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MATHIAS FORCING AND COMBINATORIAL COVERING
PROPERTIES OF FILTERS

DAVID CHODOUNSKÝ, DUŠAN REPOVŠ, AND LYUBOMYRZDOMSKYY

Abstract. We give topological characterizations of filters F on � such that the Mathias forcing MF
adds no dominating reals or preserves ground model unbounded families. This allows us to answer some
questions of Brendle, Guzmán, Hrušák, Martı́nez, Minami, and Tsaban.

§1. Introduction. A subset F of [�]� is called a filter if F contains all co-finite
sets, is closed under finite intersections of its elements, and under taking supersets.
Every filter F gives rise to a natural forcing notionMF introducing a generic subset
X ∈ [�]� such that X ⊂∗ F for all F ∈ F as follows:MF consists of pairs 〈s, F 〉
such that s ∈ [�]<� , F ∈ F , and max s < minF . A condition 〈s, F 〉 is stronger
than 〈t, G〉 if F ⊂ G , s is an end-extension of t, and s \ t ⊂ G .MF is usually called
Mathias forcing associated with F .
Posets of the formMF are important in the set theory of reals and have been used
to establish various consistency results, see, e.g., [7, 12] and references therein. One
of the most fundamental questions aboutMF is whether it adds a dominating real,
i.e., whether in �� of the generic extension VMF there exists x such that for every
a ∈ �� in the ground model V the inequality a(n) ≤ x(n) holds for all but finitely
many n. Such filters F admit the following topological characterization proved in
Section 2.

Theorem 1.1. Let F be a filter. Then MF does not add dominating reals if and
only if F has the Menger covering property as a subspace of P(�).

Recall from [15] that a topological space X has the Menger covering property
(or simply is Menger), if for every sequence 〈Un : n ∈ �〉 of open covers of X there
exists a sequence 〈Vn : n ∈ �〉 such that Vn ∈ [Un]<� and {

⋃
Vn : n ∈ �} is a cover

of X . Menger spaces can be equivalently characterized as spaces X such that no
image of X via a continuous function from X to �� is <∗-dominating.
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Theorem 1.1 has a number of applications. For instance, since analytic
Menger sets of reals are �-compact [1], it implies the following fact1 answering
[12, Question 4.3] in the negative.
Corollary 1.2. Let F be an analytic filter on �. Then MF does not add a

dominating real if and only if F is �-compact.
Several additional applications of Theorem 1.1 will be presented in Section 3.
Following [10] we say that a family U of subsets of a set X is
• an �-cover, if X �∈ U and for every finite subset K of X there exists U ∈ U
such that K ⊂ U ;

• a �-cover, if for every x ∈ X the family {U ∈ U : x �∈ U} is finite.
The Hurewicz (resp. Scheepers2) property is defined in the same way as theMenger
one, the only difference being that the family {

⋃
Vn : n ∈ �} must be a �-cover

(resp. �-cover) of X .
We say that a poset P is almost ��-bounding if for every P-name ḟ for a real

and q ∈ P, there exists g : � → � such that for every A ∈ [�]� there is qA ≤ q
such that qA � g � A �<∗ ḟ � A. It is well known that almost ��-bounding posets
preserve unbounded families of reals of the ground model as unbounded families
in the generic extension. This was observed by Shelah in [22]. The following lemma
shows that this property in fact characterizes almost ��-bounding posets. We are
not aware of this fact having been mentioned in the literature before.
Lemma 1.3. A poset P is almost ��-bounding if and only if P preserves all

unbounded families of the ground model as unbounded families in the extension.
Proof. Suppose that P is not almost ��-bounding. There is a name ḟ for a real

and p ∈ P, a condition such that for all g ∈ �� there is an infinite set Ag ∈ [�]�
such that p � g � Ag ≤∗ ḟ � Ag . For every g ∈ �� define g ′(n) = g(n) if n ∈ Ag ,
and g′(n) = 0 otherwise. The set X = {g ′ : g ∈ ��} is an unbounded set of reals,
and the condition p forces X to be bounded by ḟ in the extension.
Suppose that P is almost ��-bounding and let X be an unbounded set of reals.

Let ḟ be a name for a real and q ∈ P a condition. Find g : � → � as in the definition
of an almost ��-bounding forcing. Since X is unbounded, there is h ∈ X such that
A = {n ∈ � : g(n) < h(n)} is infinite. Now qA ≤ q forces h to be not dominated
by ḟ. 	
The following theorem is the main result of Section 4.
Theorem 1.4. Let F be a filter. ThenMF is almost ��-bounding if and only if F

has the Hurewicz property.
Theorem 1.4 turns out to have applications to general Hurewicz spaces, not only

to filters. In order to formulate themwe need to recall some definitions. A Tychonov
space X is called a �-space [10] if every open �-cover of X contains a �-subcover.
�-spaces are important in the theory of function spaces as they are exactly those X
for which the space Cp(X ) of continuous functions from X to R, with the topology
inherited from RX , has the Fréchet–Urysohn property.

