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Abstract

We present a technique for construction of infinite-dimensional compacta with given extensional
dimension. We then apply this technique to construct some examples of compact metric spaces for
which the equivalenc&t M (G, n) < XtK (G, n) fails to be true for some torsion Abelian groups
G andn > 1.0 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We shall work in the category of locally finite countable CW complexes and continuous
maps. Recall that thikuratowskinotationXtY denotes that every extension problem on
X has asolution i.e., that for every closed subsétc X and every magf: A — Y there
exists an extensiorf : X — Y of f over X [22, §VII.53.1]. This notation allows one to
define very quickly the notion of theoveringdimension [19] (respectivelyohomological
dimension [5,13], with respect to any Abelian gratpas follows: For every integer > 0
and every compacturli, dimX <n < Xt 5" (respectively dimp X <n < XtK(G, n)),
where S" is the standard:-sphere (respectivelX (G, n) is the Eilenberg—MacLane
complex [30, §V.7]).

- Corresponding author.

E-mail addressesdranish@math.ufl.edu (A.N. Dranishnikov), dusan.repovs@fmf.uni-lj.si (D. Repovs).

1The first author was partially supported by the National Science Foundation grant No. DMS-9696238. The
second author was partially supported by the Ministry for Science and Technology of the Republic of Slovenia
grants No. J1-0885-0101-98 and SLO-US 0020.

0166-8641/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PI: S0166-8641(99)00219-9



344 AN. Dranishnikov, D. Repovs / Topology and its Applications 111 (2001) 343-353

In the 1930s Alexandroff [1,2] proved a fundamental result on homological dimension,
which in the modern language reads as follows:

Theorem 1.1 (P.S. Alexandroff)For every finite-dimensional compactuxy the follow-
ing equality holds

dimX =dimy X.

In the above notation this can be formulated as the equival®n® < Xt K (Z,n).
Since then-sphereS” is a Moore space [30, 8VII.7] of the typ¥ (Z, n), the equivalence
XtM(G,n) & XtK(G,n) would be a perfect extension of Theorem 1.1 to arbitrary
Abelian groups. We shall assume throughout this paper that a Moore 8p@eéen) is
simply connected ifi > 1, and that it has an Abelian fundamental group 4 1.

In the early 1990s the first author [8] proved this equivalence under the following
restrictions:

Theorem 1.2 (A.N. Dranishnikov) For every integen > 1 and every finite-dimensional
compactun¥, the following equivalence holds

XtM(G,n) < XTK(G,n).

In the present paper we investigate whether these restrictions can be omitted. First we
note that the finite-dimensionality condition cannot be droppeddes Z andn > 1
(see [5]). Miyata [26] observed that this also holds for all finite groups.i#erl the
equality M(Z,1) = K(Z,1) = S holds. This equality also holds for all torsion free
Abelian groupsG. However, for torsion groups this is false [26]. As it was proved in [8],
the implicationXt M (G, n) = Xt K (G, n) always holds.

Below we state our results. Details and necessary preliminaries will be given later on in
the paper. Our main result (proved in Section 3) is a theorem which allows one to construct
compacta with different extension properties—it is an extension of Theorem 2.4 from our
earlier paper [14] to truncated cohomologies.

Theorem 1.3. Let P and K be simplicial complexes and assume tRais countable. Let
T* be a truncated continuous cohomology theory such THgtP) # 0, for somen < —1
andTK(K) =0, for all k < n. Then there exist a compactusnsuch thate — dimX < K,
and aT"—essential mag : X — P.

In Section 4 we apply our main result to show tid{Z,, 1) and K (Z,, 1) are not
extensionally equivalent in the class of all compacta, including the infinite-dimensional
ones (see also [26] and [24] fpr= 2):

Theorem 1.4.
(1) For every primep, there exists an infinite-dimensional compact¥rsuch that
dimZp X =1ande —dimX > M(Z,,1).
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(2) There exists a compactumsuch thate — dimY < RP*> ande — dimY > RP™,
for all integersm > 0.

2. On constructions of compacta having different cohomological and extensional
dimensions

In this section it will be convenient to use the notation dim X < K for Xt K (see [9]
or [12]) which readextensional dimension &f does not exceed .

Construction of compacta with different cohomological and extensional dimensions
is presently a very active area of research. Here we outline three different approaches
to the construction of such compacta. For convenience we give them the following
namesCombinatorial approachGame with infinityand Splitting the spaceAll three are
important in the sense that there are problems where one approach is more suitable than
the others.

