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Abstract 

DraniSnikov, A.N., D. RepovS and E.V. SEepin, On intersections of compacta of complementary 
dimensions in Euclidean space, Topology and its Applications 38 ( 1991) 237-253. 

A pair of maps f: X + R” and g : Y + IR” of compacta X and Y into the Euclidean n-space is 
said to have a stable intersection if there exists & > 0 such that for any other pair of mapsf : X -+ R” 
and g’: Y + R”, satisfying p(f,f) < E and p(g, g’) c E, it follows that f(X) n g’( Y) # 0. The main 
result of this paper is the following theorem: Let X and Y be compacta and let n = dim X + dim Y. 
Then there exists a pair of maps f: X + ITV and g : Y + R” with stabie intersection if and only if 
dim(X x Y) = n. 
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Our work presented in this paper was inspired by the following question: ~~~~~~ 
compacta X have the property that every maTJ f : X + Fe” of X into the Euclidean n-space 

can be approximated by an embedding? If we denote by C(X, w”) the space of all 
continuous maps of X into R”, equipped by Ihe siandZr< “szF-%srr?” metric 
p(f, g)=sup{d(f(x), g(x))lxE X}, and denote by E( 

C(X, R”), consisting of all embeddings of 
be restated as follows: which compacta X have the property 
in C( X, W”)? 
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It follows by the classical Niibeling-Pontrjagin embedding theorem that a suficient 
condition for X is that dim X <in [17]. In 1983, D. McCullough and L.R. Rubin 
published a theorem, asserting that the condition dim X c in is also necessary in 
the case when n is even [15]. However, some years later, J. Krasinkiewicz and K. 
Lorentz found a gap in the proof of one of the crucial lemmas (but did not determine 
whether the main result of [ 151 was incorrect) [ 121. Recently, McCullough and 
Rubin themselves found a counterexample to [ 151: they constructed for each n z 2 
an n-dimensional compacturn X such that E(X, Iw”‘) is dense in C(X, IR’“) [ 161. 
Their example turns out to possess the property that dim(X x X) < 2n. This led us 
to the following theorem: 

Theorem 1.1. Let X be a compactum and n =dim X. Then E(X,R”) is dense in 
C(X,R”) ifand only ifdim(XxX)<n. 

emark. If in Theorem 1.1, one omits the hypothesis that n = 2 dim X, then the 
condition dim( X x X) < n still implies that E( X, IF?‘) is dense in C(X, W). (Indeed, 
if dim(X x X) < n then n < 2 dim X is impossible since by BokStejn inequalities 
dim( X x X) is either 2 dim X or 2 dim X - 1. Consequently, n > 2 dim X and the 
assertion follows by the Pontrjagin-Niibeling embedding theorem.) Note that our 
proof of the “if part” of Theorem 1.1 also does not use the hypothesis that 
n = 2 dim X. (See also the remarks in Section 2, after Kiguradze’s theorem.) 

Theorem 1 .l will be proved using the following criterion for stability of intersec- 
tions of maps of pairs of compacta of complementary dimensions into the Euclidean 
n-space: 

Theorem 1.2. Given compacta X and Y such that n = dim X + dim Y, there exists 
a pair of maps f: X + R” and g : Y + R” with stable intersections if and only if 
dim(X x Y) = n. 

A pair of maps f: X + S and g : Y + S of compacta X and Y into a metric space 
S is said to have a stable intersection if there exists E > 0 such that for any other 
pair of maps f: X + S and g’: Y + S, satisfying the conditions that p(f;f’) < E and 
p( g, g’) < e, it follows that f(X) n g’( Y) # $3. 

The paper is organized as follows: in Section 2 we give a proof of the “if” part 
of Theorem 1.2 based on the theory of essential maps and irrational compacta. In 
Section 3 we prove some results about regular branched mappings which then play 
an important role in Sections 4 and 5 in which the proof of the “only if” part of 
Theorem 1.2 is presented, first for the higher dimensional case (n > 4), and then for 
the 4-dimensional case (n = 4). In Section 6 we prove Theorem 1.1. 

The main results of this paper were announced in [ 5-81. Theorems 1 .l and 1.2 
also follow from the recent work of Krasinkiewicz [ 1 l] and Spiei [ l&19]--they 
used techniques different from ours. 
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We wish to point out that besides the main results concerning the stability of 
intersections of compacta our paper contains several results of independent interest. 
In particular, the second section -on essential maps and irrational compacta, the 
third section-on regular branched maps, and the fifth section-on abelianizing the 
fundamental group via Casson’s finger moves. 

2. Essential ma s and irrational corn 

A map f: X + B” of a space X onto the closed n-ball B” is said to be essential 
if there is no map g: X + aB” with the property that glf*(aB*) =fIf’(aB*). Next, 
a point x E int B” is called a stable value of a surjective map f: X + B” if there exists 
E > 0 such that for every map g : X + B” such that p(f, g) < E it follows that x E g(X). 
In other words, x cannot be avoided by f(X) under small perturbations off [I]. 
Finally, a map f : X + R” is said to have a stable value at y E R” if there is a closed 
n-ball C c IF!“, centered at y, such that the restriction flf ‘( C) :f’( C) + C has a 
stable value at y. 

