U) x (V,Y —=V))
= H*((W,W —=U); H'(Y,Y = V))
H* (W, W = U); H(CI(V)/oV)) = 0

The last equality is due to Theorem 3.6.
The space W is 2-dimensional according to Theorem 3.4. [

Lemma 4.3. Let Y be a continuum and D C Y a two-point
subset. Then for every prime p, the localization Z,) belongs
to the Bockstein family o(H'(Y/D)).

Proof: By the definition of the Bockstein family it suffices
to show that Z,~ @ H'(Y/D) # 0 [4]. Since TorH'(Y) =
0, the multiplication of the short exact sequence 0 — Z —
H'(Y/D) — H'(Y) — 0 by Z,~ produces a monomorphism
Z® Ly — H(Y/D). O

Theorem 4.4. There exists a space W such that dimz; W = 2
and sup{dimy W;h € 0(Z)} = 1. In particular, the Bockstein
theorem asserting that c-dimgX = sup{c-dimy X; H € 0(G)}
does not generalize to the class of noncompact spaces.
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Proof: Suppose that Bockstein theorem were correct. Con-
sider a space W from Theorem 4.2. Then by Lemma 4.3 and
Theorem 3.6, it would follow that c—dimZ(p)W < 1. Since
0(Z) = {Zp); p runs over all primes}, Bockstein theorem would
then imply that c-dimzW < 1 which would contradict Theo-
rem 3.4. [

Remark. Tt is possible to construct such a space W as above
with the dimensions= 1 with respect to all localization Z).
This solves a problem from [8].
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