1While completing this manuscript we have learned that Corollary 1.2 for Borel filters has been
independently obtained in [11].
2In [20] this property is denoted by Ufin(O,Ω). The name “Scheepers property” was suggested by

Banakh and by now seems to have become quite standard.
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For a ∈ [�]� and n ∈ �, a(n) denotes the n-th element in the increasing
enumeration of a. For a, b ∈ [�]� , a ≤∗ b means that a(n) ≤ b(n) for all but
finitely many n. A b-scale is an unbounded set S = {sα : α < b} in ([�]�,≤∗) such
that sα ≤∗ s� for α < � . It is easy to see that b-scales exist in ZFC. For each b-scale
S, S ∪ [�]<� is b-concentrated on [�]<� in the sense that |S \U | < b for any open
U ⊃ [�]<� . For brevity, the union of a b-scale with [�]<� , viewed as a subset of the
Cantor space P(�), will be called a b-scale set. As an application of Theorem 1.4
we will get the following result answering [19, Problem 4.2] in the affirmative.

Corollary 1.5. It is consistent with ZFC that every b-scale set is a �-space.

The study of the relation between b-scale sets and �-spaces already has some
history. First of all, in the Laver model all �-subspaces of 2� are countable because
they have strong measure zero [10]. Answering one of the questions posed in [10],
Galvin and Miller [9] constructed under p = c a b-scale set which is a �-set. Their
b-scale was a tower, where S = {sα : α < κ} ⊂ [�]� is called a tower if sα ⊂∗ s� for
all � < α and S has no pseudointersection. Later Orenshtein and Tsaban proved
[18] that if p = b then any b-scale set is a �-space provided that the corresponding
b-scale is a tower. On the other hand, under b = c there exists a b-scale set which
fails to be a �-space, see [19]. Also, it is easy to show that such b-scale sets exist under
p < b, see Observation 4.4. Thus p = b < c holds in any model of Corollary 1.5.
In Section 5 we discuss when an unbounded subset of �� can be made bounded
by forcing without introducing dominating reals. Some partial answers are give for
filters, see Theorem 5.2 and the Remark 5.6 at the end of the section.
While dealing with the covering properties of Menger, Hurewicz, and Scheepers,
as well as that of being the �-space, we shall freely use that they are (as almost all
natural covering properties) inherited by continuous images and closed subspaces.
In addition, the properties of Menger and Hurewicz are preserved by products with
�-compact spaces and by countable unions. These straightforward facts exist in the
literature, but we do not give any references because we believe that the reader will
need just a couple of minutes to check any of them.
For the definitions of cardinal characteristics used in this paperwe refer the reader
to [25].

§2. Proof of Theorem 1.1. Subsets of P(�) are considered as usual with the
topology inherited from P(�), which is identified with the Cantor space 2�
via characteristic functions. For every n ∈ � and q ⊂ n we denote the set
{A ∈ P(�) : A ∩ n = q} by [n, q]. The sets of the form [n, q] form a base for
the standard topology of P(�). Set also ↑X = {A ∈ P(�) : A ⊃ X} for every
X ⊂ �.
Claim 2.1. Suppose that X ⊂ P(�) is closed under taking supersets and O is a
cover of X by sets open in P(�). Then there exists a family Q ⊂ [�]<� such that

X ⊂
⋃
q∈Q

↑ q ⊂
⋃

O.

Proof. Without loss of generality, we can assume that O consists of sets of
the form [n, q]. Let us fix X ∈ X , notice that ↑X is compact, and find a finite
family of basic open sets {[ni , qi ] : i ∈ m} ⊂ O such that ↑X ⊂

⋃
i∈m [ni , qi ].
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Put n = max{ni : i ∈ m}. If A ∈ ↑(X ∩ n), then (A∩ n)∪ (� \ n) ∈ ↑X , and there
is i ∈ m such that (A ∩ n) ∪ (� \ n) ∈ [ni , qi ]; thus A ∈ [ni , qi ]. We showed that
X ∈ ↑X ⊂ ↑(X ∩ n) ⊂

⋃
O. 	

Since every set of the form ↑ q is compact, it follows that for every q ∈ Q (we use
notation from Claim 2.1) there exists a finite subset O′ ⊂ O such that ↑ q ⊂

⋃
O′.

This gives us the following

Corollary 2.2. If X ⊂ P(�) is closed under taking supersets, then X has the
Menger property if and only if for every sequence 〈Un : n ∈ �〉 of open covers of X
by sets of the form ↑ q for some q ∈ [�]<� , there exists a sequence 〈Vn : n ∈ �〉 such
that Vn ∈ [Un]<� and {

⋃
Vn : n ∈ �} is a cover of X .