Clearly, if f: X + B” is an essential map, then every point x E int B” is a stable 
value of J Conversely, if some point x E int B” is a stable value of an onto map 
f: X + B”, then there exists a small n-ball C” c int B” such that x E int C” and 
flf’( C”) :f’( C”) + C” is essential. 

For every point x E R”, let r(x) be the number of rational coordinates of x. For 
every subset X c R” let r(X) = max{ r( x) 1 x E X}. Finally, for every k s n, let Rz = 
{x E R” I r(x) s k}. It is well known that for every k 6 n, dim Ri = k and consequently 
that for every subset X c R”, r(X) 2 dim X [ 1,9]. 

A subset X c IR” is said to be irrational if r(X) = dim X. For example, if X = (p} 

is irrational, where p E R”, then r(X) = dim X = 0, hence all coordinates of the point 
p are irrational. This shows our notion of irrationality is the correct generalization 
of the standard one for points. Using this new concept we rewrite the following two 
classical results of dimension theory [ 1,201: 

Every bounded map f: X + lR2*+’ of a separable metric 

n-dimensional space X into R2*+’ can be approximated arbitrarily closely by a map 
f:X+~z”+I such that the closure of the image off’ is an irrational n-dimensional 
compactum. 

gtan’ko’s theore Every embedding of a compactum into R” can be approximated 
arbitrarily closely by an embedding whose image is irrational. 

We shall need the following recent unpublished result of 0 Kiguradze: 

( Kiguradze). Let 
Euclidean n-space W’, k s 

ensional i~r~~~o~~~ compactum, lying i 

no t c P’ and a 
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closed, k-dimensional ball Cc L such that pl(p-‘(C)nX):p-‘(C)nX+C is an 

essential map, where p : R” + L is the orthogonal projection of W’ onto L. 

In the first version of our paper we used an earlier result of Kiguradze 
[IO]; it *was his theorem above without the irrationality hypothesis. Its proof was 
based on the classical CogoSvili’s theorem [3] from the 1930s. With such more 
general result we could prove, using essentially the same argument as for the special 
case, the “if” part of Theorem 1.2 without the “dim X + dim Y = n” condition (and, 
consequently, Theorem 1.1 without the “n = 2 dim X” condition). However, we have 
subsequently discovered that there is a serious gap in CogoSvili’s proof [3] and so 
his theorem remains unproved. 

With the author’s kind permission, we have included here the complete proof of 
Kiguradze’s theorem. We shall need two lemmas: 

Given a compacturn X c I$“, let p : R” + W’, n 2 m, be a surjective linear 

map such that p 1 X : X + R” has an unstable value y E p(X). 7rhen for every E > 0, 

there exists a map g : X + R” such that: 

(i) p(g, j) < E, where j: X + R” is the inclusion; 

(ii) For every x E X, g(x) = x, provided that dist(x, p-‘(y)) 3 $6; and 

(iii) g(X) n p-‘(y) = 0. 

Proof. Without losing generality, we may assume that the point y is the origin 0 E R” 
and that p is the projection of IR” onto the first m coordinates, i.e., 

p(x I,=*-, X m9-=-9 xn)=(xI,=**9 x,). Since y is by hypothesis an unstable value of 
p 1 X : X + R”, the map p 1 X inessentially covers the closed m-ball C c R”, centered 
at y and with radius $. Hence there exists a map f: X + R”’ such that f(X n 
p-‘(C)& aC and foreveryxE X np-‘(Rm\C), f(x) =p(x). Define now thedesired 
map g:X+R” by g(x)=(f,(x) ,... ,fm(x), xm+l,..., xn) for every XEX, where 
x=(x,,... 9 xn) andf (x) = (f,(x), l l l ,fm(X), 0, l l l 

, 0). It is easy now to verify that 
g satisfies properties (i)-(iii). 0 

For any k-dimensional plane L c R”, k 6 n, denote by pL : R” + L’ the orthogonal 
projection of IFV to the (n - k)-dimensional plane L’ orthogonal to L through the 
origin. Clearly, pL( L) is then just a point. 

a 2.2. Suppose that a compactum X c II?’ and a collection L, , . . . , Lk c 03” of 
planes satisfy the following conditions: 

(1) For every i#j, XnLinLj=@; and 
(2) For every i, the projection pL, 1 X : X + Lf has an unstable point at pL, ( Li ). 

Then for every E > 0, there exists a map g : X + R” such that 
(i) p(g, j) < E, where j : X + R” is the inclusion; and 

(ii) g(X)n(ufil! Li)=@, 
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roof. We may assume that 8 > 0 is so small that for every i f j, 

where N,( L,) c II? is the open E-neighborhood of L,, t E { 1,. . . , k}. Apply Lemma 
2.1 to obtain for every i E { 1,. . . , k}, a map gi : X + IFV such that 

p(gi, incl) < E; (2.2) 

and 
for every x E X, gi( x) = x if dist( x, Li) > E ; 

gi(X)f? Li=(d. 

