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Abstract

Drani$nikov, A.N. and D. Repovs, On unstable intersections of 2-dimensional compacta in
Euclidean 4-space, Topology and its Applications 54 (1993) 3-11.

We give an alternative proof, based on Bokstein’s theory, of the following result which was
originally proved by the authors, jointly with E.V. §éepin (and independently, by S. Spiez): Let X
and Y be 2-dimensional compact metric spaces such that dim(X X Y)= 3. Then for every ¢ > 0
and every pair of maps f: X »R* and g:Y — R* there exist maps f': X >R* and g':Y - R*
such that d(f, f')<e, d(g, g')<e and f'(X)Ng'(Y)=@.
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1. Introduction

Compacta (i.e., compact metric spaces) exhibit many properties quite unlike
those of polyhedra. One of them is that they fail to satisfy the logarithmic law for
dimension, i.e., dim( X X Y) can be strictly less than dim X + dim Y if we choose
appropriate compacta X and Y (see [1,2,11,18-20)).
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Another feature which distinguishes compacta from polyhedra was discovered
more recently by S¢epin and the authors (see [8—10]) and, independently—via a
different approach, by Spiez (see [23-25]). They proved that maps of compacta of
complementary dimensions (i.e., dim X + dim Y = n) into Euclidean n-space have
unstable intersections, i.e., their images can be made disjoint by arbitrarily small
perturbations if dim(X X Y) < n. Their proofs, although quite different, neverthe-
less both naturally split into two separate cases: when n =4 and when n > S.

The major reason for treating the 4-dimensional situation separately is the
problem with the fundamental group—the only possibly non-Abelian homotopy
group. Both sets of authors use here an elaboration of the celebrated Casson
finger moves (see e.g. {5,12]) in order to abelianize I1,.

It is the purpose of the present paper to give an alternative argument, avoiding
the use of the Casson trick, and trade geometry for algebra—by invoking instead
the classical Bokstein theory of the cohomological dimension theory for compacta
{3,7,15]. .

More precisely, we propose to give an alternative proof of the following general
position theorem for maps of compacta into R*:

Theorem 1.1. Let X and Y be 2-dimensional compacta such that dim(X X Y) = 3.
Then for every € > 0 and every pair of maps f: X — R* and g:Y — R* there exist
mapsf': X > R* and g’ : Y - R* such that d(f, f') <e, d(g, g')<e and f'(X) N
g'(Y)=4¢.

Note that there are plenty of 2-dimensional compacta X and Y such that
dim(X X Y) =3 (see e.g. [7,11,18]). The first example for X # Y was discovered in
1930 by Pontrjagin [21] and for X =Y in 1949 by Boltjanskii [4].

We also wish to point out that compacta X such that dim(X X X) =3 have
recently played an important role in geometric topology-——in the attacks on the
4-dimensional cell-like mapping problem which asks whether cell-like maps on
4-manifolds can raise dimension (see e.g. [6,16,17])—all other dimensions have
already been solved, for n < 3 in the negative and for n > 5 in the affirmative—see
the survey [16].

The preliminary version of this paper was written during the second author’s
visit to the Sterlov Mathematical Institute in 1989 (and announced in [8]), on the
basis of the long term agreement between the Slovenian Academy of Arts and
Sciences and the Russian Academy of Sciences (1986-1995). The final version was
then prepared during the visit by both authors to the University of Tsukuba in
1990. We wish to thank Professor Yukihiro Kodama for his kind hospitality.

2. Preliminaries

We shall work in the category of separable metrizable spaces and continuous
maps throughout this paper. A compactum is a compact metric space. A space X
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is said to have cohomological dimension at most n, n € NU {0}, with respect to a
group of coefficients R, c-dimz X < n if for every closed subset A € X and every
map f: A — K(R, n) of A into the Eilenberg—MacLane complex K(R, n) (see
[13] for the definition and properties of Eilenberg—MacLane complexes), there is
an extension of f over all of X. (For several equivalent versions of the definition
of c-dim ;X see [7,15] where also its properties are studied in details.)

For any m € Z, define an m-telescope T(m) (respectively m-membrane M(m))
to be the mapping cylinder (respectively mapping cone) of a degree m map
¢:S' - S'. The obvious embedding of S' into T(m) (respectively M(m)) as the
preimage of ¢ in T(m) (respectively as the image of ¢ in M(m)) will be called the
canonical embedding of S' into T(m) (respectively M(m)) and denoted by I'(T(m))
(respectively I'(M(m)). Note that M(m) is the mod m 2-dimensional Moore space
[22].