A set I ⊂ P(�) is called an ideal, if F := {� \ I : I ∈ I} is a filter. In this case we
write I = F∗ and F = I∗. The collection of all I-positive sets P(�) \ I is denoted
by I+ or F+, if F is the filter dual to I. Following [12] we call an ideal I a P+-ideal
if for every decreasing sequence 〈Xn : n ∈ �〉 of I-positive sets, there is an X ∈ I+
such that X ⊂∗ Xn for all n ∈ �. We shall also use the following notation:

I<� = {A ⊂ [�]<� : ∃I ∈ I ∀a ∈ A (a ∩ I �= ∅)}.
It is easy to see that I<� is an ideal on [�]<� , and letting F = I∗ we have I<� =
(F<�)∗, where F<� is the filter on [�]<� consisting of sets containing [F ]<� for
some F ∈ F .
The following claim is known, we give here a proof for reader’s convenience.

A stronger form of this result is presented in [17].

Claim 2.3. Let I be an ideal on �. Then I is a P+-ideal if and only if for every
sequence 〈Xn : n ∈ �〉 of I-positive sets there is a sequence 〈Yn : n ∈ �〉 of finite sets
such that Yn ⊂ Xn and

⋃
n∈� Yn ∈ I+.

Proof. The “if” part is obvious. To prove the “only if” part fix a sequence
〈Xn : n ∈ �〉 of I-positive sets and set X ′

n =
⋃
m≥n Xm for all n ∈ �. Then 〈X ′

n : n ∈
�〉 is a decreasing sequence of I-positive sets, and hence there exists Y ∈ I+ such
thatY ⊂∗ X ′

n for all n ∈ �. Without loss of generality we may assume thatY ⊂ X ′
0.

For every y ∈ Y \
⋂
n∈� X

′
n let n(y) be the maximal n such that y ∈ X ′

n. For
y ∈ Y ∩

⋂
n∈� X

′
n let n(y) be any n > y. Then Yn = {y ∈ Y : n(y) = n} is finite,

Yn ⊂ Xn, and Y =
⋃
n∈� Yn. 	

The proof of the following fact is more or less just a reformulation.

Claim 2.4. Let I be an ideal. Then I<� is a P+-ideal if and only if I is a Menger
subspace of P(�).
Proof. Since I is homeomorphic to I∗ it is enough to show that I∗ is Menger

if and only if I<� is a P+-ideal.
Assume that I<� is a P+-ideal and fix a sequence 〈Un : n ∈ �〉 of open covers

of I∗ by sets of the form ↑ a for some a ∈ [�]<� . Set An = {a : ↑ a ∈ Un}. Since
Un covers I∗, for every F ∈ I∗ there exists a ∈ An such that a ⊂ F , which means
that An is I<�-positive. Therefore there exists a sequence 〈Bn : n ∈ �〉 such that
Bn ∈ [An]<� and B =

⋃
n∈� Bn ∈ (I<�)

+. This means that for every F ∈ I∗ there
exists b ∈ B such that b ⊂ F , i.e., that {↑ b : b ∈ B} covers I∗. Thus for every n we
can select a finite subset of Un (namely Vn = {↑ b : b ∈ Bn}) whose union covers I∗.
By Corollary 2.2 this means that I∗ is Menger.
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Now suppose that I∗ is Menger and fix a sequence 〈An : n ∈ �〉 of I<�-positive
sets. For every n set Un = {↑ a : a ∈ An} and notice that Un is a cover of I∗ by sets
open inP(�). Thus for every n there exists a finite Vn ⊂ Un such that

⋃
n∈� Vn ⊃ I∗.

Let Bn ∈ [An]<� be such that Vn = {↑ a : a ∈ Bn}. It follows that for every F ∈ I∗

there exists a ∈
⋃
n∈� Bn such that a ⊂ F . In other words,

⋃
n∈� Bn is I<�-positive,

which completes our proof. 	
Now Theorem 1.1 is a direct consequence of Claim 2.4, the fact that F is
homeomorphic to F∗ for any filter F , and the following important
Theorem 2.5. [12, Theorem 3.8] Let I be an ideal on �. ThenMI∗ does not add
a dominating real if and only if I<� is a P+-ideal.

§3. Straightforward applications of Theorem 1.1. Recall that A,B are called
almost disjoint, if A ∩ B is finite. Given a countable set I, an infinite set A ⊂ [I ]�
is said to be an almost disjoint family (on I ) if any two elements of A are almost
disjoint. A is called a mad family (on I ), if it is maximal with respect to inclusion
among almost disjoint families on I. Every almost disjoint family A generates an
ideal

I(A) =
{
I ⊂ � : ∃B ∈ [A]<�

(
I ⊂∗ ⋃

B
)}
.

The dual filter is denoted by F(A). Theorem 1.1 allows us to give an easy proof of
the following recent result of Guzmán, Hrušák, and Martı́nez [11, Proposition 6],
answering [6, Question 2.7] in the negative.

Proposition 3.1. There exists a mad family A on � such thatMF(A) adds a do-
minating real.