(2.3 

(2.4) 

Define g : X + IR” as follows: for every x E X, let g(x) = gi(X) where Li is the closest 
plane to x, i.e., dist(x, Li) s dist(x, Lj). Clearly, g is well defined. Indeed, if for some 
i # j, the planes Li and Lj both have the minimal distance from x, then by (2.1) 
above, this distance must be at least E. Consequently, by (2.3) above, gi( x) = x = 
gj(x). Also, g is clearly continuous and it satisfies the required properties (i) and 
(ii), by (2.1)-( 

Let X c R” be a k-dimensional irrational compacturn, 
0 < k s n. (The case k = 0 is trivial.) Then 

(I) for every x r(x) s k 
and there exists 6 such that 

(2) X has no open S-covering of order Sk. 
Choose a rational A > 0 such that 

(3) h <ssJn 
and define Ch = {x E If?? 1 for every i, 0 Gxish/n}. Then d =diam C, =A/& hence 

bY (3), 
(4) d<$. 

Consider a Lebesgue lattice C! = {oi}iEN in R”, i.e., the covering of IR” by copies of 
the n-cube C, such that (i) for every i, wi = C,, + rip ri E Q” (i.e., mi is obtained by 
a parallel translation of Ch along some rational vector ri); (ii) for every i Z j, 
OifTOj = aoi n doj ; and (iii) the order of 0 is n + 1. 

For every m > 1, define 

Then 
S, = {x E R” 1 x belongs to at least m different elements of 0). 

(5) s, c UT.1 LJ-*+‘, 
where { LSsrn+‘}jEN is a discrete collection of (n - 

each of them being the intersection of some (m - 
r n-m+1 

(6) Lj = p,yJ;’ z;-’ 

whereforeveryIE{l,...,m-_!)a 
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We now focus our attention on the case m = k + 1. Note that for every i E N and, 
every y E L?-“, r(y)~k,henceforeveryi#jandeveryzELr-linLin-k9r(z)~k+1, 

therefore it follows by ( 1) that for every i Z j, 
(7) X n Ly-” n Ly-” = 0. 

Let Ed= $( 6 - 2d). It follows by (4) that eo> 0. 

Assertion. For every map g : X + R” such that p(g, incl) < Ed, g(X) n Sk+, # 0. 

roof. Suppose, to the contrary, that the intersection of g(X) and Sk +, were void. 
Then g-‘(U) would provide an open cover of X of order <k and with mesh 
p <2Eo+2d = S, where 6!‘= {mi}i<N is some family of open cubes w: 3 wi which 
would directly contradict (2). This proves the assertion. 

The assertion implies that, in particular, 

(8) XnSk++O 
and since X is compact, it intersects only finitely many (n - &dimensional planes 
{ Ly-“}j,N 3 say L::r,‘i,, . . . , L::FA. By discreteness, there is cl E (0, Ed) such that 
dist(X, L”-‘)a E, for everyjEl+{c(l), . . . , u(t)}. Therefore for every g : X + R” 
such that p(g, incl) < e1 it follows by the assertion that 

(9) g(X) n (LK=, LZ,;) + 0. 
It now follows by (7), (9), and Lemma 2.2 that for some ioE { 1, . . . , t}, the projection 

PL,,, ,1X:X+ L&ir, h as 

and “P = Pt.,,, ‘,,, 

a stable value at the point pL,(, ,( L,ci,,). By letting L = Lit iOj 

we thus complete the proof of Kiguradle’s theorem. Cl 

Theorem 2.3. Let i : X + IR” and j : Y + R”’ be embeddings of compacta X and Y and 

consider the corresponding product embedding i x j : X x Y + R” x R”. Suppose that 

p : IT’ x IT’ + I$” is a linear map such that po(i x j) : X x Y + Rk has a stable value. 

Then there exist maps f: X + R” and g : Y + R” with stable intersections. 

Proof. Let h = i x j and Z = h( X x Y). We may assume that 0 E Z and hence for 
every (x, y ) E X x Y, h (x, y ) = (i(x), 0) + (0, j(y)). We may also assume that the stable 
value of p is the origin 0 E IR”. Therefore there exists a closed k-ball C c R”, centered 
atOERk andwithradiusS>O,suchthattherestrictionpIp-’(C)nZ:p-‘(C)nZ~ 
C has a stable value at 0. Consequently, there exists E > 0 such that for every map 
p’:p-‘(C)nZ+C such that P(p,p’)<e it follows that OEImp’, too. 

Define mapsf: X + R” and g : Y + R” as follows:f(x) = (ph)(x, j-‘(O)) and g(y) = 
-( ph)(i-‘(O), y), for every (x, y) E X x Y Note that then (ph)(x, y) =f(x) -g(y), 
for every (x, y) E X x Y 

Assertion. The maps f and g have a stable intersection. 

