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A NEW 3-DIMENSIONAL SHRINKING CRITERION

ROBERT J. DAVERMAN AND DUSAN REPOVS

ABSTRACT. We introduce a new shrinking criterion for cell-like upper semicon-
tinuous decompositions & of topological 3-manifolds, such that the embed-
ding dimension (in the sense of §tan’ka) of the nondegeneracy set of G is at
mast ope. As an immediate application, we prove a recognition thearem for
3-manifolds based on a new disjoint disks property.

l. INTRODUCTION

In 1979 M. Starbird developed two important shrinking criteria for 0-dimen-
monal cell-like upper semicontinuous decompositions G of Euclidean 3-space
, called DDPI and DDPII (stands for “the disjoint disks property”) [St].
G is said to have the DDPI if for all disjoint tame disks D, D, cC E’
that 4D U D, misses the nondegenerate elements of G, and for every open
set ¥V C E* which contains all the elements of G intersecting both D, and
D, , there are (1) a homeomorphism g: E* = E* such that £ | El-v=
and (2) disks D, D, C E* obtained from g(D,) and g(D,), respectively, by
replacement of subdisks so that each replacement subdisk used in getting from
g(D,) to D:, 1=1,2, liesin ¥V and so that no element of G intersects both
Di and D;. If one can always assume that already g(D!.) = D;, i=1,2, then
G is said to have the DDPIL Starbird proved in [St] that such decompositions
are always shrinkable. If one replaces E° by an arbitrary topological 3-manifold
M , then Starbird’s result can be generalized as follows: the quotient space M/G
of the decomposition G is a 3-manifold if and only if G has DDPI [Re2].

In the present paper we propose a new shrinking criterion called the resolution
disjoint disks property (RDDP): a cell-like upper semicontinuous decomposition
G of a topological 3-manifold M is said to have the RDDP if for every ¢ > 0,
evcry k € N, and every collcctlon of k pairwise disjoint, tame embeddings
1 Bt~ M , there exist maps g,: B* X = M/ G satisfying (i) p(g,,nf) < ¢;
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230 R. I DAVERMAN AND DUSAN REPOVS

and (ii) for every { # j, g!.(Bl) N g}.(Bz) =, (One could define instead the
RDDP as a property of the resolution n: M — X of the generalized 3-manifold
X .) Our disjoint disks property applies to all those decompositions ¢ whose
nondegeneracy set N, has embedding dimension (in the sense of M. A, Stan'ko
[St, Ed1]}) at most one:

1.1. Shrinking criterion. Let & be a cell-like, upper semicontinuous decompo-
sition of a 3-manifold M such that dem N; < 1. Then G is shrinkable if and
only if G has the RDDP.

In the second part of this paper we apply this shrinking criterion to obtain
another 3-dimensional recognition theorem. Recall that the recognition problem
for topological xn-manifolds asks for a list of simple geometric properties which
a space X {usually assumed to be an ENR Z-homology »-manifold) should
passess in order to be a genuine r-manifold [Ca]. (For a review of the history
of this problem see the survey [Rel].) We introduce a new general position
property for generalized 3-manifolds, called the fight map separation property
(LMSP): a metric space (X, p) is said to have the LMSP if for every € > 0,
every k € N, and every map f: B — X of a collection of %k standard 2-
cells B = [I% B} into X such that: (i) N, C IntB, where N, = {y € B |
f_l(f(y)) # y}; (i) dimN, < 0; and (iii) dimZ, < 0, where Z, = {x €
X|xe f(Bf)ﬂf(Bf) for some i # jf}; there exists a map F: B — X
such that (1) p(F,f) < ¢; (2) F|8B = f| 8B, and (3) for every i # j,
F (Bf )ﬂF(Bf) = ¢J. We first establish the (nontrivial) fact that every 3-manifold
has the LMSP and then show that sometimes the LMSP can be applied to detect
nonsingular spaces:

1.2. Recognition theorem. A (metric) space X is a topological 3-manifold if
and only if 1) X Is the image under a proper cell-like map 1 M 3 X, where
MY isa 3-manifold and dim f(Nf) <0, and (il) X has the LMSPF.