Combinatorial approach. This approach was first used in the construction [27] of
Pontryagin surfaced.e., 2-dimensional compacta with rational dimension one and 1-di-
mensional with respect t@, for all but one primep. The idea of the construction is to
start by a certain (finite) polyhedron, replace all of its simplices (in certain dimensions) by
some building blocks, and then iterate this procedure infinitely many times. The resulting
inverse limit space will usually have some exotic properties, depending on the properties
of the building blocks. In the simplest Pontryagin’'s example one starts by the 2-sphere and
the building block the Mébius band. Since the boundary of the 2-simplex is homeomorphic
to the boundary of the M&bius band, it is easy to make replacements.

In the case of higher-dimensional simplicial complexes, finding proper building blocks
is not so easy. Some interesting blocks were found by Boltyanskij [3], Kodama [20,
21] and Kuzminov [23]. Eventually, the first author [5] found the family of blocks
which provides the solution to the Bockstein—Boltyanskij realization problem in co-
homological dimension theory. All the blocks in [5] have in common certain features
which first appeared in Walsh’s proof [29] of the Edwards resolution theorem [18].
Having this in mind, Dydak and the first author extracted the axioms for the build-
ing blocks and named them tledwards—Walsh modificatiofresolution) of a simplex
(cf.[11,13,17]).

Game with infinity. This approach has a strong flavor of general topology. An exotic
compactum is here also constructed as the limit space of an inverse segﬂgn;fé L
However, the spaceX; are not necessarily as nice as above. On any compact metric
space there exists a countable basis of extension problems to a given countable complex
K. We may also assume that every one of these problems factors through some
extension problem orX;. If we can construct an inverse sequence in such a way that
all extension problems oix;, for all i are killed by passing to the limit, then the

limit will be a compactum with desired properties. It is reasonable to require here
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that the projectionql.”rl kills one given extension problem oK;, i.e., for a given

f:A — K, where A is a closed subset oX;, the mapf o qf“ is extendable over
Xit+1. In this way we produce infinitely many new extension problemsXon. It

seems that killing one extension problem and making infinitely many new ones will
not make any progress in the task of getting rid of the unsolvable extension problems.
But this is the standard game with infinity—like in the classical story about the
hotel with infinitely many rooms [28]. So one can succeed—the correct strategy is to
properly enumerate the extension problems. This approach first appeared in [11] (see
also [14]).

Splitting the space. Here the idea is to produce an exotic space by splitting a nice
space likeR" into exotic nuclear pieces. This approach appeared during the first author’s
work [10] on the mapping intersection problem (MIP). The MIP was reduced in [15]
to a problem of imbedding a given cohomological dimension type intdémensional
Euclidean space. The clue to this problem was found in a generalization of the Urysohn
Splitting theorem, which says that everydimensional compactum can be presented as
the union ofn + 1 zero-dimensional spaces. The generalization of this, given in [10]
says that if a join producK (Gi,n1) * --- x* K(Gg,ng) is (n — 1)-connected then any
n-dimensional compactum can be presented as the ji&ip, where ding;, X; <n;. We

note that the Urysohn Splitting theorem follows from the fact that the join productat
zero-dimensional spheres(is — 1)-connected.

All approaches above give compacta wih- dimX < K, for some countable&,
which does not mean much unless we additionally requiredhatim X > L, for some
complexL. This property can be achieved by means of homology or cohomology. In [5]
classical cohomology anil -theory were used. A breakthrough was made by Dydak and
Walsh—they introduced truncated cohomology for this purpose [16] and used it in the
combinatorial approach. As it was noted in [11], truncated cohomology can also be used in
the game with infinity approach. Below we formulate a corresponding result (Theorem 1.3)
which will be proved in Section 3 (for the most recent development see [24]).

We recall that a@runcated spectruns a sequence of pointed spades- {E;}, i <0,
such thate; 1 = 2 E;. Thus, any truncated spectrum is generated by the spgc€he
lower half of every$2-spectrum is an example of a truncated spectrum. tffinecated
cohomologyof a given space with coefficients in a given truncated spectrdii X ; E)
is the set of pointed homotopy classes of mappingsXofo E;. Note that7!(X) is
a group, fori < 0 and it is an Abelian group, fof < —1. Truncated cohomologies
possess many features of a generalized cohomology. For everyymép— Y there is
the induced homomorphism & 0) f*:T!(Y) — T'(X). Homotopic maps induce the
same homomorphism and a null-homotopic map induces zero homomorphism. There is
the natural Mayer—Vietoris exact sequence:

o > T (AUB) > T (A) xT"(B) > T"(ANB) -> T"*Y(AUB) — - .-

of groups, forr < —1 and Abelian groups, for < —2. We call a truncated homology
T* continuousif for every direct limit of finite CW-complexed. =lim{L;; A§+1} the
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following formula holdsT*(L) = lim T*(L;), for k < 0. We note that the Milnor theorem
<~
holds for truncated cohomologies:

0— imHT* 1L} — T4(L) > im{T¥ (L)} — 0.