Proof. Let J’: X +R” and g’: Y-, Rk be any maps such that p(Jf’) <$E and 
p(g,g’)<~&.Definep’:p-‘(C)nZ~Ctobethemapp’(h(x,y))=cp(f(x)-g’(y)), 
for every h(x,y)Ep-‘(C)nZ, where (p:lR”+C is the map 

rp(t) = 
6: 

II II 
if tg C, 

& if KC. 
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Then p’ is well defined and continuous, and for every h(x, y) E p-‘(C) n 2, it follows 
that (since Im( p) = C): 

IKPhk Y) -WNx, y>I) 

4l.fw-f(~>ll+ llg(y)-g’(y)11 ++;E = & 

hence p( p, p’) < E. Therefore, 0 E Im p’ hence for some (x0, yO) E X x Y, cp(f’(x,) - 
g’(yJ) =p’( h(x,, yu)) = 0 so f(xO) = g’(yO). It follows that Zlmf’n Im g’# 0. This 
completes the proof of the assertion (and also of the theorem). Cl 

roof of the “if” part of Theorem 1.2. By the Niibeling-Hurewicz theorem (stated 
above) there exist m E N and embeddings i : X + R”’ and j : Y + IV such that 

(1) r(i(X))=dim X and u(j( Y))=dim Y 
Consider the product embedding i x j : X x Y + R’“*. Then for every (x, y) E X x Y, 

r((i xj)k Y)) = r(W) + WY)) thus 
(2) r((ixj)(Xx Y))=r(i(X))+r(j(Y)). 

Since, by hypothesis, dim X +dim Y = dim(X x Y), it follows by (1) and (2) that 
(3) r((ixj)(Xx Y))=dim((ixj)(X~ Y)). 

Apply Kiguradze’s theorem to conclude that there exists an n-dimensional plane 
LdR2” such that the restriction p 1 (i x j)( X x Y) : (i xj)(X x Y) + L of the 
orthogonal projection p : R’” + L has a stable value. The proof is then completed 
by invoking Theorem 2.3. Cl 

For every k 2 0 and every map f: X + 2, define the following subset &(f) c 2: 

B,(f)={zEZlcardf’(z)ak} 

and call the map f regular branched if for every k 2 0, 

dim&(f)ckmdimX-(k-l)=dimZ. 

For example, if dim X <: dim 2 and f: X + 2 is regular branched, then f is an 
embedding, provided X is compact. Also note that regular branched 
raise dimension. Indeed, since B,(f) =f( X) it follows that dim f 

Denote by R(X, 2) the subset of C(X, Z), consisting of all regular branc 
from X to 2. 

For every compactum 
countable union of nowhere dense sets 
category). 
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roof. Let { UJiEN be a countable base of open sets in X. For every closed sets 

X1, . . . , Xk c X and every closed set D c R”, the set 

is clearly closed in C(X, a”). 

ion 1. If X1,..., Xk are pairwise disjoint, then the set M(X, , . . . , X,, D) is 

nowhere dense in C(X, R”), provided that dim D c k(n -dim X) and D is a plane. 

roof. First approximate f (Xi)‘s by polyhedra of dim s dim X and apply the 
standard general position to obtain, via small moves, that dim(nf=, f (Xi)) n D = 

dim D + k(dim f (Xi) - n) < kn - k l dim X + k l dim X - kn = 0. This clearly proves 
that int M(X,, . . . ,X,, D) =0. 

We shall call a (k + l)-tuple (X, , . . . , X,, D) admissible, if 
(i) for every i # j, Xi 17 Xj = 0; 

(ii) for every i, Xi is the union of the closure of finitely many elements of the 
basis { Ui}iEN; and 

(iii) D is a plane of dimension < k( n - dim X), defined as the solution of a system 
of linear equations with rational coefficients. (We shall call such D a rational plane.) 

Clearly, the set A of all admissible (k + 1 )-tuples (X1, . . . , X,, D) is countable. 
Therefore the set 

is a countable union of subsets of C(X, W”) which, by Assertion 1 above, are all 
nowhere dense in C(X, IFV), provided dim D < k(n -dim X). 

Choose now any k a 0, any f E C(X, 03”) - S, and any rational plane D c R” of 
dimension < k( n -dim X). 

Assertion 2. & (f ) n D = 0. 

roof. Suppose to the contrary, that there were some t E &(f) n D. Then 
card f -‘( t) 5 k. Take any k different points xl,. . . , xk E f -‘( t) and find elements 
u 1,. . . , Uk c X of the base { Ui},cN, such that (XI,. . . , Xk, D) E A, where Xi = Cl Ui 
and Xi E Ui, for every ic (1 , . . . , k}. It follows that f E M(X,, . l . s Xk, D) hence 
f E S, a contradiction. 

Consequently, Bk( f) c [w” - LJ{ D 1 D c R” rational plane of dimension < k( n - 
dim Xl). In particular, this implies that r( &( f )) G n - k( n -dim X) and so 
dim&(f)sn-k(n-dim -(k-1)n and he 
shows that C( R”) - S e H (X, R”) so the complement of 

thus is of the first l$s completes the 
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Corollary 3.2. Suppose that X and Y are compacta such that dim(X x Y) c n and 
2dimX+dim Y<2n-2. Then these? 