Proof. By Theorem 1.1 it is enough to construct a mad family A on 2<� such
that I(A) is notMenger. Set C = {Cx : x ∈ 2�}, whereCx = {x � n : n ∈ �}. Then
C is a compact almost disjoint family. Take a dense countable subset C′ of C and
for every C in C′ fix an infinite mad family AC of infinite subsets of C . Consider
A0 = (C \ C′)∪

⋃
C∈C′ AC and extendA0 to amad familyAof infinite subsets of 2<�.

We claim that C \
⋃
B is infinite for all B ∈ [A]<� and C ∈ C′. Indeed, let us fix

C,B, and A ∈ AC \ B. Then all elements of B have finite intersection with A and
hence A �⊂∗ ⋃

B. Therefore C �⊂∗ ⋃
B as well.

Thus I(A)∩C = C \C′, and hence I(A) contains a closed copy of�� . It remains
to note that �� is not Menger and that the Menger property is inherited by closed
subsets. 	
As mentioned before, the Menger and Hurewicz properties are preserved by
closed subspaces and by products with compact spaces, continuous images, and
countable unions. Thus if a filter F on � has a base B which is Menger (Hurewicz),
then F is Menger (Hurewicz) as well: F = �[B ×P(�)], where �(B,X ) = B ∪X ,
and � is continuous.
Let U be an ultrafilter. For x, y ∈ �� the notationx ≤U y means that {n : x(n) ≤
y(n)} ∈ U . We will also use the notation A ≤U B for A,B ∈ [�]� by interpreting
sets as their enumerating functions. The relation ≤U is a linear pre-ordering of ��

whose cofinality is usually denoted by d(U).
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Another application of Theorem 1.1 is the following result improving [11, Propo-
sition 8] and partially answering [11, Problem 2]. Instead of proving it directly we
shall give a more streamlined argument using [11, Proposition 8].

Proposition 3.2. If d = c, then there exists an infinite mad family A such that
I(A) is Menger.
Proof. First assume that d is regular and fix an enumeration {Sα : α < d} of

[�]� such that {Sα : α < �} is an almost disjoint family. It is well-known [8] that
there exists an ultrafilter U with d(U) = cf(d), which equals c in our case. We shall
construct A = {Aα : α < d} by induction. At stage α we pick Aα ⊂ Sα such that
{S� : � < α}∪{A� : � < α} ≤U Aα provided thatSα is almost disjoint fromA� for
all � < α. Otherwise we set Aα to be equal to one of the A� ’s constructed before.
This finishes our construction of A. It is clear that A is mad. It is well known and
easy to see that d is the minimal cardinality of non-Menger set of reals. Hence if
|A| < d, then all finite powers of A are Menger. If |A| = d then [24, Corollary 4.3]
ensures that all finite powers ofA∪ [�]<� are Menger. In any case, I(A) is Menger
because it can be written in the form

⋃
n∈� In , where

In =
{⋃
i∈n
Ai ∩X : 〈Ai : i ∈ n〉 ∈ (A ∪ [�]<�)n, X ∈ P(�)

}

is a continuous image of (A ∪ [�]<�)n × P(�).
Now suppose that d is singular. It has been established in the proof of

[5, Theorem 16] that u < d yields d(U) = d for any ultrafilter U generated by u
many sets. Thus u < d implies that d is regular, and hence we have u = d = c by the
singularity of d. Now min{d, u} ≤ r (see [2]) implies r = c and it suffices to apply
[11, Proposition. 8] which states that under d = r = c there exists a mad family
generating a Menger ideal. 	
Observation 3.3. If a filter F is Menger (Hurewicz), then so is F<� .
Note that the converse implication is also true since F is isomorphic to a closed

subset of F<� .
Proof. The map φ : F → P([�]<�) assigning to F ∈ F the set [F ]<� is

continuous. Thus F<� has a Menger (Hurewicz) base and hence is Menger
(Hurewicz). 	
Combining Theorem 1.1, Observation 3.3, and [11, Proposition 5] we get a

negative answer to [11, Problem 4]3 .

Following [11] (Laflamme [16] for ultrafilters) we say that a filter F is a strong
P+-filter if for every sequence 〈Cn : n ∈ �〉 of compact subsets of F+ there exists
an increasing sequence 〈kn : n ∈ �〉 of integers such that if Xn ∈ Cn for all n, then⋃
n∈� (Xn ∩ [kn, kn+1)) ∈ F+. The characterization of P+-filters given in Claim 2.3
implies that every strong P+-filter is a P+-filter.
We shall need the following game of length � on a topological space X : In the

nth move player I chooses a countable open cover Un of X , and player II responds
by choosing a finite Vn ⊂ Un. Player II wins the game if

⋃
n∈�

⋃
Vn = X . Otherwise,

3The formulation of [11, Problem 4] involves notions which will not be used in our paper, and hence
we refer the reader to [11] for its precise formulation.
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player I wins. We shall call this game theMenger game4 onX . It is well-known that
X is Menger if and only if player I has no winning strategy in the Menger game
on X , see [13] or [20, Theorem 13]. Note that if I plays with covers Un closed under
finite unions, then we can assume that the player II replies by choosing one-element
subsets of the Un’s.
The following result together with [11, Proposition 3] answers [11, Problem 3] in
the negative.

