Dončo DIMOVSKI (*)(1)(2) - Dušan REPOVŠ (*)(3)

On Homogeneity of Compacta in Manifolds (**).

Abstract. - We introduce the concept of CAT homogeneity (CAT = TOP, PL, DIFF) for an n-dimensional compactum $N \subset M$ in an m-dimensional CAT manifold M, $n \le m$: N is said to be CAT homogeneous in M if for every two points $x, y \in N$ there is a CAT isomorphism $h: M \to M$ such that $h(N) \subseteq N$ and h(x) = y. Results: 1) The image of a continuous, locally one-toone map $f: N \to M$ of a TOP n-manifold N in a TOP m-manifold M, n < m, which is TOP homogeneous, is a TOP n-submanifold of M and, moreover, $f: N \to f(N)$ is a covering map. 2) If N is a CAT n-submanifold of a CAT mmanifold M, n < m, then N is CAT homogeneous (if CAT = TOP or PL one must, assume, in addition, that N is locally flat in M). 3) If N is a TOP nsubmanifold of an orientable DIFF (n + 1)-manifold M and if N is DIFF homogeneous in M, then N has double tangent balls in M. We note that 3) gives a new criterion for the existence of double tangent balls, which were studied earlier by L. D. Loveland and D. G. Wright. For an n-dimensional manifold N in an (n + 1)-dimensinal manifold M we study the relations among the following properties of N: smoothly embedded, tamely embedded, DIFF homogeneous, and having double tangent balls.

- (*) Institute for Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, P. O. Box 64, 61 111 Ljubljana, Slovenia.
- (1) Supported in part by a grant from the Research Council of Macedonia.
 - (2) Permanent address: University of Skopje, Skopje, Macedonia.
- (3) Supported in part by a grant from the Ministry of Science and Technology of the Republic of Slovenia.
 - (**) Nota giunta in Redazione il 5-II-1993.

THEOREM 2. Let N be a compact manifold, and $f: N \to M$ a continuous locally one-to-one map. Then, there exists a point $w \in f(N)$ which has an open m-ball neighborhood W in M such that $W \cap f(N)$ has an n-ball neighborhood of w in f(N).

PROOF. Choose a point $x \in f(N)$ and set $A = f^{-1}(x)$. Suppose A is infinite. Then, due to compactness of N, there is an infinite sequence (y_s) in A which converges to some point $z \in A$. Therefore, for every neighborhood U of z in N, $f|_U: U \to f(U)$ fails to be one-to-one. So, we have proved the following fact:

Fact 1. For every $x \in f(N)$, $f^{-1}(x)$ is a finite set.

For every $x \in f(N)$, define $p(x) = \operatorname{card}(f^{-1}(x))$. Choose $x \in f(N)$, and denote $f^{-1}(x) = \{y_1, \ldots, y_{p(x)}\}$. Find open, pairwise disjoint n-ball neighborhoods U_i of y_i in N_i , such that $f|_{U_i}: U_i \to f(U_i)$ is one-to-one. Let $V_i = f(U_i)$, $U = \bigcup_{i=1}^{p(x)} U_i$, $V = \bigcup_{i=1}^{p(x)} V_i$. Note, that it is possible to have $V_r = V_s$ for some $r \neq s$.

Fact 2. For every $x \in f(N)$, $\{U_i\}$, $\{V_i\}$, U, V, as above there is $\delta(x) > 0$, such that $(f(N) \setminus V) \cap B(x, \delta(x)) = \emptyset$, where $B(x, \delta(x)) = \{u \in M \mid d(x, u) < \delta(x)\} = \text{open } m\text{-ball in } M \text{ with center at } x \text{ and radius } \delta(x) \text{ (where } M \text{ is equiped with a metric } d).$