N={f~C(X,R”)ldim(f(X)x Y)<n anddimf(X)sdimX} 

contains a dense Gs-subset of C( X, Iw ” ). 

Proof. By Theorem 3.1, it suffices to prove that R(X, Iw”) c IV. So choose any 
feR(X,IW”) and consider the map fxid.:XxY+f(X)xY. Since f 
is regular branched, dim B2(f xid.)=dim(B,(f)x Y)cdim &(f)+dim YG 
(2 dim X - n) + dim Y G n - 2. Apply Freudenthal’s theorem [9, l] to conclude that 
dim( f (X) x Y) < max{dim B2( f x id v) + 1, dim(X x Y)} C n. (Note that the point- 
inverses off are finite sets so, in particular, f is light.) Cl 

the “only if” part of Theorem 1.2: t 

We begin this section by a result which will play a key role in the proof of the 
case n > 4 of the “only if” part of Theorem 1.2: 

Let n > 4 and suppose that K c W’ and X are any compacta satisfying 
the following conditions: 

(i) dim K +dim X < n; 

(ii) dim( K x X) < n; and 

(iii) k = dem K = dim K < n - 3, where dem is Stan’ko’s embedding dimension 

1201 
Then C(X, in - K) is dense in C(X, W). 

roof. We only need to consider the case when dim K +d X = n. Choose an 
arbitrary f E C(X, IV) and any E > 0. We shall find fly C( R” - K) such that 

P(f,s)< E* 

sse 1. There exist a finite polyhedron L c Iw” with a triangulation T and a map 

g:X+L such that 

(1) 
(2) 
(3) 
(4) 

where 

l=dim L=dimX; 
T”-l~n 

= 0, where T”-” is the (1 - l)-skeleton of T; 

mesh T <$E; and 

P(f, g) 48. 

We may assume that 
each X,,, c I” is an I-di 

of mesh ~2~“. By [ 143, there exist mO E N a 
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k = dem K = dim K = n -dim X = n - I it follows by [20] that T”-” may be assumed 
to be missing the compacturn K. This proves the assertion. 

Let UE T”’ be any top dimensional simplex of T and choose any n-dimensional 
polyhedral cell B c R” of diameter c :E such that B n L is a regular neighborhood 
of v in L (with respect to T) and v c int B. 

Assertion 2. Ht(K n int B; Z) =&_,(int B- K). 

roof. Since for every i < n, HL(int B; Z) = Hi (S”; Z) = 0, it follows by the 
Alexander duality that for every i < n, 

Ij’(KnB,KnaB;h)sHL(Knint B;Z)sHE_i_,(int B-K;Z). (*) 

Next, n,(int B - K) = 0 since by hypothesis, dem K s n -3. Therefore by the 
Hurewicz theorem, the first nonzero homotopy group of int B - K is isomorphic to 
the corresponding (integral) homology group. Now, it follows by (*) above that for 
every id-l, Hi(intB-K;H)=O (since then n-i-l>n-I=k). Thus by 
Hurewicz, &(int B - K) = H,_,(int B - K; Z) = H;‘_,(int B - K; Z) so the asser- 
tion follows by applying (*) for i = n - I = k. 

Let 17 = &,(int B - K). We now proceed to prove the next fact about X: 

Assertion 3. c - dimrrX < I - 1. 

roof. Take any closed subset AcX of X and define G = 
R’(X, A; fik(K n B, K naB, Z)). Then by the Universal Coefficients theorem, G = 
fi’( X, A; Z)@ fik( K n B, K n aB; Z) so G is a direct summand in the Kiinneth 
formula for the product (X, A) x (K n B, K n aB): 

H=fi*(Xx(KnB),(Ax(KnB))u(Xx(KnaB));Z) 

=fi”((X,A)x(KnB,KnaB);Z) 

= @ fi’(X,A;Z)&j(KnB,KnaB;Z). 
i+j=n 

Now, H = 0 since by hypothesis, dim( X x K) < n. Therefore all the summands in 
the Kiinneth formula above must be zero, in particular, G s 0. Since A c X was an 
arbitrary closed subset of X it follows by [4] and Assertion 2 that c - dimnX 6 I - 1. 

We shall now complete the proof of the theorem. Glue to int B-K cells of 
dimension 3 I + 1 in order to build the Eilenberg-MacLane complex Yl = X( I&1- 1) 
along with the canonical embedding j : int B - K + Zt. (Clearly, j (int B - K) then 
contains the Z-skeleton of YC. Consider the map 
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By Assertion 3, it extends to a map g: g-‘(a) -+ X”‘c int B - K. (Since dim g-‘(a) < I 
and X is compact, we may assume that Im g lies in some finite subcomplex of x 
and by the cellular approximation theorem, it can be pushed into the I-skeleton of 
3K, i.e., into int B - K.) 