Proposition 3.4. Every Menger filter F is a strong P+-filter.
Proof. Let 〈Cn : n ∈ �〉 be a sequence of compact subsets of F+, and assume
without loss of generality that Cn ⊆ Cm for n < m. For every F ∈ F consider
an increasing sequence 〈kFn : n ∈ �〉 defined as follows: kF0 = 0, and kFn+1 is the
minimal integer such that [kFn , k

F
n+1) ∩ F ∩ X �= ∅ for all X ∈ Cn. The existence

of such a number follows by the compactness of Cn. Moreover, it is easy to see
that F �→ 〈kFn : n ∈ �〉 is a continuous map from F to �� , and hence its range
K := {〈kFn 〉n∈� : F ∈ F} ⊂ �� is Menger.
Let us consider the following strategy of the player I in the Menger game on K :
I starts by choosing the cover U0 = {U 0m : m ∈ �} of K , where U 0m is the set of
all 〈kFn 〉n∈� ∈ K such that kF1 < m. Suppose that II replies by choosing U 0k0 . Then
in the next move I chooses a cover U1 = {U 1m : m ∈ �,m > k0} of K , where U 1m is
the set of all 〈kFn 〉n∈� ∈ K such that kFk0+1 < m. If II replies by choosing U

1
k1
, then

I chooses U2 = {U 2m : m ∈ �,m > k1}, whereU 2m is the set of all 〈kFn 〉n∈� ∈ K such
that kFk1+1 < m, and so on. Since K is Menger, the strategy of I defined above is
not winning. Therefore there exists a play 〈Un,Unkn : n ∈ �〉 in which I follows this
strategy and looses, i.e., K ⊂

⋃
n∈� U

n
kn
. We claim that the sequence 〈kn : n ∈ �〉 is

as required. For this we shall show that for any F ∈ F and any sequence 〈Xn ∈ Cn :
n ∈ �〉 there exists n such thatXn∩F ∩[kn, kn+1) �= ∅. Indeed, sinceK ⊂

⋃
n∈� U

n
kn
,

it follows that there exists n such that kn ≤ kFkn < k
F
kn+1 < kn+1. SinceXn ∈ Cn ⊆ Ckn ,

we have that [kFkn , k
F
kn+1) ∩ F ∩ Xn �= ∅, which completes our proof. 	

To conclude this section, let us review various equivalent characterizations of
filters F for which the forcing MF does not add dominating reals. The following
theorem combines results of this paper with results from [11].

Theorem 3.5. Let F be a filter on �. The following are equivalent:
(1) MF does not add dominating reals,
(2) F is Menger,
(3) F<� is Menger,
(4) F<� is a P+ filter,
(5) F is a strong P+ filter,
(6) F<� is a strong P+ filter.

§4. Hurewicz filters and �-spaces. First we shall prove Theorem 1.4. Suppose that
F is Hurewicz, but there exists an unboundedX ⊂ �� ,X ∈ V , and anMF -name ġ

4In case X is a filter on�, notice the similarity of this game to the gameG(F+, [�]<�,F+) from [17]
where F = X<� .
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for a function dominatingX (for simplicity assume that every condition forces this).
For every x ∈ X let us find nx ∈ � and a condition 〈sx, F x〉 forcing x(n) < ġ(n)
for all n ≥ nx . Since X cannot be covered by a countable family of bounded sets,
we may assume that sx and nx do not depend on x, i.e., sx = s∗ and nx = n∗ for all
x ∈ X .
For every m ∈ � let Sm be the set of those s ∈ [�]<� such that max s∗ < min s

and there exist Fs ∈ F such that 〈s∗ ∪ s, Fs〉 forces ġ(m) to be equal to some gs (m).
It is clear that for every F ∈ F there exists s ∈ Sm such that s ⊂ F . In other
words, Um := {↑ s : s ∈ Sm} is an open cover of F . Since F is Hurewicz, for every
m there exists a finite Vm ⊂ Um such that {

⋃
Vm : m ∈ �} is a �-cover of F . Let

Tm ∈ [Sm]<� be such that Vm = {↑ s : s ∈ Tm} and f(m) = max{gs(m) : s ∈ Tm}.
We will derive a contradiction by showing that x <∗ f for each x ∈ X . Fix x ∈ X
and l ∈ � such that for every m ≥ l there exists sm ∈ Tm such that F x ∈ ↑ sm. Pick
any m ≥ n∗, l . Since 〈s∗, F x〉 � x(m) < ġ(m), 〈s∗ ∪ sm, Fsm 〉 � ġ(m) ≤ f(m), and
these two conditions are compatible, it follows that x(m) < f(m).
Now suppose that F is not Hurewicz as witnessed by a sequence 〈Un : n ∈ �〉

of covers of F by sets open in P(�). By Claim 2.1 we may additionally assume
that Un = {↑ qm(n) : m ∈ �}, where qm(n) ∈ [�]<� . For every F ∈ F consider the
function xF ∈ �� , xF (n) = min {m : F ∈ ↑ qm(n)}. It follows from the fact that F
is not Hurewicz that X = {xF : F ∈ F} is unbounded.
Now let G be the generic pseudointersection of F added byMF .