For any finite sequence of integers % = (n,,...,n,) CZ, define a finite #-tele-
scope T(#) to be the finite tower of n-telescopes T(n;), glued together in
the obvious way—via identifying homeomorphisms «;:(37(n;) —I'(T(n,))) =
I'(T(n,;, ), ie., identification of the bottom circle of 7T(n,) to the top circle of
T(n; )

T(x)=T(n) Ya, T(ny) U, """ U, T(n,).

For any infinite sequence of integers # = (n,);cn, define an infinite #-tele-
scope T(#) to be the direct limit of the direct system of finite (n,,..., n,)-tele-
scopes, 1.e.,

I'(%)= }iefg{T(nl,...,n,), incl.}.

The canonical embedding of S' into the base T(n,) of the infinite #-telescope
T(#) will be called the canonical embedding of S' and denoted by I'(T(#))
(compare {26)).

Given a subset ¥ C.% of the set of all primes 2, a sequence (p,), o Of primes
is said to be Fcomplete if all p; are elements of & and every element of &
appears in (p,); oy infinitely many times.

Let &2 c2 U {0} be any subset. Recall that the localization of Z at & is the
subset of the rationals

m
Ly = {7 € Q|for every a €, n is not divisible by a}.

For example, Z, = Q. Next, let Z .~ denote the quotient Q/Z . Finally, for any
meZ and & C Z, we say that m and & are relatively prime, (m, &) = 1, if for
every a €%/, m and a are relatively prime, i.e., (m, a) = 1.

Example 2.1. For every £ C% and every #-complete sequence # of primes, the
infinite #-telescope T(%) is the Eilenberg-MacLane complex K(Z, z), 1), where
Z =P —. In particular, T(P) = K(Q, 1) and for every prime p €, T(p, p,...)
=K(Z[1/p], 1) (see [7)).
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Let me Z and £ C2 be arbitrary and let J# be any #-complete sequence.
Suppose that Z is either the finite m-telescope T(sn), or the finite m-membrane
M(m), or the infinite #-telescope T(.#). Let L be a 2-dimensional polyhedron
with some triangulation 7. For every 2-simplex o €1, let ¢* be the 2-simplex
which is obtained by slightly pushing ¢ into int o along some collar on dg. Define
a Z-modification of L to be a CW complex L(Z) which is obtained from L by
replacing every o *, o € 7, by a copy Z_, of Z, via an identification of 3o * with the
canonical embedding I'(Z) of S! into Z:

L(Z)=(L—-(U{int0'*|0'€'r})) U (U{Z‘,IO'ET}).

Bo*=TZ o7}

The following result can be deduced from (7] (see Example 2.1):
Proposition 2.2. Suppose ¥ C.® and denote ¥ =P —~%. Let L be a 2-dimensional
polyhedron with triangulation 7 and let X be a compactum with c-dimz 5, X < 1.
Then for every F-complete sequence ¥ and for every map f: X -» L there exists a
map f: X — L(T(#)) such that:

@ FIF D) =F| YD), where %V is the 1-skeleton of T; and

(ii) for every 2-simplex o € 7, f(f o *)) C T (#Z).

Let L be a 2-dimensional polyhedron with some triangulation 7 and let D C L
be a 2-cell subpolyhedron (with the induced triangulation 7| D). Let D* Cint D
be the 2-cell which is obtained by slightly pushing D into int D along some collar
on dD. For any m € Z, define an m-grafting of L along D to be a CW complex
L(D, m) which is obtained from L by replacing D* by a copy Mp(m) of the
m-membrane M(m), via an identification of dD* with the canonical embedding
'(M(m)) of S! into M(m):

L(D, m)=(L—int D*) U Mp(m).
{3D* = (M p(m))}
The membrane M,(m) is called the grafted part of L(D, m).
The following result can also be deduced from [7] (recall that for every prime
p €, the finite p-membrane M(p) is the 2-skeleton of the Eilenberg—MacLane
complex K(Z,, 1)).

Proposition 2.3. Let L be a 2-dimensional polyhedron and let a 2-cell D CL be a
subpolyhedron of L. Suppose that X is a compactum such that dim X <2 and
c-dim, X <1, for some p €2. Then for every map f: X — L there exists a map
f: X—:L.,(D, p) such that:

G fIf~L~int D*)=f|f~"(L —int D*); and

(i) fOFYU(D*)cMy(p).