Edwards’ celebrated shrinking theorem [Ed2] characterizes those cell-like
maps f: M" — X from an n-manifold (n > 5) to a finite-dimensional space
that can be approximated by homeomorphisms, in terms of a disjoint disks
property having the important quality of being measured solely in X . Striv-
ing to cast our results in the same vein, here we attempt to treat disjoint disks
properties of X alone, unlike Starbird’s, which pertain in a fundamental way
to the domain and the explicit decomposition there. We are most successful
with the LMSP, which certainly pertains just to X, while the RDDP is more
of a hybrid, because the decomposition map is used to identify those singular
disks that can be mapwise separated in X . Nevertheless, the RDDP has the
useful feature, the significance of which is demonstrated in Edwards’ argument,
of being preserved under the operation of taking limits in the space of all (cell-
like) maps M — X . We should candidly acknowledge the negative side: that
both the RDDP and the LMSP entail unpleasant complications by employing
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an arbitrary finite number of domain 2-cells, unlike the properties of [Ca, Ed2,
St], which involve merely a pair of domain 2-cells.

We wish 1o acknowledge comments from W. T. Eaton, M. Starbird, and H.
Toruniczyk. The second author would like to thank the U.S. National Academy
of Sciences for the support during the summers of 1985 and 1986 while this
research was done in Knoxville and Berkeley, respectively.

2. PRELIMINARIES

We shall be working in the category of locally compact, metrizable spaces and
continuous maps throughout the paper. Manifolds will be assumed to have no
houndary unless specified. A space X is cell-fike if there exists an #-manifold
N and an embedding f: X — N such that f(X) is cellularin N, i.e., fx) =
ﬂ; , B, where {B }I>1 is a properly nested decreasing sequence of n-cells in
N. A map defined on an ANR X is cell like if its point-inverses are cell-like sets.
A closed map is proper if its point inverses are compact. The nondegenerqcy set
ofamap f: X — Y is the set Nf =N{/1={xe X| fﬁl(f(x)) #x}. If fora

subset AC Y, Nf al f_'(A) = (J, then we say that the map is ore-to-one over
A. Asubset Z C X is locally simply coconnected (1-LCC) if for every x € X
and every neighborhood U C X there is a neighborhood ¥V < U of x such
that z,(V — Z) — = (U ~ Z) is trivial.

Let G be a decomposition of a space X into compact subsets and let
n: X — X/G be the corresponding quotient map, H, the collection of all
nondegenerate elements of G, and N their union (ie., Ng, = N(@)). A
decomposition G i upper semicontinuous if m is a closed map. An upper
semicontinuous decomposition G of a separable metrizable space X is k-
dimensional if dima(N_)=k, keN.

A compactum K ¢ M™ in a PL m-manifold M has embedding dimension
< n, written as dem X < n, if for every closed subpolyhedron L ¢ M with
dimL < m — n — 1, there exist arbitrarily small ambient PL isotopies of M
with support arbitrarily close to K N L, which move L off ¥ [EdI, St].

A compact, contractible 3-manifold with boundary C is a fake 3-cell if C is
not a topological 3-cell. A topological space X satisfies Kneser finiteness if no
compact subset of X contains more than a finite number of pairwise disjoint
fake 3-cells,

A space X is a generalized n-manifold (n € N) if (i) X is a euclidean
neighborhood retract (ENR), i.e., for some integer m, X embeds in E™ as
a retract of an open subset of E™: and (ii) X isa homology n-manifold,
iLe, forevery x € X, H (X, X - x;Z) = H(E",E" - 0;Z). In dimension
2 3 X may fail to bc locally euchdcan at some (or perhaps all) points. We
call such exceptions singularities of X and they form the singular set of X,
S(X) = {x € X | x has no neighborhood in X homeomorphic to E"}. Note
that S(X) is always closed and if S(X) # X then M(X) = X - S(X) is an
open x-manifold. A resolution of an n-dimensional ANR X is a pair (M, f)
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consisting of a topological n-manifold M and a proper, surjective cell-like
map f: M — X . Consequently, if X has a resolution then X is a generalized
n-manifold [Lal]. A resolution (M ,f) of X can always be assumed to be
conservative, i.c., the map f is one-to-one over M(X). {See [BrLa] for n = 3,
(Qu] for n =4, and [Si] or [Ed2] for n > 5.)