Claim 4.1. For every n there exists g(n) such that G \ n ∈ ↑ qg(n)(n).
Proof. The set U ′

n = {↑ qm(n) : qm(n) ∩ n = ∅, m ∈ �} covers F because Un is a
cover ofF .Hence for everyF ∈ F there is some ↑ qm(n) ∈ U ′

n such thatF ∈ ↑ qm(n),
and the set of conditions 〈s, F 〉 such that qm(n) ⊆ s \ n for some m ∈ � is
dense.
Let us fix F ∈ F and find n such that G \ n ⊂ F . Then G \ n ∈ ↑ qg(n)(n) yields

F ∈ ↑ qg(n)(n), which implies xF (n) ≤ g(n). Thus g ∈ �� is dominating X , and
thereforeMF fails to preserve ground model unbounded sets. 	

Remark 4.2. Theorem 1.1 can be proved directly using the ideas of the proof
of Theorem 1.4. On the other hand, the proof of [12, Theorem 3.8] could be easily
modified to get a combinatorial characterization of filters F such thatMF is almost
��-bounding, and then Theorem 1.4 can be proved in the sameway as Theorem 1.1.
We have deliberately presented two approaches.

By [4, Theorem 10] every b-scale set has theHurewicz property in all finite powers.
Thus Corollary 1.5 is a direct consequence of the following

Theorem 4.3. It is consistent with ZFC that b = �1 and every Tychonov space X
of size �1 is a �-space provided that Xn is Hurewicz for all n ∈ �.
Proof. Using Theorem 1.4, a standard book-keeping argument taking care of

all filters F on � having a Hurewicz base B of size �1, and the well-known fact that
unbounded well-ordered by ≤∗ subfamilies of �� are preserved at limit stages of
finite support iterations of c.c.c. posets (see, e.g., [3, Lemma 6.5.7]), we can perform
an �2 steps finite support iteration P�2 =

〈
Pα, Q̇α : α < �2

〉
of c.c.c. posets such

that in V P�2 the following holds:
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(i) b = �1;
(ii) Every filter F on� has a pseudointersection provided it has a Hurewicz base

B of size �1.
Here we have to use the observation that filters F as those in item (ii) above are
Hurewicz (being a continuous image of B ×P(�)), and the fact that if B of size �1
has the Hurewicz property in V P�2 then there exists an �1-club C ⊂ �2 such that
B ∈ V Pα and B is Hurewicz in V Pα for all α ∈ C .
Now suppose that in V P�2 we have a Tychonov space X of size �1 such that all
finite powers of X are Hurewicz. Let U be an �-cover of X . X is zero-dimensional
because |X | < 2� , and hence passing to a refinement of U , if necessary, we may
assume that U consists of clopen sets. Applying [10, Proposition, p. 156] we can
find a countable V = {Un : n ∈ �} ⊂ U which is an �-cover of X . Now con-
sider the map � : X → P(�), � : x �→ {n ∈ � : x ∈ Un}. It follows from the
above that � is continuous and �[X ] is centered. Since all finite powers of X are
Hurewicz, such are also all finite powers of�[X ], and hence also all finite powers of
B =

{⋂
Y : Y ∈ [�[X ]]<�

}
are Hurewicz as well because the latter is a countable

union of continuous images of finite powers of �[X ]. Thus the filter 〈�[X ]〉 has the
Hurewicz base B of size |�[X ]| ≤ |X | = �1, and consequently it has a pseudoint-
ersection J ∈ [�]� by (ii) above. Therefore J ⊂∗ �(x) for all x ∈ X , which means
that {Un : n ∈ J} is a �-cover of X . This completes the proof. 	
Finally, we shall show that p = b < c holds in any model of Corollary 1.5
(and hence also in those of Theorem 4.3).

Observation 4.4. If p < b, then there exists a b-scale set which is not a �-space.