The last result in this section follows easily from [14] using duality.
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Proposition 2.4. Given m €N, there exist PL embeddings [ -(T(m), [(T(m))) -
(B*, aB*) and g :(M(m), I(M(m))) - (B* 3B*) of T(m) and M(m) into the
4-ball B* such that:

(i) The circles f(I'(T(m))) and g(I'(M(m))) are unknotted and form the Hopf
link;

G) O(B*—f(Tr(mN=2,;

(iii) T(B*-g(M(m)))=2Z and is generated by a circle y C3B* such that
k(g(Ir'(M(m))), y; Z) = 1; and

(iv) AT(m)Ng(M(m))=4§.

3. Proof of Theorem 1.1

A sequence {X}; .\ of spaces X; is said to be decreasing and properly nested if
for every i €N, X, , Cint X,. We shall need the following lemma:

Lemma 3.1. For every m € N, every subset & CP and every J-complete sequence
{p}; e there exist a decreasing and properly nested sequence {L});,, of compact
4-manifolds with boundary L;C B*, with intersection Z = N7_oL, and a collection
{R); 5o of 2-dimensional polyhedra R; C B*, such that:

(i) Ry=T(m) and for every i > 1, R, is a p-grafting of R,_, along some PL
subdisk of R;_;

(ii) for every i € N, L, is the regular neighborhood of R, in B*;

(iii) Z N aB* is an unknotted circle in 3B*; and

(iv) I(B*—-2)=Z4-®Z, for some r €N such that (r, Z)=1.

Proof. Let {¢;}; , , be a strictly monotone decreasing sequence of positive numbers
such that lim, _, .¢; = 0. Let R, CB* be the canonical embedding of T(m) into B*
(see [14]) and define L, CB* to be a regular gy-neighborhood of R, in B* with
canonical retraction 7y: Ly, — R, of L, onto R,. Choose a 2-simplex o, in R,.
Define R, ¢ B* to be a p,-grafting of R, along gy, the grafted part of which is
realized inside g '(0,) = g X D = B* (see Proposition 2.4).

Let L, c B* be a regular £,-neighborhood of R, in L,. Inductively, define for
every i > 2, R,CB* to be a p-grafting of R,_, along o;_,, for some appropriate
2-simplex o;_, in R,_,;, w;2\(0;_,), where m;_,;:L;,_, = R,_, is the canonical
projection of the regular neighborhood on its spine. Then define L, CL;_, as a
regular g-neighborhood of R; in L,_,.

Clearly, the properties (i)-(iii) hold. It therefore remains to verify (iv). We first
observe that for every i > 1,

I(B*~L)=I(B*-R,)=1Z,,

generated by a circle in B* linking R;, where r,=mp, --- p,. The inclusion
B*-L,cB*-L,,, induces a homomorphism Z,—Z,  which sends the genera-
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tor of Z, to the p,,,-multiple of the generator of Z, . Indeed, B*—L,,, is
homotopy equivalent to (B* — L,) U ((o; X D;) = M(p, . )) and attaching ((o; X D;)
- M(p;, ) to (B*~L,) divides the generator of Z, by p,,, (see Proposition
2.4(ii)). It therefore remains to verify the following algebraic fact:

Lemma 3.2. Let {p};cn be a F-complete sequence of prime numbers, for some ¥

and let
LN 8 [} 8y
7 7 N Zmz > 2, — -

nty, ) 3

be a 5direct sequence of groups such that the bonding homomorphisms
z, — Z,, . send the generator e; of Z,, 10 p;.\€,,, where my=m and for
everyiz 1, m;=mp,p, - p;. Then

limiEN {Zm,’ 51} = ( @ Z(pi,iEN) ® Z”

where r € Z is such that (r, {p;};cp) = L.