Hence, ifT*(M) is a finite group for every finite compleX and everyk < —1, then by
the Mittag-Leffler conditionI* must be continuous. We can now restate our first main
result:

Theorem 2.1. Let P and K be simplicial complexes and assume tRats countable. Let
T* be a truncated continuous cohomology theory such H&tP) # 0, for somen < —1
andTk(K) =0, for all k < n. Then there exist a compactuthsuch thate — dimX < K,
and aT"-essential magy : X — P.

3. Proof of Theorem 1.3

Definition 3.1. An extension problemA, «) on a topological spack isamapx: A — K
defined on a closed subsétc X with the range a CW-complex (or ANE). golutionof an
extension probleniA, «) is a continuous extensien: X — K of a mapx. A resolutionof

an extension probleri, «) is a mapf : Y — X such that the induced extension problem
F YA, @) =(f~1(A), a0 f|...) onY has a solution.

Because of the Homotopy extension theorem, the solvability of extension problem
(A, ) is an invariant of the homotopy class®f We call two extension problen(g, «)
and(A, B) equivalenif « is homotopictgs. A family of extension problem8A;, ai)}ics
forms abasisif for every extension problemB, 8), there isi € J such thatB c A; and
the restrictiorny; |  is homotopic tos.

In view of the Homotopy extension theorem the following proposition is obvious:

Proposition 3.2. Suppose that a map : Y — X resolves all extension problems ¢h
from a given basi$(A;, «;)}ics. Thenf resolves all extension problems @n

Proposition 3.3. Let K be any CW-complex anxl the limit space of the inverse sequence
of compactd X, ¢ T1}. Let{(A¥, a¥)}ic,, be a basis of extension problems, for eviery

Then
[@)~HAN of) |k eN, i e Ji)

is a basis of extension problems &nwhereg;°: X — X; denotes the infinite projection
in the inverse sequence.

Proof. SinceK € ANE, there exist for every extension problgm, o) on X, a number
k and a mapB:q;°(A) — K such thatg o g2°|4 is homotopic tox. Take a problem
(A%, of) serving for (g°(A), B) as a majorational’.‘|q]§>o<A) ~ B. Then the extension
problem(g®) (A¥, o) is a majoration foxA, ). O
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The following lemma was proved in [14, Lemma 2.2]:

Lemma 3.4. For every extension problemd,«: A — K) on X there is a resolution
g:Y — X such that every preimage 1(x) is either a point or it is homeomorphic t.
If additionally, X and K are simplicial complexesi is a subcomplex and is a simplicial
map, then the resolving mgpcan be chosen to be simplicial.

Proposition 3.5. Let X be the limit space of an inverse sequer{(Xe(;q,’j“} and let

{(Af, Ollk)}jejk be a basis of extension problems for edctAssume thag° resolves all
problems(A¥, o) for all k. Thene — dimX < K.

Proof. According to Proposition 3.3¥ has a basis of solvable extension problems. Then
by Proposition 3.2 applied to the identity map, all extension probleni$ bave solutions.
This means that —dimX < K. 0O

Remark. Ifamapf:Y — X resolves some extension problém, «) on X, then for any
mapg: Z — Y, the compositiory o g resolveg A, «).

Lemma 3.6. Letg: L — M be a simplicial map onto a finite-dimensional compléxand
let 7* be a truncated cohomology theory such tiAtg—1(x)) = 0, for all k < n. Theng
induces an isomorphisgt : 7% (M) — T*(L), for k < n and a monomorphism, fdr=n.

Proof. We proceed by induction om = dimM. If dimM = 0, then lemma holds.
Let dmM = m > 0. We denote byA a regular neighborhood iM of the (m — 1)-
dimensional skeleto/ 1. Since the mag:L — M is simplicial, g~(A) admits

a deformation retraction ontg~1(M~b). By the inductive assumption, lemma holds
for g|...: g {(M™D)y - M™=D_ Hence, the conclusion of the lemma holds for
gl...:g71A) — A.