Let X be a generalized 3-manifold with 0-dimensional singular set and let
p € X. Then p has arbitrarily small neighborhoods N C X such that JN N
S(X) = and 4N is a closed orientable surface of some genus » > 0. If this
n can always be < m , but not also < m — 1, then we say that the genus of X
at p isequal to m, g{(X,p)=m [La2].

1. PROOF OF THE SHRINKING CRITERON

3.1. Lemma. Let M bhe a 3-manifold and G a cell-like, upper semicontinuous
decomposition of M such that G has the RDDP and dem N, < 1. Then each
g € G iscellular in M.

Proof. Since dem N, < 1, each g€ & has a neighborhood in A embeddable
in E° [Ar, Lemma (5.3)]. Use the RDDP to prove that for every x € M/G,
{x} is 1-LCC embedded in M/G. Therefore each g = z”'(x) € G satisfies

McMillan’s Cellularity Criterion (see [Da, Corollary 18.4A]) and is thus cellular
in M [Mcl].

3.2.. Lemma. Let G be a cell-like upper semicontinuous decomposition of a
topological 3-manifold M with the RDDP and let m: M — M[G be the cor-
responding quoaent map. Then for every ¢ > O and every finite co!!ectmn
S ,fk B> — M of pairwise disjoint, tame embeddings sausﬁ;mg nf(@B )
N njc,.(B ) = @ whenever i # j, there exist maps g, ..., 8" B — MG
satisfying:

(i) forevery i, p(g,,nf)<¢,;

(ii) forevery i, g | 0B  =uf |8B*; and

(iii) for every i # j, g(B")Ng,(B))=2.

Proof. This follows in a straightforward fashion by imposing motion controls
and using either the fact that M/G is 1-LC or the combination of M/G being
an ANR and a controlled version of the Borsuk Homotopy Extension Theorem
[Bo].

We shall first prove the O-dimensional special case of the Shrinking Criterion

(1.1).

3.3. Lemma. Let G be a O-dimensional cell-like upper semicontinuous decom-
position of 3-manifold M such that dem N, < 1. Then G is shrinkable if and
only if G has the RDDP.

Proof. The only if direction is obvious so we prove the other implication. Let
W C M be an open set containing N . It suffices to show that, for any
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two disjoint 2-cells B, and B, locally flatly embedded in M, there exists
an embedding #: B U B, — M such that # moves no point outside W,
MW N (B UB,))C W,and nh(B))Nrh(B,) =, (see Lemma 3.1 and [5]).

Use the embedding dimension hypothesis to adjust the given 2-cells B, and
B, slightly (with controls in M, not just in X = M/G) to achieve (48, U
AB,)NN, = and dim{(B,UB,)NN;) < 0.

Set Z = »n(B,)nn(B,). For every x € Z choose a neighborhood U, with
U, Cr{(W) and U Nx(dB, UAIB,) =. Since Z C n(N), a O-dimensional
set, it is possible to extract a cover {V;} of Z refining {U,} and consisting of
mutually exclusive open sets.