By repeating the procedure described above for every I-simplex 0 E T(I), we obtain 
the desired E-approximation f E C( X, IR” - K) of J Cl 

We are now in a position to give a proof of the higher dimensional case, i.e., 
n > 4, of the “only if” part of Theorem 1.2: We may assume, without losing generality, 
that dim YsdimXsn-2. 

Therefore, by Corollary 3.2, there exists a map g’E C( Y, IV) such that dim( X x 
g’( Y)) c n, p( g, g’) < E and dim g’( Y) s dim Y 

Since n > 4, it follows that dim Y s n - 3 hence dim g’( Y) s n - 3. By Stan’ko’s 
approximation theorem [20], we may assume that dem g’( Y) = dim g’( Y). Apply 
now Theorem 4.1 for K = g’( Y) to obtain a map j” E C(X, R” - K) such that 
p(L f’) < E. As a consequence, f(X) n g’( Y) = 8, as asserted. 

e “0 core 

As in the preceding section we shall again begin by a result which will be of key 
importance in the proof of the 4-dimensional case of the “only if” part of Theorem 
1.2. The trouble with this case lies in the fact that the fundamental group is the only 
homotopy group which can fail to be abelian. Therefore we need a result to the 
effect that under certain conditions I& can be effectively abelianized. 

a 2-dimensional compactum in a simply connected PL 
Then for every pair of compact polyhedra (P, Q) where 

dim P s 2 and every PL immersion f : ( P, Q) + (A4 - Z, aM - Z) there is a PL homotopy 
-Z such that: 

(ii) For every t E I, G, : P+ M -Z is an immersion and 6, 1 Q = f 1 Q; 
(iii) G, : P-, -Z is a general position map (hence has only double singular 

points ); and 
(iv) M - G,(P) has an abelian fundamental group. 

. Let T be a triangulation of the polyhedron f ( 
let z, : S’ + fi be a meridian of u with a fixed o 
and z,(S’) bounds some 
transversely in an interior poin 
for every gr P (T’ E T(*‘, z,,( 
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For every o E Tt2), fix some point X, E z,( S’). Let 2 = U { z,( S’) 1 u E Tt2’}. Choose 
a base point you int N of n,( M -f(P)). For every CT E Tt2’ and every path u : I + 

int N from u(0) = y. to u( 1) = x, define a loop 2:: Z + int N, given by zz = 
u-’ * z, * u, where * denotes the usual “join” product of paths. 

Assertion 1. The loops { zz} generate l7,( M -f(P)). 

Proof. Pick an arbitrary element [ LY] E n,( M -f(P), yo) and represent it by a PL 
embedding a : (S’, 1) + (M -f(P), yo). By general position we may assume that 
CY( S’) n 2 = (b. Since by hypothesis, M is l-connected, ar extends to a PL immersion 
6 : B2 + M. Again, by general position, we may assume that &(B’) n T”’ = Q) and 
that dl; ( B2) intersects every 2-simplex o E Tf2’ transversely, at a finite set of interior 
points A, = {p:, . . . , pgw} c int V. We may also assume that the singular set of a! 
consists of finitely many double singular points and that they all miss f(P). 

Consider the preimage of A, in B’, i.e., C,, = (47, . . . $} c int B2, where for 
every iE{l,...,n,}, qT= K’( p’). There exists a collection {Jv,i 1 cr E T(‘), i E 

11 , . . . , n,}} of pairwise disjoint simple closed curves in int B” such that [6! IJu,i] = 
[zz’] E n,( M -f(P)) and for every CT and i, q4 lies in the interior of the disk Em i . 

which is bounded by Ju,i in B2 and Ec7.i n Ev*,j = 0 whenever u # a’ or i #j. 

For every a, i, let ya,i: I + B2 - U,i int Eu,i be an arc from yu*i(O) = 1 to a point 

tm,i E Ju,i 9 such that for every (T Z V’ or i #j, Im yu,i n Im ycp,j = (1). The deformation 
retraction of B2 onto Y = lJ { Ev,i u Im yu,I) followed by the map 6 1 Y: Y + M is a 
homotopy (based at yo) from [ ar] to a product of finitely many elements of the type 
Z: or their inverses, namely, (6 0 yi,:) * (6 I Jc,i) * (a! 0 ym,i). This proves the assertion. 

Now, n,( M -f(P)) is finitely generated and we can easily get a finite set 

1 z>,, . . . , zk,} of generators. We may also assume that for every i Z j, ui((O, 1-J) n 
uj((O, 11) = 0. In order to kill the commutators of n,( M -fl P)) it clearly suffices 
to kill the commutators of the type [ z$ , zz:] for all i, j E {l, . . . , m}. This is achieved 
by pushing f(P) along the paths ui and uj (the so-called Casson “finger” moves 
[2]), until the “fingers” intersect transversely at two points p and q, near the point 
YO, bounding a Whitney 2-disk W. Denote this push (a regular homotopy) by 
G,: PX Z+M-27,, where G,=f: 

Obviously, n,( M -S(P)) = l7,( M - (G,(P) u W)). Now do the “anti-Whitney” 
move, i.e., remove W. It is easy to verify that the following claim holds: 

Assertion 29 Q(M -(G,(P) u W)) + H7,( M - G,(P)) is an epimorphism. 

roof. Indeed, let [@J E &!,( M - G,(P)). Then by general position, the map cp : S” --) 
M - G,(P) can be homotoped to a map cp’: S’ + M - (G,( P) u W), where the 
homotopy has a support inside M - G,(P). 

