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Let M be closed (i. e. compact, connected and having no boundary) topological
n-manifold (n¢N) and let  be a (finite) open covering of M. It was shown by Ed-
wards a. Kirby [ (1.3) that every isotopy H:MXI—-M of M (i.e. His a
continuous mapping and for every £€/=[0, 1], the restriction A |(Mx{t}): (MX{t})—M
is a homeomorphism) can be decomposed into a finite collection of isotopies H=H,,
... HyH,, where each H,: Mx /- M is supported by some element of the covering %
(i. e. Hy|(M—U,)x{¢t}) is the identity map for some U,¢%). That is — given any
two isotopic homeomorphisms f, g: M—M, f and g are isotopic via arbitrarily small
moves.

In 1979 R. C. Lacher asked the following question: Suppose that, in addition, ele-
ments of % are topological n-cells and that f and g are %-close, i. e. that for every
X €M, there is an element of the covering U.¢# such that {f(x), g(x)}=U,. Is it
then possible to isotope f to g via an tsotopy H: MxI—M whose moves are. not
only small but are also #-bounded (i. e. / has the following properties: (i) H|(M
X{0h)=f; (i) H|(MXx{l})=g; and (iii) for every x¢M, there is an element of the
covering U, €% such that H{x}x/)=U,)?

In this paper we answer this question in dimensions 1 and 2. We construct an
example in each dimension of a homeomorphism z: M—M which is isotopic to the
identity and is %-close to the identity, but there is no isotopy H: Mx/—M from A
to the identity which would be %-bounded.

The question of R. C. Lacher remains unanswered in higher dimensions. [t is quite
possible that our construction of the two-dimensional example on M=T2=S!'XS' can
be generalized to the n-dimensional torus 7"=8'X ... XS8' (n=3), by appropriate
modifications of % and 4. This would confirm our expectations that the answer should
be negative in all dimensions. Finally, an analogous question can be asked for topolo-
gical manifolds with boundary, where one should assume, in addition, that the maps
(f, & H) are fixed on the boundary of M

The I-Dimensional Example. Let M ={e?|0<£{<2r} and define an open covering
w of M by 1-cells

U;=S8'—{p,} and U,=S"'—{ps},
where p;=1 and py=i. Let h: M—M be the homeomorphism given by

k(elf)=g‘(!+"2‘), for every £¢ [0, 2r).



Clearly, & is %-close to the identity and H,: MXI—M, givén by

Hy(e?, s):ei (“T), for every (¢, s)€[0, 2rn)x/

is an isotopy from the identity to A.

We now demonstrate that there can be no isotopy H of M from the identity to
i, which would also be #-bounded. Suppose on the contrary that such an /A did exist.
Let A,=H({p,}x1I), k=1, 2, be the paths of points p, under such an isotopy H.Con-
sider the A,s in MX/I=the image of the homeomorphism G: MXI—MXI, given by

G(x, £)=(H(x, t), t), for every (x, £)¢ MX L

Let By=h(p)XIc=G(MXI), k=1, 2. Assume that we are in the PL category and that
all orientations are induced by the fixed one on M. Let n(k)= (A4, B;_,), k=1, 2,
be the integral intersection number [2]; p. 68 of the arcs A4, B;_,. Clearly,

n(l).n(2)=—1

since each A, lies in Us_, X /. However, the restriction G|(DX[I): DXI— MXI,
where ’

D:{e” 0 st< —g}

yields a homotopy in (M1, MXadl) from (4,, 04,) to (A, 0A,), implying that n(l)
=n(2). This contradiction shows that / cannot exist.
The 2-Dimensional Example. Let M be the 2-torus

M={r(u, v)¢R?*|0=u<2r, O=v<2n}
where
r(u, v)=((b—acosu)cosv, (b—acosu)sinv, asin u)

and 0<a<b. Let

(u, v)| (4, V)€
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Ve = {r(u v)|(u, v)¢
and define the open cover #={U,|1=k=<10} by
V,UA(V,); 1=<k=4
Uk: Vk_iu.&ﬁl (Vk—i); 5:*;k£8
Vit 9=k=10
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Finally, let # M-—M be given by

h(;(u, ) =_r"(u. u+v), for every (#, v)¢€[0, 2n)x[0, 2nr).

Clearly, the elements of % are open 2-cells and M= 0 U,

Assertion 1. For every x¢M therc is an index k¢{l, 2,..., 10} such that
{x, A(}=U

Proof. Let x¢ M. Then x¢V, for some 2¢€{l,2,..., 6}. If | <k=<4 then {x, A(x)}
U, So assume that £=5,6. Then either :

h(x)e V, hence {x, A(x)}c Uy
or

h(x) eV, for some m¢{2k—8, 2k—9} hence {x, A(x)} =U s

Assertion 2. % is isotopic to the identity map.
Proof. Let H: MX/—M be given by

H(-;(u, ), t):?(u, tu+wv), for every ;(u. v)¢M and £€1,

Then H is an ambient isotopy from H|MX{0}=id, to H|Mx{l}=h.
Assertion 3. There is no isotopy of M from id, to £ which would be %-bounded.
Proof. Suppose on the contrary that there was such an isotopy G: MX/—-M.
Consider the arc

C={r(u, ©)|uc|0, 2r], v=0}.

Then 0C={p,, pa}, where p,=r(0, 0) and p,=r(m, 0).By hypothesis, each arc 4;=G
{p}xD), j=1, 2, lies in some 2-cell Uiy, i(/)€{l, 2,..., 10}. Since D=G(CX{l}) is
isotopic to C, it follows that D is homotopic to C rel{p,, p,}. Therefore, the loop
D .C' is homotopically trivial in M. But D.C~' is one of the two generators of
n(M)=(u, B|lapa—1p~) [3]; (IIl. 8. 12.) hence nontrivial. This contradiction shows that
such G cannot exist.
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