We defineB = M \ IntA, i.e., B is the union of disjointn-dimensional PL-cells,
B = B;. Sinceg is simplicial, g~(B;) ~ g~1(c;) x B;, wherec; € B;. Therefore the
conclusion of lemma holds fqq] ... :¢g~*(B) — B. Note that diniA N B) =m — 1 and
hence lemma holds fai] ... : g (AN B) - AN B.

The Mayer-Vietoris sequence for the trigdl, B, M) produces the following diagram:

THA'NB)y<—TKAY e THB) <~—THL)~—TFYANB)~—
T | /| T
TKHANB) <=——T*A) d THB)<=— T M)<——T+* (AN B)~—

HereA’' = g~1(A) and B’ = ¢g~1(B). The Five lemma implies that* is an isomorphism
for k < n. The mono-version of the Five lemma implies tlgétis a monomorphism for
k=n. O

Proof of Theorem 1.3. SinceT”(P) # 0, there exists a finite subcompl@t c P such
that the inclusion ig""*-essential. This follows by continuity af*. We construciX as the
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limit space of an inverse sequence of polyhefdig q,’j*l}, wheref : X — P will be the
composition ofz7° and the inclusionP, C P. We construct this sequence by induction on
k such that:
(1) For everyk, there is a fixed countable basis of extension problens- {(Af?, af)}
on Py.
(2) For everyk, some nonzero elemeat € T"(Py) is fixed such tha(q,’j“)*(ak) =
a1, for all k.
(3) For every problenﬁAf.‘, af) e Ak, there isj > k such tha'rq,{ is the corresponding
resolution.
If we manage to construct such a sequence, then by Propositior 3.8imX < K.
Property (2) will then imply thalf is 7"-essential. Thus, Theorem 1.3 will be proved.

Enumerate all prime numbers=2 p1 < p2 < p3 < -+ < pr < ---. We fix some
nonzero element; € T*(P1) which comes from an elemeate 7" (P). Denote byr;

a triangulation onP; and by g% the kth barycentric subdivision of. There are only
countably many subpolyhedra iPy with respect to all subdivisiong*z. Since the set
of homotopy classe$L, K] is countable, we have only countably many inequivalent
extension problemsgA, o) defined on these subpolyhedra, for every comgaddenote
the set of all these extension problers, «) on P; with simplicial mapsa by A%
Since K € ANE, it easy to show thatd® forms a basis of extension problems #y.

We enumerate elements gf* by all powers of 2. LetV : A — N be the enumeration
function.

Consider an extension problem fro#t having number one in our list and resolve it by a
simplicial mapg : L — P; by means of Lemma 3.4. By Lemma 38,: T"(P1) — T"(L)
is @ monomorphism. Le¢*(a1) = a5. Since a truncated cohomolog@y is continuous,
there is a finite subcompleR, c L and a nonzero elemenp € 7" (P2) which comes
from a/, under the inclusion homomorphism. We define the bonding mfap?z — P1 as
the restrictionf | p, of f onto P». Then the condition (2) hold$'qf)*(a1) = ap.

Define a countable basi4? = {(A2, «?)} of extension problems such that evetyis a
subcomplex ofP, with respect to iterated barycentric subdivision of the triangulation on
P,. Enumerate elements of? by all numbers of the form*®' with k > 0 and! > 0. Lift
all the problems from the list* to a spaceP,, i.e., considetg?)~1(A%). Thus the family
(g%)~1(AY) U A? is enumerated by all numbers of the forfi82 Let

N:(g®»tAHu A2 >N

be the enumeration function. Now consider the extension problem having number 2 in the
updated list and apply the entire procedure described above to ahtditc.

Thus, all problems ind* will be enumerated by numbers of the fopifi p2 - - - pit with
Iy > 0. Sincek < px, we havek € N((g5) 1AM U (g5)~1(A?) U--- U A¥). Hence we can
keep going, for anyk. As the result of this construction we have that if a probte&h af)
has numbek, then/ < k and the problem is resolved b§?+1. Thus, the conditions (1)—(3)
hold. O
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4. Proof of Theorem 1.4

We consider the truncated cohomolo@y generated by the mapping spate =
(SHM», whereM, = M(Z,,1) is a Moore space of the typ&.,,1) and $" is then-
dimensional sphere.

Lemma 4.1. The truncated cohomology thedfy is continuous.
For the proof we need the following proposition:

Proposition 4.2. Letv, : St — S be a map of degrep. Then the magf = v, Aid: S A
M, — S* A M, is null-homotopic.