As a consequence, every element of U,( A4 - G,(P)) is also generated by the 
elemetrts { z$ , . . . , z:>;,J 
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After removing W we detect the “characteristic” torus S’ x S’ in the complement 
of the fingers, i.e., in M -G,(P). Now, z2 and zz; can be homotoped onto the 
generators of H,(S* x S’; Z) and hence they will commute in M - G,(P). Since the 
paths ui and uj were chosen to miss 2, so will the homotopy G,. This completes 
the proof of the theorem. Cl 

We can now begin the proof of the “only if” part of the 4-dimensional case of 
Theorem 1.2: Clearly, the only nontrivial case is when dim X = dim Y = 2. We may 

assume that X, YC Ioc). Then X =ll&{Xn,, pm,,,+,} and Y =l&~{ Y,, qmqm+,} where 
every X, (respectively Y,) is a 2-dimensional compact polyhedron in I”, equipped 
with a finite triangulation S, (respectively T,,,) of mesh ~2~“. By [14], there exist 
m. E N and a pair of simplicial maps fm,: Xmn+ lR4 and grHO: YmO+ R4 such that 

(1) p(xf )-b, where f=fm,PZo and pE,: X + Xm, is the canonical projection; 
and 

(2) p( $j, g) < $E, where g = gm,,q$, and qz, : Y + Ym, ia the canonical projection. 
Let K =fm,( Xm,) and L = gm,( Ym,) and choose some finite triangulation S (respec- 
tively T) of K (respectively L) with respect to which fm, (respectively g,,) is 

simplicial. We may also take the mesh of S and T to be C&Z. Now, 
(3) dim K s dim X; and 
(4) dimL<dim Y, 

so by general position, 

(5) fmo~~mo~l~moILIITmoI+ lslu ITI is a general position map (hence has only 
finitely many double singular points); and 

(6) K and L intersect transversely, K n L = { ?, , . . . , t,}, where for every i, 
fml( ti) = &i and gii( ti) = ?i, for some (ai, 7i) E S”’ X T”’ and &i (respectively ?i) is 
the barycenter of Ui (respectively ri). 

Therefore there exist pairwise disjoint PL 4-balls Bt , . . . , B:c lR4 such that for 

every iE{l,...,r}, 

(7) ti E int Bi ; 

(8) 4;;;:( Bf) c int ai ; 

(9) g,i( Bi) c int ri ; 
(10) diam Bi <is; and 

(11) fm, and grn, are one-to-one over a Bi. 

For every &{l, _. . , r}, let Ci =$-‘( Bi) and Di =g-‘(Bi) where 
closed PL 4-cell such that ti E int B:. It follows by (11) and by general 

(12) dim((S(Ci)naBi)x Di)<4; 

hence there exists, by Corollary 3.2, for every 
(13) J If-‘(aBi) =SIJ-‘(aBi> and P,F’(aBi) 

(14) dim(J(Ci)x Di)<4 andJ(Ci)n 
Let Ri =J(Ci) and ak = 
(14).) Define Wi = int 

. 

is a 
that 
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c -dimc;,Di s 1. 

By the Alexander duality, 
(15) GiZIjr2(ii,aii;Z). 

Let Ei c Di be any closed subset of Di. Apply the Kiinneth formula and the Universal 
Coefficients theorem to compute 

(16) H=A4(Di, Ei)x(k,,a&);Z) 

26 h4-'(Di~ Ei;E)@fij(Zi,aki;Z) 
j=O 

s & H:-‘( Di, Ei; hj(Ri, a& ; H)). 
j=O 

By (14) and [43 (see also [ 13]), it follows that W ~0 hence all direct summands in 
(16) are zero, in particular 

(17) H:(Di, Ei; Ij2(kiraki; 

therefore by (15), 
(18) H:( Di, Ei; Gi) SOo. 

Since Ei was arbitrary, the assertion now follows by Cohen’s theorem [4,13]. 

We now kill the commutators of I7,( Wi) by glueing 2-cells {Af} to Wi SO that for 
every r, 

(19) aAfc WI’), where WI” is the l-skeleton of a fixed triangulation of Wi; 
(20) [aA:] = [O] E Gi ; and 
(21) {aAj} generate Ker[&( Wi) + Gil. 

Let WF= Wi u (U A:). Then by (21), 
(22) I!7,( WF) s H,( Wf ; Z) = Gi. 

By attaching to WF cells of dimension ~3, we build the Eilenberg-MacLane complex 
Xi = X(G,, 1) together with the canonical embedding Qi: Ws+ Xi. For practical 
purposes we shall identify Qi( WF) with WT. Clearly, U-f contains the 2-skeleton 
Of Xi. 