Proof. It is easy to see that any centered subset X of [�]� without a pseudoin-
tersection is not a �-space: consider the open �-cover {On : n ∈ �} of X , where
On = {x : n ∈ x}. Thus there exists X ⊂ [�]� of size p which is not a �-space
(this fact has been attributed to [9] in [15]). Now let {sα : α < b} be a b-scale
such that 3 divides sα(n) for all α, n. Since sα <∗ sp for all α < p and p is regular,
there exists n such that the set In = {α : sα(m) < sp(m) for all m ≥ n} has size p.
Without loss of generality we may assume that n = 0, otherwise just redefine sα(k)
to be equal to 3k for all α ∈ In and k < n and note that resulting functions still
form a b-scale. Also, we can additionally assume that I0 = p because otherwise
we can set s ′α = s
α , where 
α is the αth element of I0, and consider the b-scale
{s ′α : α < p} ∪ {sα : α ≥ p}.
Let us write X in the form {xα : α < p} and set tα(n) to be the even (resp.
odd) element in the set {sα(n), sα(n) + 1} if n ∈ xα (resp. if n �∈ xα). It follows
that tα ≤∗ s� for all α < p and � ≥ p, and tα ≤∗ t� for all α < � < p. Thus
T := {tα : α < p} ∪ {sα : α ≥ p} is a b-scale. Moreover, T0 := {tα : α < p}
is a closed subset of T ∪ [�]<� because T0 = T ∩ K for the compact subset
K = {a ∈ [�]� : a(n) ≤ sp(n) for all n} of P(�). Since T0 can be continuously
mapped onto X (using the parity), it is not a �-space, and hence T ∪ [�]<� also
fails to be a �-space because this property is inherited by closed subspaces. 	

§5. Turning sets of reals into Hurewicz spaces without adding dominating reals. It
has been proven in [21] that after adding �1-many Cohen reals any set of ground
model reals becomes Menger. The same argument proves that after iterating with
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finite supports c.c.c. posets adding dominating reals uncountably many steps, each
set of groundmodel reals becomesHurewicz. The natural questionwhich arises here
is which sets of reals can be made Hurewicz by a forcing not adding dominating
reals.
A subset Y of �� is said to be finitely dominating if the set {maxfin(F ) : F ∈

[Y ]<�} is dominating,wheremaxfin(F ) is the coordinatewisemaximumofF . It was
shown in [23] that a space X ⊂ �� has the Scheepers property if and only if any
continuous image Y ⊂ �� of X is not finitely dominating. It is clear that if a
finitely dominating set Y becomes bounded in V P for some poset P, then P adds a
dominating real. It is a classical result of Hurewicz [15, Theorem 4.3] that X ⊂ ��
is Hurewicz if and only if all its continuous images Y ⊂ �� are bounded. Thus if
a non-Scheepers subspace X of �� becomes Hurewicz in V P for certain P, then P
adds a dominating real. We do not know whether the converse implication is true.

Question 5.1. Let X ⊂ �� be a Scheepers space. Is there a (c.c.c.) poset P which
does not add dominating reals and such that X is Hurewicz in V P?

The following result may be thought of as a step towards answering Question 5.1.

Theorem 5.2. Let G be a Menger filter. Then there exists a c.c.c. poset PG which
does not add dominating reals and is such that the filter G′ =

⋃
G∈G ↑G generated by

G in V PG is Hurewicz in V PG .

Proof. We shall divide the proof into a sequence of auxiliary statements.

Lemma 5.3. Let n ∈ � and Fi be a filter for all i ∈ n. If
∏
i∈n Fi is Menger, then

P =
∏
i∈nMFi does not add a dominating real.

Proof. The proof will be similar to that of the “if” part of Theorem 1.4.However,
we shall present it for the sake of completeness.
Suppose, to the contrary, that ġ is aP-name for a dominating function.An element

of Pmay be naturally identified with a sequence
〈
�s, �F

〉
, where �s = 〈s(i) : i ∈ n〉 ∈

([�]<�)n and �F = 〈F (i) : i ∈ n〉 ∈
∏
i∈n Fi , and 〈s(i), F (i)〉 ∈ MFi for all i .

For every f ∈ �� let us find nf ∈ � and a condition
〈
�s f, �F f

〉
forcing f(n) <

ġ(n) for all n ≥ nf . Since �� cannot be covered by a countable family of non-
dominating sets, we may assume that �s f and nf do not depend on f, i.e., �s f = �s∗
and nf = n∗ for all f ∈ �� .
For everym ∈ � let Sm be the set of those �s = 〈s(i) : i ∈ n〉 ∈ ([�]<�)n such that

max s∗(i) < min s(i) for all i , and there exists �F�s such that
〈
〈s∗(i)∪s(i) : i ∈ n〉, �F�s

〉
forces ġ(m) to be equal to some g�s(m). It is clear that for every �F ∈

∏
i∈n Fi there

exists �s ∈ Sm such that s(i) ⊂ F (i) for all i ∈ n. In other words,

Um :=
{∏
i∈n

↑ s(i) : 〈s(i) : i ∈ n〉 ∈ Sm

}

is an open cover of
∏
i∈n Fi . Since the latter product is Menger, for every m

there exists a finite Vm ⊂ Um such that
∏
i∈n Fi ⊂

⋃
m≥l

⋃
Vm for all l ∈ �.