Proof. The spaces® A M, is the suspensio® M, of the space,, and it can be defined
as the quotient space of a mapB2 — XM,. Temporarily we denote a fixed map of
degreep between 2-spheres hy, and we denote the identity map on the 2-sphere by 1.
Let C, denote the mapping cone of a mapX — Y, i.e.,C, = CongX) U, Y. Consider
the following commutative diagram:

§2—>§2—>C1
R
§2—5>=52—=Cp
P

§$2—5>52—=Cp

Here, the mapping con@, is homeomorphic to the 3-bali® andC, is homeomorphic to
XM, . First we note that the mapis homotopic to the map, A id. Then we show thag
has aliftg’: XM, — B3 with respect tdi. In fact, g’ is defined by the following diagram:

§2—>=§2——>C1

N

§$2—5=52—=Cp
SinceB3 is contractibleg’ is null-homotopic and hengeis null-homotopic. O

Proof of Lemma 4.1. We show that every element of the groWﬁ(L) has orderp for

k < 0. Indeed,T{(L) = [L, 27*(S")Mr] = [ZM,, (s)* " "L]. For any spaceV and
any element € [¥ M), N1, represented by a map: XM, — N, the elementpa is
represented by a map o (v, Aid) and it is homotopic to zero, by virtue of Proposi-
tion 4.2. Note thaf's (L) = [S¥ A L A M), §"]. When the complex. is finite, this group
is finitely generated. Hence in the casecof —1, the groupT,’,‘(L) of any finite complex
L is finite. As we have already observed, this suffices for the continuity.
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Proposition 4.3. For every integek < 0, the following equality holds
k 1
T,(K(Z[;].1))=0.
Proof. We can represerﬂ’(Z[%], 1) as the direct limit of complexes;, where eacli; is
homotopy equivalent to the circl¢* and every bonding mag : L; — L; .1 is homotopy
equivalent to a map of degrgeof S* to itself. Then

75 (K (2[}]. 1)) = [im{Li. &), 2*(s")"r]
= [(IiLn{Ll-, gD AM,, 285" = [I@{Li AM,, & Aid), 255"

Consider a bondingmap Aid:L; AM, — L;41 A M,. This map is homotopy equiva-
lent to the map, Aid and hence it is homotopically trivial, by Proposition 4.2. Therefore
the space liiL; A M, & A id} is homotopically trivial. Henc@,’,‘(K(Z[%], 1)=0. O

—

We also need the following result of Miller [25] (Sullivan conjecture):

Theorem 4.4 (H. Miller). Let K be a finite-dimensional CW-complex amé finite group.
Then the mapping spadeX ™1 is weakly homotopy equivalent to the point.

Proposition 4.5. For every integek, the following equality holds
TY(K(Zp. 1)) =0.

Proof. We note that by Theorem 4.4,
k
TY(K(Zp. 1)) = [K(Zp. 1), (SH> ] =[Z*M,, (sHK P D] =0

so the assertion follows. O

Proof of Theorem 1.4.(1) We takeT* = T;7 for n = 7, and defineP = XM, and
K=K(Z, 1)V K(Z[%], 1). Note that

T2(EM)) = [¥M,, 24SHM]=[ZM, A S? A M, ']
= [Z3M, AM,, S| = H'(2°M, A M,) #0.
By Propositions 4.2 and 4.4 we ha¥é(K) = 0, for all k. We now apply Theorem 1.3
to obtain a compactu¥ such that
dimZp X<1l and dimyy,X<1

and to get an essentialmgp X — Y M,,.

LetA = f*l(Mp) whereM,, is embedded irP as the equator. Then the mgips : A —
M, does not have any extension (otherwise an extengiwould be null-homotopic as a
map to P and homotopic tof). Hencee — dimX > M(Z,, 1). Since for 2-dimensional
compacta the inequality d'm;X < 1 impliese — dimX < M(Zp, 1), we have that
dimX > 2. The short exact sequence

O—)Z—)Z[%]—)Zpoo—)o
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and Bockstein’s inequality dimw X <dimgz, X imply that diny, X < 2. Finally, Theo-
rem 1.1 implies thak is infinite-dimensional.

(2) For a givenmn, we takeT* =T forn =m + 5 andP = YRP™ andK = RP.
Then

T~2(P)=[XZ3RP™ ARP?, §"t5] = H"5(Z°RP™ ARP?) £0.

By Theorem 1.3 we obtain a compactuxij, such thate — dimX,, < RP* ande —
dimX,, > RP™. Finally, we define¥ to be the one-point compactification of the disjoint
unionofallX,,. O
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