PROOF. Suppose not. Then for every $r \in \mathbb{N}$, there is a point $z_r \in (f(N) \setminus V) \cap B(x, 1/r)$. Clearly, the sequence (z_r) converges to x. For every $z_r \in f(N)$, let $v_r \in f^{-1}(z_r) \subseteq N$ be an arbitrary point. By compactness of N, there is a convergent subsequence (v_r) of the sequence (v_r) . Let (v_r) converge to v. Then due to the continuity of f, $(f(v_r))$ converges to f(v), and since $f(v_r) = z_r$, and (z_r) converges to x, it follows that f(v) = x, i.e. $v \in f^{-1}(x)$. Therefore, $v = y_t$ for some $t \in \{1, \ldots, p(x)\}$. Since $U_t \subseteq N$ is an open neighborhood of y_t , there exists $k_0 \in \mathbb{N}$ such that for all $k \ge k_0$, $v_r \in U_t$, and consequently, $f(v_r) = z_r$ must lie in $f(U_t) = V_t \subseteq V$. However, this directly contradicts our choice of z_r 's.

Now, let $x \in f(N)$, $\{U_i\}$, $\{V_i\}$, U, V, and $\delta(x)$ be as in Fact 2. Note, that if for some $\varepsilon > 0$, $B(x, \varepsilon) \cap V_i = B(x, \varepsilon) \cap V_j$, for some $i \neq j$, then for every $\varepsilon' < \varepsilon$, the same fact holds.

Let q(x) be the number of distinct V_i 's with respect to $B(x, \delta(x))$, i.e. their intersection with $B(x, \delta(x))$ are not the same sets. Clearly, $p(x) \ge$

 $\geq q(x)$. Since $q(x) \leq p(x) < \infty$ (Fact 1), there is $0 < \varepsilon(x) < \delta(x)$ such that for each $\varepsilon < \varepsilon(x)$, the number of distinct V_i 's with respect to $B(x, \varepsilon)$ is the same (i.e. is constant). Denote this number by r(x). Reindex the V_i 's to get $V_1', \ldots, V_{r(x)}'$, all distinct with respect to $B(x, \varepsilon(x))$.

Suppose that r(x) = 1. Since $f|_{U_1'} : U_1' \to V_1' = f(U_1')$ is a homeomorphism, $B(x, \varepsilon(x))$ is an m-ball neighborhood of x in M, such that $B(x, \varepsilon(x)) \cap f(N) = V'$ has an n-ball neighborhood of x in f(N).

Next, suppose that r(x) > 1. Since, by our choice, $V_1' \neq V_j'$ with respect to $B(x, \varepsilon(x))$ for $i \neq j$, there is a point $x_1 \in V_1' \setminus V_2'$. Let $\rho_1 = \operatorname{dist}(x_1, \overline{V_2'}) > 0$, $V_i'' = V_1' \cap B(x, \delta_1)$ for $i \in \{1, 3, 4, ..., r(x)\}$, where $0 < \delta_1 < \rho_1$, and $B(x_1, \delta_1) \subseteq B(x, \varepsilon(x))$. Let $r(x_1)$ be the number of distinct $V_i'''s$, $i \in \{1, 3, 4, ..., r(x)\}$, with respect to $B(x_1, \varepsilon)$ for every $0 < \varepsilon \le \varepsilon(x_1)$, for some $0 < \varepsilon(x_1) < \delta_1$. Clearly, $r(x_1) \le r(x) - 1$. We now continue this process inductively. Eventually, we find a point $w \in B(x, \varepsilon(x))$ such that for some $\varepsilon' > 0$, $B(w, \varepsilon') \cap f(N) = B(w, \varepsilon') \cap V_1$, an n-ball neighborhood of w in f(N).

PROOF OF THEOREM 1. Theorem 2 implies that there is a point $w \in f(N)$ which has an m-ball neighborhood W in M such that $W \cap f(N)$ has an n-ball neighborhood of w in f(N). The assertion that f(N) is an n-dimensional TOP submanifold of M follows by TOP homogenity.