Find collections D, ... ,D, (resp., E , ... ,E ) of pairwise disjoint 2-cells
in B, (resp., B,) whose interiors cover 2 (Z)n B (resp., 2" (Z)n B},
whose boundaries miss N, and whose images under m are contained in some
element of the cover {V;}. Note that for i =1, ...k, n(dD,) misses all the
other singular disks x(Dj.). Hence, it is possible to extract a subdisk D; of
Int D; whose boundary again misses N, whose interior contains Dlﬂx_l(Z) \
and which is large enough that n(D, — D:) misses the other sets rc(D}.) (it
necessarily misses UJI(E}-)). Let E: denote a subdisk of E, with similar
properties. Choose additional disks D, ,,...,D, and E :---,Ey In B
and B, disjoint from the others and subject to the same size controls, such that

& K
- *

Uz =0]) c JIntD,

i=1 j=t
and similarly for the disks E: and Ej.. Moreover, for je {(k+1,...,K}
require D, to be contained in every n_l(l’/i) such that some D C x_l(l/;.),
where s € {1,...,k} and =(D,)N n(D;) # &, and require the same of the
additional disks E i in B, . Define

K N
P =B —|JIntD, and P,=8,-|JIntE,.
=1 j=1
Choose a positive number d less than each of the following:
p(r(P), n(D}));
p(r (P, ) Jt(E hE
pm(D, V,), where ¥, contains n(D,);
V)

p(?f(E) f
( ( UIntD) B))
P (n(BL),Jt (B2 U )) .

Apply Lemma 3.2 to approximate =« | ({J D:) U E:) by a map f agreeing
with 7 on the various boundaries, with f d-close to the restricted 7, and with

, where V contains n(EJ.);
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the images under f of these disks pairwise disjoint. Use the cell-likeness of 7
to approximately lift f to a map F of the same domain back into A, with
F the identity on 8((UD]) U (UE])). There is no loss of generality in then
assuming f was obtained with-zF = f. Extend F to F: B UB, — M via
the inclusion elsewhere,

Now the idea is to invoke Dehn’s Lemma for replacing F on each of the
disks D, (resp., E;) by an embedding with the sort of properties allowing
global reconstitution of B, (resp., B,). The size controls above ensure that
aF(B)NnF(B,) = and that no two of the disks f(D,) (nor of the disks
S(E))) intersect. According to Dehn’s Lemma, there are tame disks 4, ... .d,
and e ,...,e, in M — (P UF(B)},M - (F,UF(B )}, respectively, with
dd,=a4D, (8e;=0E), w1th pairwise disjoint images under 7z, and with each
image in the same element of {V,} as nF(D)) (or nF(E))). Now do disk
trading, adjusting 4, and e, and remove all intersections of the resulting disks

d: (resp., ef) with D, ,...,Dg (resp, E |, ... ,Ey). Then

-k k ) n R
= (Bl —UDI.) ulJd, and B"= (BQ—UE!) ulJe
i=1 =1 i=1 i=1

are 2-cells in M whose images under z are disjoint.
The desired homeomorphism h: B UB, — B'UB” C M is one sending D,
onto. a’:. (E, onto e;) and reducing to the identity elsewhere.

1.4, Lemma. Let G he a cellular upper semicontinuous decomposition of a
topological 3-manifold M such that G has the RDDP and dem N; < 1. Let
A C M/G be a closed subset and denaote by G, the decomposition induced over
A le, G, = ={n"Na)|ac AU{{x} | xe M-n" YAV, where n = M — MG
is the quorzenz map. Then G, is also upper semicontinuous, cellular, and has
the RDDP.

The proof is a routine lifting argument which exploits the induced cell-like
map p: M/G, — M/G. One can work with disks D, ... Dk in M for
which N, 0 (U D)) is O-dimensional and obtain motion control in M/G, by
only hftmg images of those 2-simplexes ¢ in some small mesh triangulation
for which s NN, #Q.

3.5. Lemma. Let G be a cell-like decomposition of a 3-manifold M such that
G has the RDDP, and let {h,;: M — M | i=1,2,...} be a sequence of home-
omorphisms of M onto itself such that nh;: M — M|G converges uniformly
toamap p: M — M/G. Then the decomposition G, = {px) | x € M/G}
induced by p has the RDDP.

Proof. Consider any collection of k pairwise disjoint, tame embeddings f;: B?
— M. Given ¢ > 0, choose j sufficiently large that p(nhj,p) < /2. Ap-
plying the RDDP to the embeddings hj.f!. (i=1,...,k), one can find maps
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g B = M /G having pairwise disjoint images and satisfying pg; ,nk fi) <
¢/2. Clearly then p(g,,pf)) <¢.