Consider the map $i = Qi(g 1 yi) : yi + Xi. By the assertion above, #i extends to 
a map &i: Di+Xi”. (Since Di is compact tJi( Di) lies in some finite 
subcomplex of Xi. Furthermore, by the cellular approximation theorem, we can 
homotop &ii< Di) into the 2-skeleton of Xi.) Hence we may assume also that 

(23) $i( Di)C WT. 

By the compactness, &i( Di) intersects at most finitely many cells Af of WT, hence 
(24) $i(D,)c WivA:,um n *VA:,,,,. 

By (M), (20) and (24), there is an open neighborhood Ui c Bi of ii such that for 
every SE(tl,**-,f,(i)), 

(25) 8Ai is nuilhomologous (over Z) in Bi - Ui ; and 
(26) Uind$i(Di)=fl. 

Since ki = I&I{ a;, on,,,+,} where every Pi,, c Bi is a compact 2-dimensional polyhe- 
dron, there exists by 1141, an integer m. E N such that P&,c ?_.Ji. mzy assume 
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that OzOl kinaBi = l mcl. Apply now Theorem 5.1 and use (24)-(26) to obtain a regular 

homotopy Fi : Pal,+ Bi - (Qi v Ji( Di)) such that 
(27) Fh = the inclusion of P&, into Ui ; 
(28) I71 (Bi - Fi ( PLO)) is abelian; and 
(29) for every s E { t 1, . l . , lr(i)}, dAS is nullhomologous (over Z) in Bi - F’,( PLO). 

Let f?: Ci + Bi be given by f? = F’,wzJ, where ~2,: Ri + P&, is the canonica[ 

projection. Then by (28) and (29), 
(30) for every s E {t 1, . . . , trci,}, dAi is nullhomotopic in E’i = Bi -ff( Ci), 

SO there exists a retraction hi : fii u Al, u l l l u Air(,) + I&. Let g” : Di + Bi be given 
by g”= h&i. Then 

(31) g?) Y,=gl Y; and 
i: 

(32) f?(G)n(QiugF(Di))=fl* 
Finally, define the maps f : X + R4 and g’: Y + R4 by 

and 

f?(x), 
f(x) = {T(x), if xE Ci for some iE{l,. .., r}, 

otherwise, 

if y E Di for some i E { 1,. . . , r}, 

otherwise. 

It follows by (l), (2), (6), (lo), (31), and (32) that p(Jf) < E, p(g, g’) < E, and 
f(X) n g’( Y) = 0. Th’ IS completes the proof of the “only if” part of the 4-dimensional 
case of Theorem 1.2. 

6. The proof of eorem 

Suppose first, that dim(X x X) < n. Cover X by a countable family {( Ui, c)}iE, 
of pairs of the closures of open sets Ui, Vi c X such that for every i, Ui n Vi = fd and 
for every x Z y, (x, y) E X x X, there exists a pair ( uk, &) such that (x, y) E ( Uk, V,). 
Define for every i, Ci ={hEC(X,R”)Ih(Ui)nh(~)=@ Clearly, Ci is open in 

II%“). That Ci is also dense in C(X, R”) follows by the “only if” part of Theore 
1.2 (applied to X = Ui, Y=c, f=hlISi, and g=hlc). Therefore, by the 
category theorem, E(X, R”) =nz, Ci is dense in C(X, R”). 

Conversely, suppose now that dim(X x X)2 n, hence dim(X x 
dim(X x X) s 2 dim X = n, by hypothesis. We shall first verify the following claim: 

Assertion. There exists a pair of disjoint compacta X, , Xz c X such that dim( 
XJ = n. 

roof. Let B = { Ui}iFN be a countable basis of open sets in 
~1 f ~2 E X, there exist Ui, 'p Ui2 E at XkE Ui,y k= 
we have the following equality: 

Thus for every 
, n Ui2 = 8. The 
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where A = {(x, x) 1 x E X} is the diagonal of X. Indeed, for every (x, , x2) E 

(X x X) - A, there exist disjoint open sets I-&,, Uzc X such that ui, (1 oi, = 0 and 
xk E ui, for k = 1,2. The other inclusion in (*) is obvious since Di n oj = 0. 

Therefore, by [9], dim(X x X) = max{dim A, dim( oi X Q) 1 Ui, Uj E B}. ence 

there exist elements Ui, , Ui2 E B such that oi, n U, = 0 and dim(X x X) = 
dim( ITi, x oiZ) since dim A = dim X < dim( X x X). Let X, = oik for k = 1,2. This 

proves the assertion above. 

Apply now the “if part” of Theorem 1.2 for X = X1 and Y = X2, to obtain a pair 
of maps fi : X1 + Iw” and J$ X, + Iw” with a stable intersection. This completes the 
proof of Theorem 1.1 since we can extend the map fiI&: X, u X2+ Iw” over all of 
X (recall Iw” is an AE) thus obtaining a mapfE C(X, IR”) which cannot be approxi- 
mated by an embedding. Cl 
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