Next, we prove that $f: N \to f(N)$ is a covering map. Using the notation from the proof of Theorem 2, for every $x \in f(N)$, there are pairwise disjoint open neighborhoods U_i of $y_i \in p^{-1}(x) = \{y_1, ..., y_{p(x)}\}$, such that $f|_{U_i}: U_i \to f(U_i)$ is a homeomorphism, and as it was shown in the proof of Theorem 2, all $f(U_i)$ agree setwise on some sufficiently small neighborhood V of x, i.e. for some $\delta > 0$, $V = f(U_1) \cap B(x, \delta) = f(U_i) \cap B(x, \delta)$ for each i. Let $U_i' = U_i \cap f^{-1}(V)$, for every $i \in \{1, ..., p(x)\}$. Then $f|_{U_i'}: U_i' \to V$ is a homeomorphism and $f^{-1}(V)$ is equal to the disjoint union of $U_1', U_2', ..., U_{p(x)}'$.

EXAMPLE. If $f: S^2 \to S^3$ is a continuous, locally one-to-one map, and if $f(S^2)$ is TOP homogeneous in S^3 , then $f(S^2)$ is homeomorphic to S^2 . Indeed, by Theorem 1, $f(S^2)$ is a closed 2-dimensional manifold and $f: S^2 \to f(S^3)$ is a covering map. But S^2 covers only itself or $\mathbb{R}P^2$ (the projective plane), and there is no embedding of $\mathbb{R}P^2$ in S^3 .

PROPOSITION 3. Let N be a closed n-dimensional CAT submanifold of a CAT m-dimensional manifold, n < m, CAT = TOP, PL, or DIFF. If CAT = TOP or PL assume also that N is locally flat in M. Then N is CAT homogeneous in M.

PROOF. For CAT = PL or DIFF, this is a relative version (for pairs) of homogeneity of manifolds (see for example [11] and [3]). For CAT = TOP, let $x, y \in N$ be arbitrary two points. Then, there is an arc $A \subseteq N$, joining x and y. For each $z \in A$, there is a neighborhood triple $(U_z, V_z, W_z) \subseteq (M, N, A)$, homeomorphic to $(B^{m-n} \times B^{n-1} \times B^1, \{0\} \times B^1, \{0\} \times B^1)$. Since A is compact, there is a finite subcover $\{W_{z_1}, \ldots, W_{z_t}\}$ of $\{W_z\}$, such that $z_1 = x$, $z_t = y$, and $W_{z_i} \cap W_{z_j} \neq \emptyset$ if and only if $|i-j| \leq 1$. For each $i \in \{1, \ldots, t-1\}$, pick $u_i \in W_{z_i} \cap W_{z_{i+1}}$, and let $u_0 = x$, $u_t = y$. Using the homogeneity of $(B^{m-n} \times B^n, B^n)$, we can find for each $i \in \{1, \ldots, t\}$, a homeomorphism $h_i : M \to M$, such that $h_i(N) \subseteq N$ and $h_i(u_{i-1}) = u_i$. Composing these, we obtain the homeomorphism $h = h_t \circ h_{t-1} \circ \ldots \circ h_1 : M \to M$. Clearly, $h(N) \subseteq N$ and h(x) = y.

REMARK. Theorem 1 is a converse to Proposition 3 for CAT = TOP. We are left with the following:

Conjecture. Let an n-dimensional closed CAT manifold N be TOP embedded and CAT homogeneous in an m-dimensional CAT manifold M, CAT = PL, DIFF. Then N is a CAT submanifold of M.

Next, let N be a closed n-dimensional DIFF manifold TOP embedded in an (n + 1)-dimensional DIFF manifold M. Suppose also that N separates M. We consider the following properties of the embedding of N into M:

(DHO) N is DIFF homogeneous in M;

(TEM) N is tamely embedded in M;

(SEM) N is smoothly embedded in M; and

(DTB) N has double tangent balls in M at every point. N is said to have double tangent balls in M at a point $p \in N$ if there exist (n+1)-balls B_1 and B_2 in M such that $p \in B_i \cap N \subseteq \partial B$ for $i \in \{1, 2\}$, and each B_i lies in the closure of a different component of $M \setminus N$. (See for example [8]).