Proof of (1.1). The only if direction is obvious so we prove the other implication,
By [KoWa], dimY = 3 where Y = M/G. For classical reasons {see [Wal),
n{N.) is l-dimensional. Hence, ¥ contains a 2-dimensional F_-set F such
that d1m(Y F)=dim{F Nn(Ng)) =0. Express F as the union of compacta
A, CY,ieN.

By construction and Lemmas 3.3 and 3.4, the decompositions G, induced
over A; are shrinkable. As in [Ed2] (see [Da, Chapter 24]), n: M — ¥ can
be approximated by a proper cell-like map p: M — Y such that p 1s one-
to-one over F and demN < 1 (p arises as the limit of maps p; . where
p; 1s one-to-one over A gwcn a sequence of triangulations T of M with

mesh 7, — 0 as j — oo, and T( = & (where TJ.“ is the l-skeleton
of T ), one can choose p; to be one-to-one over p(T“)), t € j<1I,and can

impose controls so p is one-to-one over hoth F = Ul  4; and UI 1p(::"“}))
With Lemma 3.5 certifying that the 0-dimensional decomposition G has the
RDDP, another application of Lemma 3.3 shows that p can be approx1mated
by homeomorphisms. Thus, the same is true of =z, or, equivalently, G is
shrinkable [Da, Chapter 3].

3.6. Corollary. Let X be a generalized 3-manifold with a resolution n+ M —
X such that dem N, < 1. Then X is a topological 3-manifold if and only if
the decomposition G = {n"'(x)| x € X} of M has the RDDP.

4, PROOF OF THE RECOGNITION THEOREM

4.1. Lemma. Let G be a O-dimensional cell-like upper semicontinuous decom-
position of a 3-manifold M such that the quotient space M/G has the LMSP
and each g € G has a neighborhood in M embeddable in E>. Then G has
the RDDP.

Progf. By [DaRo], we may assume that dem N, < 1. Given any finite col-
lection of pairwise disjoint, tame embeddings £ B* - M we can adjust
them slightly, in A/, so that dim(N, N (U, f(B%)) < 0. Then the map
f1B— M/G givenby f=1I5 nf, where B = [ B?, defines the kind of
map to which the LMSP applies, leading to a map F: B — M/G which shows
& has the RDDP.

4.2, Lemma. Every 3-manifold M has the LMSP.

Proof. Consider amap f: B — M satisfying the hypotheses of LMSP and ¢ >
0. Using the hypothesis that Z(f) is 0-dimensional, we successively determine
compact 3-manifolds with boundary R,(Q, and P satisfying:

(1) each component of R has diameter less than ¢;
(2) MROQOInt@DPOIntP D 2(S);
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(3) = (P)— = (Q) is trivial;
(4) B has a triangulation .7~ with l-skeleton

TcB-[N(US (P

(5) For each 2-simplex ¢ € 5, f(6)NP £ @ implies f(6) C IntQ, and
fle)nQ # < implies f{o) C IntR.

The correct procedure is first to select R, @, then to find .5 with TNN(f) =
&, with f(a)nNZ(f) # @ implying f(o) C IntQ and with f{o)NQ # @
implying f(g) C Int R, and finally to identify P subject to (2)-(5).

We will verify the LMSP by adjusting f to a new map F: B — M such
that F agrees with f on T"U[B —f_l(R)], any two distinct points F(x), f(x)
belong to a component of R, and the images under F of the various disks Bf
comprising B are pairwise disjoint. In the course of these map adjustments
we will also modify P, without changing @ or R, always maintaining (1)}-(5)
above. In particular, F will coincide with f on all 2-simplexes ¢ for which
floeynQ=0.

Tao get started, use the Simplicial Approximation Theorem and general posi-
tion to make the map f PL on f_l(lnt @) — T, without changing f on I', in
order to achieve the following:

(6) f is transverse to the 2-manifold 8P .