Proof. For every i>1, Z,, =( @ ,c 4 Z,e00)®Z, for some r&N such that
(r, &) = 1. Clearly, then the restriction of the homomorphism

Si=¢;+¥;: 2, — me
to
5,- |Zp‘q(+;f,~ﬂ.n : Zp:_riql.l) - Zp'qm,-,,l.i)ﬂ
is the inclusion homomorphism. Consequently,
(&) an(q.n) ez, = ( ) ( lim; o quq‘n)) ez,

qEX qEX

lim; <y

=

n

z )ea z,
(q?z {af”

= (,,?;,Q/Z““) 0z,

=(Q/Z) L,
=7.,-97Z,. (]

Proof of Theorem 1.1. Without losing generality (compare [9]) we may assume that
M=f(X) and N=g(Y) are 2-dimensional subpolyhedra in R* and that M
intersects N transversely, i.e., for some triangulations 7,, and 7, of M and N,
respectively, we have that

D) P nry=1,0nrP =46,

(2) )N 1, consists of finitely many double points {¢,,..., t,} where for every i,
L€Eo,NW,=6,=d;, 0,ETy, w;ETy,and t;#¢; for all i #].

Suppose that c-dimg X = 1 (otherwise c-dimg Y = 1).

Step 1. Let #=({p EP | c-diml(p)X= 1}, let Z =9 —% and choose an Z-com-
plete sequence #. Let M be a T(.#)-modification of M. Apply Proposition 2.2 to
find a map f': X — M such that
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Q) fUfF P =F1f (4, and

(4) for every 2-simplex g € 7,,, f'(f (a*NC T (Z).

Step 2. Since X, =f"'(o*) is compact, so is f'(X,) and thus it lies in some
compact part of M which is a finite telescope. Since every finite telescope is
homotopy equivalent to some m-telescope, f'(X,) lies in a compact polyhedron
M_c R*, homotopy equivalent to a T(m)-telescope, for some m. This means that
there exists an extension f': X, —» M, of the restriction f|f~'(30).

Step 3. For every j€{1,...,s}, there exists a closed PL 4-dimensional ball
B} cR* of radius < ymesh(r,,, 7} such that

(5) for every j#1, B;NB,=§;

6) d0; U dw; C3B;; :

(7 B;NnM=g; and

(8 BNN=w,

Let ={p E.‘ZIc-dimzp X = 1}. For every j, apply Lemma 3.1 with m, .7,
and Bj as above, to get a decreasing, properly nested sequence {Lj',-},->O of
compact 4-manifolds with boundary L,; € B}’ with intersection Z; = N, oL, such
that

(9 II(B;—Z)=2Z 4= Z,, for some r; € N such that (r;,, #)=1and Z;N 3B}
= 80}-.

Since there is an extension f': f™'(g;) > M_ of f | f~'(30;) - 30; there exists
an extension f; : f~'(o;) > R; cL; of f| f"(acrj). Proposition 2.3 implies that
there exists an extension f;;: f~'(o;) = R;;cL;; for every i.

Step 4. We shall first prove two assertions:

Assertion 1. c-dim, Y<1.
Proof. For every p € Z— %, we have that
3 > c-dim, (X XY)
=c-dim; X+c-dim, Y
> 2 + c¢-dim z, Y.
Assertion 2. c-dim,,_ Y <1

Proof. For every p €%, c-dim, - Y=1 for otherwise the Bokitein product
theorem and one of his inequalities [3,7,15] would imply that

¢-dim; (XXY)=c-dim z,, X tc-dim, Y
22+cdim, Y>4
which is a contradiction.

Step 5. Attach to B;—Z; cells of dimension greater than 2 to obtain the
Eilenberg-Maclane complex K(G, 1), where G is the group G =Z 4- & Z,',. It
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follows by Assertions 1 and 2 that c¢-dim, Y = 1. Therefore, there exists an
extension of the map

glg™'(0w,): 87 (0w,) = B, — Z,CK(G. 1)

to the map g;: &~ "(@;) » K(G, 1. Since dim g~ '(w,) <2, we can push Im g; into
the 2-skeleton B, — Z; of K(G, 1).

Step 6. Define g:Y — B* to be the map g; on every g (), 1 <j <s, and g
elsewhere. Clearly, for every j€({l,...,s}, g(Y)NB,CB;—~Z,. Since Y is com-
pact, there exists for every j €{l,..., s}, an integer n; such that Lj‘,,l_ﬂg(Y) =§.
Consider the map f;, : f~ (o) > L;,,.

Step 7. Define f: X = R* to be the map f;,, on every f~'(0;) and f elsewhere.
Then the maps f and g have disjoint images and they are e-close to f and g,
respectively, where ¢ is the mesh of 7,, and 7,. Since the choice of 7,, and 7, was
arbitrary, this completes the proof of the theorem. O

References

[1] P.S. Aleksandrov, Introduction to Homological Dimension Theory (Nauka, Moskow, 1975) (in
Russian).

