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Donéo DIMOVSKI (*) () (3) - Dusan REPOVS (*) ()

On Homogeneity of Compacta
in Manifolds (**).

Abstract. - We introduce the concept of CAT homogenezty (CAT = TOP,
PL, DIFF) for an n-dimensional compactum N ¢ M in an m-dimensional
CAT manifold M, n < m: N i3 said to be CAT homogeneous in M if for every
two points x,y e N there is a CAT isomorphism h: M — M such that
MN) ¢ N and k(x) = y. Results: 1) The image of a continuous, locally one-to-
one map f: N - M of a TOP n-manifold N in a TOP m-manifold M, n < m,
which is TOP homogeneous, is a TOP n-submanifold of M and, moreover,
f: N = f(N) is a covering map. 2) If N is a CAT n-submanifold of a CAT m-
manifold M, n < m, then N is CAT homogeneous (if CAT = TOP or PL one
must, assume, in addition, that N is locally flat in M). 3) If N is a TOP n-
submanifold of an orientable DIFF (n + 1)-manifold M and if N is DIFF
homogeneous in M, then N has double tangent balls in M. We note that 3)
gives a new criterion for the existence of double tangent balls, which were
studied earlier by L. D. Loveland and D. G. Wright. For an n-dimensional
manifold N in an (n + 1)-dimensinal manifold M we study the relations
among the following properties of N: smoothly embedded, tamely embedded,
DIFF homogeneous, and having double tangent balls.
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THEOREM 2. Let N be a compact manifold, and f: N - M a contin-
uous locally one-to-one map. Then, there exists a point w e f(N) which
has an open m-ball neighborhood W in M such that W N f(N) has an n-
ball neighborhood of w in f(N).

ProOOF. Choose a point x € f(N) and set A =f ' (x). Suppose A is
infinite. Then, due to compactness of N, there is an infinite sequence
(y,) in A which converges to some point z € A. Therefore, for every
neighborhood U of z in N, f|y: U— flU) fails to be one-to-one. So, we
have proved the following fact:

Fact 1.For every x e f(N), f '(x) is a finite set. =

For every x € f(N), define p(x) = card(f '(x)). Choose x e f(N),
and denote f~(x) = {1, ..., Ypx }- Find open, pairwise disjoint n-ball

neighborhoods U; of y; in N, such that f|,, : U; — f(U;) is one-to-one.
pz) p(x)

Let V; = f(U;), U = ,L_Jl U;, V= _L_le,.. Note, that it is possible to have

V, =V, for some r # s.

Fact 2.For every xzef(N), {U;}, {Vi}, U, V, as above there is
&z) >0, such that (F(N)\V)N B(x, {x)) =@, where B(x, é(x)) =
= {u e M|d(x, u) < é(x)} = openm-ball in M with center at x and radius
8(x) (where M is equiped with a metric d).

ProOOF. Suppose not. Then for every re N, there is a point
z,€ (f(N)\V) N B(zx, 1/r). Clearly, the sequence (z,) converges to x.
For every z, e f(N), let v,e f1(2,) ¢ N be an arbitrary point. By com-
pactness of N, there is a convergent subsequence (v,,) of the sequence
(v,). Let (v,) converge to v. Then due to the continuity of f, (f(v,,))
converges to f(v), and since f(v,,) = z,,, and (z,,) converges to z, it fol-
lows that f(v) == ie. vef !(x). Therefore, v=y, for some
te{l, ..., p(x)}. Since U,c N is an open neighborhood of y, there
exists ke N such that for all k =k, v, €U, and consequently,
f(v,) =2, must lie in f(U;) = V,c V. However, this directly contra-
dicts our choice of z,’s. |

Now, let x € AN), {U;}, {V;}, U, V, and &x) be as in Fact 2. Note,
that if for some ¢ > 0, B(x, ¢) N V; = B(x, ¢) NV}, for some ¢ # j, then
for every ¢' < ¢, the same fact holds.

Let g(x) be the number of distinct V;’s with respect to B(x, &x)), i.e.
their intersection with B(x, &(x)) are not the same sets. Clearly, p(x) =




28 DONCO DIMOVSKI - DUSAN REPOVS [4]

= g(x). Since g(x) < p(x) < o (Fact 1), there is 0 < «(x) < &) such that
for each ¢ < ¢(x), the number of distinct V,’s with respect to B(z, ¢) is
the same (i.e. is constant). Denote this number by 7(x). Reindex the
Vis to get Vi, ..., V), all distinct with respect to B(x, =(x)).

Suppose that r(x) = 1. Since f|y; : Uy — V{ = f(U,) is a homeomor-
phism, B(z, «(x)) is an m-ball neighborhood of x in M, such that
B(z, e(x)) Nf(N) =V’ has an n-ball neighborhood of x in f(N).

Next, suppose that (x) > 1. Since, by our choice, Vi # V; with re-
spect to B(x, e(x)) for © #j, there is a point x,e V] \V;. Let o, =
= dist (x,, V3) >0, VI = V{ N B(x, 8,) for ie{1, 3, 4, ...n(x)}, where
0 < &, <py, and B(x;, &;) ¢ B(x, (x)). Let r(x,) be the number of dis-
tinet V’s, ie {1, 3,4, ..., (x)}, with respect to B(x,, ¢) for every
0 <e<e(x), for some 0 < e&(x;) < 8;. Clearly, n(x;) < n(x) — 1. We
now continue this process inductively. Eventually, we find a point
we B(x, (x)) such that for some ¢ >0, B(w, ¢ )Nf(N)=
= B(w, ¢') NV}, an n-ball neighborhood of w in f(N). u

PrOOF OF THEOREM 1. Theorem 2 implies that there is a point
w € f(N) which has an m-ball neighborhood W in M such that W N f(N)
has an n-ball neighborhood of w in f(N). The assertion that f(N) is an
n-dimensional TOP submanifold of M follows by TOP homogenity.