Conmder now the finite collection & = {J | J is a simple closed curve from
f~ (BP)} Let ¢(8P) be the complexity of 4P defined by McMillan [Mec2],

c(@P)=> (p+1 V2w,
p20
where g(p) denotes the number of components of 9P of genus p.

We show how to reduce ¢(@P) to a minimum in a finite number of cut-and-
paste operations, after which we obtain the map F by carefully trading singular
disks in a modified f(B) for others near 8P .

For L € % name the disk Bf such that L C B?, and let E; denote the
subdisk of Bf bounded by L. Assume L is an innermost curve with respect
to Bf . There are three cases to consider,

Casel. f(L)# + on 8P and f(E;) C P. Then apply the Loop Theorem to
find an embedded disk H C P — f(T") such that HNaP = H and GHN
f(U,,B)) = @. Thicken H toa 3-cell C = Hx [ in IntP for which

H = Hx{1/2} and (SH) xI cdP-fU,, B B?). Redefine f on those 2-

simplexes ¢ of UJ i B whose images meet C to ehmmarc such intersections,
starting with innermost curves in the domain, so f(g) C @ — C and all new
images lic in P — C. Make a compression of 8P along H , forming a new P’
in P—IntC. This operation maintains conditions {1)-(5), and the redefinition
of f ensures that the new singular set satisfies Z(f) C Int P’ .
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CaseIl. f(L)# on 8P and f(E ;) CIntQ —IntP. Consequently, JE )N

Z(f) = . Again use the Loop Theorem to obtain an embedding dISk HC
IntQ — f(I') such that HNP = HNHP = P and aHﬂf(Uj#l ) =1,
Thicken H to a 3-cell C = H x ], as before, with € C IntQ d13101nt from
f(r uf(U 82 and with CNAP = (B H)x I . Redefine / on those 2-simplexes
o of B for which f{o)NP =0 but f(g)NC # &, in particular, on those
where f(a ¢ O, so the new images lie in IntR — PU[IntC U U, B )

Make a compression of 8P along H, forming a new P in PUlntC. ThlS

operation also maintains conditions (1)-(5), and here the redefinition of f is
indispensible for obtaining (5).

Remark. According to [Mc2)], ¢(dP') < ¢(8P) in both Case I and Case II.

Case Il f(L) = * on AP. Consider the universal cover p: H> — S where
S C JP is the component of P containing f(L}. Then the loop f(L) lifts
1nto H? as a collection of loops. Take one such lift y ¢ p~ f (L) . It separates

H’ into finitely many components K, ...,K, , where only the closure of X, ol
1s noncompact.

Subcase 11l.a. For every 1 <t < r, f(UJ-#,- BJ.E) Np(K,) = J. Then we can
cut f(E,) off from 8P near p(J;_, X,), eliminating the simple closed curve
L from the_ collection f F'(@P), without introducing new singularities or new
intersections with P . In light of the next subcase it is worth emphasizing that
here L need not be innermost in B .

Subcase IILb. Forsome 1 <1<r, f~ (f(UJ?‘I B;1 )N p(K,)) contains a simple
closed curve L', Then L' hasa special lift ' to K,, 1mplymg that L' falls
under Case III and all but one of the components of B - ¥ lie in K, . Even-

tually we obtain a curve L' (not necessarily innermost with respect to B ) for
which Subcase IIL.a applies.

Finally, when ¢(dP) is minimal, all curves L € % must fall under Case I1I,
which shows how they can all be eliminated via a new map F: B — M with
Z(F} CIntP and F{B)UP = &. The subsequent images of the various disks
B are pairwise disjoint, as required.

Proof of (1.2). The forward implication follows immediately from Lemma 4.2.
We concentrate on the reverse implication, where by {KoWa] X is 3-dimen-
slonal and thus by {Lal] it is a generalized 3-manifold. Let G = {f~ [ (x)|x € X}
be the associated cell-like upper semicontinuous decomposition of M . Since
dimn(N;) = dim f(¥,) <0, G is O-dimensional.