[2] P.S. Aleksandrov and B.A. Pasynkov, Introduction to Dimension Theory (Nauka, Moscow, 1973)
(in Russian).

[3] M.F. Bokstein, On homology invariants of topological spaces I, Trudy Moskov. Mat. Obshch. 5§
(1956) 3-80 (in Russian); also: Amer. Math. Soc. Transl. 11 (2) (1959) 173-385 (in English).

[4] V.G. Boltjanskii, An example of a two dimensional compactum whose topological square has
dimension equal to three, Dokl. Akad. Nauk SSSR 67 (4) (1949) 597-599 (in Russian); also: Amer.
Math. Soc. Transl. 48 (1951) 3-6 (in English).

{5) A. Casson, Three lectures on new infinite construction in 4-dimensional manifolds, in: L. Guillou
and A. Marin, eds., A la Recherche de la Topologie Perdue (Birkhaduser, Boston, 1986) 201-244.

[6) R.J. Daverman, Hereditarily aspherical compacta and cell-like maps, Topology Appl. 41 (1991)
247-254.

[7] A.N. DraniSnikov, Homological dimension theory, Uspekhi Mat. Nauk 43 (4) (1988) 11-55 (in
Russian); also: Russian Math. Surveys 43 (4) (1988) 11-63 (in English).

{8] AN. DraniSnikov and D. Repovi, On unstable intersections of 2-dimensional compacta in
Euclidean 4-space, Abstracts Amer. Math. Soc. 10 (1989) 411.

[9) A.N. Dranisnikov, D. Repovi and E.V, Séepin, On intersection of compacta of complementary
dimension in Euclidean space, Topology Appl. 38 (1991) 237-253.

{10] A.N. Drani¥nikov, D. Repovs and E.V. §Eepin, On intersections of compacta in Euclidean space:
the metastable case, Tsukuba J. Math., to appear.

[11] R. Engelking, Dimension Theory (North-Holland, Amsterdam, 1978).

{12] M.H. Freedman and R.C. Kirby, Topology of 4-Manifolds (Princeton University Press, Princeton,
NJ, 1989).

{13] D.B. Fuks, Eilenberg—MacLane complexes, Uspekhi Mat. Nauk 21 (5) (1966) 213-215 (in Russian),
also: Russian Math. Surveys 21 (5) (1966) 205-207 (in English).

[14] J. Krasinkiewicz and K. Lorentz, Disjoint membranes in cubes, Bull. Polish Acad. Sci. Math. 36
(1988) 397-402.

[15] V.I. Kuz’minov, Homological dimension theory, Uspekhi Mat. Nauk 23 (5) (1968) 3-49 (in
Russian); also: Russian Math. Surveys 23 (5) (1968) 1-45 (in English).

[16] W.J.R. Mitchell and D. Repovs, The topology of cell-like mappings, in: Proceedings Conference on
Differential Geometry and Topology, Cala Gonone, 1988, Suppl. Rend. Sem. Fac. Sci. Univ.
Cagliari 58 (1988) 265-300.




Unstable intersections 11

[17] WJ.R. Mitchell, D. Repov§ and E.V. §c':epin, On l-cycles and the finite dimensionality of
homology 4-manifolds, Topology 31 (1992) 605-623.

{18) K. Nagami, Dimension Theory (Academic Press, New York, 1970).

[19] J.-1. Nagata, Modern Dimension Theory (North-Holland, Amsterdam, 1965).

[20} A.R. Pears, Dimension Theory of General Spaces (Cambridge University Press, Cambridge. 1975).

{21] L.S. Pontrjagin, Sur une hypothése fondamentale de la théorie de la dimension, C.R. Acad. Sci.
Paris 190 (1930) 1105-1107.

[22} E.H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).

[23] S. Spiez, Imbeddings in R2™ of m-dimensional compacta with dim(X X Y )< 2m. Fund. Math. 134
(1990) 105-115.

[24] S. Spiez. The structure of compacta satisfying dim(X X X)< 2 dim X, Fund. Math. 135 (1990)
127-145.

[25] S. Spiez, On pairs of compacta with dim(X XY)<dim X +dim Y, Fund. Math. 135 (1990)
213-222.

{26] D. Sullivan, Geometric Topology, Part I: Localization, Periodicity and Galois Symmetry (MIT,
Cambridge, MA, 1970).