Next, we prove that f: N — f(N) is a covering map. Using the nota-
tion from the proof of Theorem 2, for every x € f(N), there are pairwise
disjoint open neighborhoods U; of y;ep ~'(®) = {y1, ..., Ypx) }» SucCh
that f|y, : U; — f(U;) is a homeomorphism, and as it was shown in the
proof of Theorem 2, all f(U;) agree setwise on some sufficiently small
neighborhood V of z, ie. for some §>0, V=f(U;)NB(x, ) =
=f(U;) N B(x, 8 for each i. Let U/ =U;NfY(V), for every
ie{1, ..., p(x)}. Then f|y. : U/ —> V is a homeomorphism and f~!(V) is
equal to the disjoint union of Uy, Us, ..., Uyy. u

ExAMPLE. If f: S2— S2 is a continuous, locally one-to-one map, and
if £(S?%) is TOP homogeneous in S, then f(S?) is homeomorphic to SZ.
Indeed, by Theorem 1, f(S?) is a closed 2-dimensional manifold and
f:S2 > f(S8%) is a covering map. But S? covers only itself or RP?2 (the
projective plane), and there is no embedding of RP2in S3. =

PROPOSITION 3. Let N be a closed n-dimensional CAT submanifold
of a CAT m-dimensional manifold, » < m, CAT = TOP, PL, or DIFF.
If CAT = TOP or PL assume also that N is locally flat in M. Then N is
CAT homogeneous in M.
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Proor. For CAT =PL or DIFF, this is a relative version (for
pairs) of homogeneity of manifolds (see for example[11] and[3]). For
CAT = TOP, let x, y € N be arbitrary two points. Then, there is an arc
AcN, joining x and y. For each z € A, there is a neighborhood tri-
ple (U, V,, W,)c(M, N, A), homeomorphic to (B™ " x B"~! x B!,
{0} x B»~1x B',{0} x {0} x B'). Since A is compact, there is a fi-
nite subcover {W,, ..., W, } of {W,}, such that z;, =z, z, =y, and
W, NW, =8 if and only if |i — j| < 1. For eachie {1, ..., t — 1}, pick
weW,NW, , and let uy=2x, u,=y. Using the homogeneity of
(B™~"x B™, B"), we can find for each ie {1, ...,t}, a homeomor-
phism h;: M — M, such that k;(N)c N and h;(u;_,) = »;. Composing
these, we obtain the homeomorphism k =h,ohy_j0...0h: M —> M.
Clearly, (N)c N and h(x) = y. n

REMARK. Theorem 1 is a converse to Proposition 3 for CAT = TOP.
We are left with the following:

CONJECTURE. Let an n-dimensional closed CAT manifold N be TOP
embedded and CAT homogeneous in an m-dimensional CAT manifold
M, CAT = PL, DIFF. Then N is a CAT submanifold of M.

Next, let N be a closed n-dimensional DIFF manifold TOP embed-
ded in an (n + 1)-dimensional DIFF manifold M. Suppose also that N
separates M. We consider the following properties of the embedding of
N into M:

(DHO) N is DIFF homogeneous in M;
(TEM) N is tamely embedded in M;
(SEM) N is smoothly embedded in M; and

(DTB) N has double tangent balls in M at every point. N is said
to have double tangent balls in M at a point pe N if there exist
(n + 1)-balls B, and B; in M such that pe B, N¢dB for ie {1, 2},
and each B, lies in the closure of a different component of M\ N. (See
for example [8]).

It is obvious that (SEM) implies (DTB) and (TEM), and by Proposi-
tion 3 implies (DHO). Also, (TEM) obviously implies (DTB). Loveland
and Wright gave examples in[8] of S™ in R**?, for n = 3, showing that
(DTB) implies neither (SEM) nor (TEM), and the properties of their
examples imply that they are not DIFF homogeneous in R™**1, ie.
(DTB) does not imply (DHO) either.
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The proof of the following Proposition which shows that (DHO)
implies (DTB), is analogous to the proof of Proposition 1 in[2].

PROPOSITION 4. Let N be a closed, codimension-one, DIFF homo-
geneous TOP submanifold in an orientable DIFF manifold M. Then N
has double tangent balls at every point. n

We do not know if the following implications hold: (DHO) = (SEM),
(DHO)=>(TEM), (TEM) = (SEM) or (TEM)=>(DHO). Schematically:

(SEM)————~ (DHO)

o —— e s e

A

(DTB)=—=¢= (:I‘:EM)

We conclude by the following two question:

QUESTION. Let f:S™— R"*! be a continuous locally one-to-one
map such that f(S™) is DIFF homogeneous in R”* !, It is known that
for n = 2, f(S™) is tame in R3 (Proposition 4 and[1],[4]). Is f(S™) tame
in R**! also for n = 38?

QUESTION ([2]). Is every C *-homogeneous Jordan curve in the
plane R? necessarily smooth?
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