Let C, = U{g € G | g has no neighborhood in M embeddable in Ej}.
Then by [ReLa2] the set f(C,) is locally finite in X . Let G, denote the
(cell-like} decomposition of M consisting of the components of C, and the
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singletons from M - C,. Consider M| = M/G, and the associated decom-
position G, = m;(G) = {ny(g) | g € G} of M, where ny: M — M| is the
quotient map. Clearly M| is a generalized 3-manifold and S(M,) C 7,(C,).

Assertion. X — f(C,) is a 3-manifold.

Proof. Every g’ € G’1 ={ge€G |gc M —riC,)} has a neighborhood in
M| = M, — n)(C;) embeddable in E*. Let n,: M, — X be the quotient rmap
of the decomposition G, and set 7, = 7, | M|. So (M|, x,) is a resolution
of X' =X - f(C,). Since X has the LMSP, so does X'. Hence Lemma 4.1

applies, implying G'l has the RDDP, and by Lemma 3.3 G—"1 1s shrinkable. This
confirms the assertion.

By [BrLa) we can assume that / is one-to-one over X'. Based on LMSP
and the existence of £, it is a simple matter to verify that each fic) € f(C,) is
I-LCC embedded in X (see the proof of {ReLal, Theorem 3.1]). By Theorem
4 of [BrlLa], X is-a 3-manifold. _

By way of application we have another recognition theorem:

4.3, Carollary. A space X is a 3-manifold if and only if it satisfies the following
properties:
(1) each x € X is 1-LCC embedded in X ;
(i1y X admits a vesolution n: M X defined on a 3-manifold,
(ui) S(X) is contained in a finite graph T (topologically) embedded in X ,
() X has the LMSP.

Proof. In case X satisfies properties {i)-(iv), we can assume the resolution
n: M? — X is one-to-one over X —I'. Let

E = {x € X | =~ '(x) has no neighborhood that embeds in E}.

For the reasons set forth in the proof of (1.2), E is a discrete subset of X .
Select a countable dense subset D of I' — E. As in the proof of Lemma 3.1,
each :fr“L(d), d € D, is cellular in M ; consequently, we can approximate #
by a cell-like map f: M — X such that f is one-to-one over DU (X-TI).
This verifies that X satisfies the conditions of (1.2), which in turn shows X is
a 3-manifold.

Virtually the identical argument yields the next result, an improvement to
Corollary 4.3.

4.4, Corollary. A space X isa 3-manifold if and onfy if it satisfies the following
properties:
() X admits a resolution m: M* — X defined on a 3-manifold.
(ti) each s € S(X) has arbitrarily small neighborhoods whose frontiers B,
are such that dim[B,NS(X)] <0 and B,NS(X) is 1-LCC embedded
in X;
(iii) X has the LMSP.
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5. EPILOGUE

We close by spelling out some unresolved issues. The first pertains to poten-
tial improvements to Shrinking Theorem (1.1).

5.1. Conjecture. If 7: M — X is a resolution of X with the RDDP, then X
is a 3-manifold.

The fundamental difficulty occurs in examining decompositions induced over
closed subsets,

5.2. Conjecture. If G is a cell-like decomposition of a 3-manifold M such
that G has the RDDP and if A is a subset of M} G, then the decomposition G y
induced over A has the RDDP.

In our attempts to improve on the Recognition Theorem (1.2), we repeatedly
encountered some form of the problem stated below.

5.3. Conjecture. Every 3-manifold has the LMSP™ , where LMSP”™ stands for
the LMSP without any hypothesis on the set Z(f).

Only if Conjecture 5.3 is true does the next one make sense.

5.4. Conjecture. A space X isa 3-manifoldif X has the LMSP™ and it admits
a resolution n: M°> — X defined on a 3-manifold.

Finally, it seems that a stronger result than 5.3 might be valid. Compare with
[An].

5.5. Conjecture. Let f:S* — M bea map of a 2-sphere into a 3-manifold
such thar N s O-dimensional. Then for each ¢ > Q there exists an embedding

F,: 8" — M such that p(F,, f) <¢.
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