It is obvious that (SEM) implies (DTB) and (TEM), and by Proposition 3 implies (DHO). Also, (TEM) obviously implies (DTB). Loveland and Wright gave examples in [8] of S^n in \mathbb{R}^{n+1} , for $n \geq 3$, showing that (DTB) implies neither (SEM) nor (TEM), and the properties of their examples imply that they are not DIFF homogeneous in \mathbb{R}^{n+1} , i.e. (DTB) does not imply (DHO) either.

The proof of the following Proposition which shows that (DHO) implies (DTB), is analogous to the proof of Proposition 1 in [2].

PROPOSITION 4. Let N be a closed, codimension-one, DIFF homogeneous TOP submanifold in an orientable DIFF manifold M. Then N has double tangent balls at every point.

We do not know if the following implications hold: (DHO) \Rightarrow (SEM), (DHO) \Rightarrow (TEM), (TEM) \Rightarrow (SEM) or (TEM) \Rightarrow (DHO). Schematically:

We conclude by the following two question:

QUESTION. Let $f: S^n \to \mathbb{R}^{n+1}$ be a continuous locally one-to-one map such that $f(S^n)$ is DIFF homogeneous in \mathbb{R}^{n+1} . It is known that for n = 2, $f(S^n)$ is tame in \mathbb{R}^3 (Proposition 4 and [1], [4]). Is $f(S^n)$ tame in \mathbb{R}^{n+1} also for $n \ge 3$?

QUESTION ([2]). Is every C^{∞} -homogeneous Jordan curve in the plane \mathbb{R}^2 necessarily smooth?

REFERENCES

- [1] R. J. DAVERMAN L. D. LOVELAND, Wildness and flatness of codimension one spheres having double tangent balls, Rocky Mountain J. Math., 11 (1981), pp. 113-121.
- [2] D. DIMOVSKI D. REPOVŠ E. V. ŠČEPIN, C[∞]-homogeneous curves on orientable closed surfaces, in: Geometry and Topology, edited by G. M. RASSIAS and G. M. STRATOPOULOS, World Scientific Publishing Company, Singapore (1989), pp. 100-104.
- [3] M. HIRSCH, Diferential Topology, Springer-Verlag, New York, Heidelberg, Berlin (1976).
- [4] L. D. LOVELAND, A surface in E³ is tame if it has round tangent balls, Trans. Amer. Math. Soc., 152 (1970), pp. 389-397.
- [5] L. D. LOVELAND, Double tangent ball embeddings of curves in E³, Pacif. J. Math., 104 (1983), pp. 391-399.
- [6] L. D. LOVELAND, Tangent ball embeddings of sets in E³, Rocky Mountain J. Math., 17 (1987), pp. 141-150.

- [7] L. D. LOVELAND, Spheres with continuous tangent planes, Rocky Mountain J. Math., 17 (1987), pp. 829-844.
- [8] L. D. LOVELAND D. G. WRIGHT, Codimension one spheres in Rⁿ with double tangent balls, Topol. Appl., 13 (1982), pp. 311-320.
- [9] D. Montgomery L. Zipin, *Topological Transformation Groups*, Interscience Publ., New York (1955).
- [10] D. Repovš A. B. Skopenkov E. V. Ščepin, A characterization of C¹-homogeneous subsets of the plane, Bollettino U.M.I., (7) 7-A (1993), pp. 437-444.
- [11] C. P. ROURKE B. J. SANDERSON, Introduction to Piecewise-Linear Topology, Ergebnisse der Mathematik, 69, Springer-Verlag, New York, Heidelberg, Berlin (1976).