Let Tm ∈ [Sm]<� be such that Vm =
{∏

i∈n ↑ s(i) : 〈s(i) : i ∈ n〉 ∈ Tm
}
and

f(m) = max {g�s(m) : �s ∈ Tm}. Let also m ≥ n∗ be such that �F f ∈
∏
i∈n ↑ s(i)
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for some 〈s(i) : i ∈ n〉 ∈ Tm. It follows that s(i) ⊂ F f(i) for all i ∈ n, and hence

p :=
〈
〈s∗(i) ∪ s(i) : i ∈ n〉, 〈F f(i) ∩ F�s (i) : i ∈ n〉

〉
is a condition in P stronger than both

〈
�s∗, �F f

〉
and

〈
〈s∗(i) ∪ s(i) : i ∈ n〉, �F�s

〉
.

However,
〈
〈s∗(i)∪s(i) : i ∈ n〉, �F�s

〉
forces ġ(m) = g�s (m) ≤ f(m),whereas

〈
�s∗, �F f

〉
forces ġ(m) > f(m), a contradiction. 	
Corollary 5.4. Let F be a collection of filters on �. If

∏
i∈n Fi is Menger for

any n ∈ � and 〈Fi : i ∈ n〉 ∈ F n , then P =
∏

F∈F MF with finite supports does not
add a dominating real.

Proof. Since P is c.c.c. [14, Theorem 15.15], if P added a dominating real then
there would exist a countable F ′ ∈ [F ]� such that P′ =

∏
F∈F ′ MF adds a

dominating real. The latter productmay be viewed as a finite support iterationwhose
initial segments are equivalent to finite products of Mathias posets with respect to
elements of F ′, and hence these initial segments preserve V ∩ �� unbounded by
our assumption. But then by [3, Lemma 6.5.7] we have that V ∩ �� is unbounded
in V P

′
as well, a contradiction. 	

In general it is a notorious open question whether it is consistent that theMenger
property is preserved by finite products. The following simple statement gives the
answer in the case of filters.

Claim 5.5. Let F be a Menger (Hurewicz) filter. Then all finite powers of F are
Menger (Hurewicz).

Proof. Let us fix n ∈ � and consider the map φ : F ×P(�)n → P(�)n assigning
to 〈F ;A0, . . . , An−1〉 the sequence 〈F ∪A0, . . . , F ∪An−1〉. It is clear that the range
of φ is Fn. Since the Menger (Hurewicz) property is preserved by products with
compact spaces and continuous images, we conclude thatFn isMenger (Hurewicz).

	
Set PG =

∏
α∈�1 MG with finite supports and let �X = 〈Xα : α < �1〉 be the

sequence of generic reals added by PG . By Claim 5.5 and Corollary 5.4 we have
that PG does not add dominating reals. Let R =

⋂
n∈� On ∈ V [ �X ] be a G� subset

containing G′. By Claim 2.1 we may assume that On =
⋃
a∈An ↑ a for some An ∈

(G<�)+. Let α ∈ �1 be such that 〈An : n ∈ �〉 ∈ V [〈X
 : 
 < α〉]. Since Xα is
generic over V [〈X
 : 
 < α〉], for every n ∈ � there exist infinitely many a ∈ An
such that a ⊂ Xα . In other words,

⋃
n∈� ↑(Xα \ n) ⊂ R. On the other hand,

G′ ⊂
⋃
n∈� ↑(Xα \ n). Thus we have found a �-compact set containing G′ and

contained in R. By [15, Theorem 5.7] this completes our proof. 	
We do not know whether G itself becomes Hurewicz in the forcing extension
by PG .

Remark 5.6. LetF be a family of filters satisfying the premises of Corollary 5.4.
The proof of Theorem 5.2 actually allows us to find a poset P which does not add
dominating reals and such that ↑F is Hurewicz in V P for all F ∈ F .
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[13] Hurewicz, W., Über eine Verallgemeinerung des Borelschen Theorems. Mathematische

Zeitschrift, vol. 24 (1925), pp. 401–421.
[14] Jech, T., Set theory, The third millennium edition, revised and expanded, SpringerMonographs

in Mathematics. Springer-Verlag, Berlin, 2003.
[15] Just, W.,Miller, A. W., Scheepers, M. and Szeptycki, P.J., The combinatorics of open covers II .

Topology and its Applications, vol. 73 (1996), pp. 241–266.
[16] Laflamme, C., Forcing with filters and complete combinatorics.Annals of Pure and Applied Logic,

vol. 42 (1989), pp. 125–163.
[17] Laflamme, C. and Leary, C.C., Filter games on� and the dual ideal. Fundamenta Mathematicae,

vol. 173 (2002), pp. 159–173.
[18] Orenshtein, T. and Tsaban, B., Linear �-additivity and some applications. Transactions of the

American Mathematical Society, vol. 363 (2011), pp. 3621–3637.
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