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Abstract
In this paper we establish the existence and multiplicity of nontrivial solutions to the
following problem:

(–�)
1
2 u + u + (ln | · | ∗ |u|2) = f (u) +μ|u|–γ –1u, in R,

where μ > 0, (∗) is the convolution operation between two functions, 0 < γ < 1, f is a
function with a certain type of growth. We prove the existence of a nontrivial solution
at a certain mountain pass level and another ground state solution when the
nonlinearity f is of exponential critical growth.

MSC: 35R11; 35J75; 35J60; 46E35

Keywords: Fractional Laplacian; Ground state solution; Singularity

1 Introduction
The main objective of this paper is to establish the existence and multiplicity of nontrivial
solutions for the following problem:

(–�)
1
2 u + u +

(
ln | · | ∗ |u|2) = f (u) + μ|u|–γ –1u in R, (1.1)

where μ > 0, (∗) is the convolution operation between two functions, 0 < γ < 1. The frac-
tional Laplacian operator (–�) 1

2 is defined as

(–�)
1
2 u(x) = C

(
1,

1
2

)
lim
ε→0

∫

R\(x–ε,x+ε)

u(x) – u(y)
|x – y|2 dy for every x ∈R, (1.2)

where C(1, 1
2 ) = 2

π
is a normalization constant (cf. Ros, Oton, and Serra [36, For-

mula A.1]). Here, f is a continuous function with an exponential growth whose primi-
tive is F(t) =

∫ t
0 f (s) ds. Using subcritical or critical polynomial growth of the function f

is quite common in the literature pertaining to problems on elliptic PDEs. However, very
few have considered the case when the nonlinear term has an exponential subcritical or a
critical growth. To begin with, we first recall that a function f is said to have a subcritical
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exponential growth at ∞ if

lim
t→∞

f (t)
eβt2 – 1

= 0 for every β > 0.

Similarly, f is said to be of critical exponential growth at ∞ if there exist θ ∈ (0,π ] and
β0 ∈ (0, θ ) such that

lim
t→∞

f (t)
eβt2 – 1

=

⎧
⎨

⎩
0, for every β > θ ,

∞, for every β < θ .

The following are some hypotheses which are commonly assumed for problems with the
Moser–Trudinger inequality (cf. do Ó et al. [19] and Felmer et al. [21]):

(A1) f ∈ C(R,R), f (0) = 0, has critical exponential growth and F(t) ≥ 0 for every t ∈R;
(A2) lim|t|→0

f (t)
|t| = 0;

(A3) There exists L > 4 such that f (t)t ≥ LF(t) > 0 for every t ∈ R (this condition is used
to verify that a Cerami sequence is bounded in the Sobolev space H 1

2 (R));

(A4) There exist q > 4 and Cq > [2(q–2)]
q–2

2

q
q
2

(Sq)q

rq–2
0

such that F(t) ≥ Cq|t|q for every t ∈ R,

where Sq, r0 > 0 (Sq will be defined in Lemma 3.12).
We now give a short review of the related results. The problem that inspired us to inves-
tigate the current problem is from the paper by Boër and Miyagaki [6]. The novelty
addressed in this work is due to the presence of a singular term which is difficult to handle
since the corresponding energy functional ceases to be C1. This poses an extra challenge
in applying the mountain pass theorem and other results in variational methods that de-
mand the functional to be C1. To add to these difficulties, the logarithmic term poses a
great challenge to establishing the existence of a convergent subsequence of a Cerami se-
quence. The idea of module translations from the paper by Cingolani and Weth [14]
will be used. However, since the norm of the space X (the solution space which will be
defined in the next section) is not invariant under translations, a new difficulty arises. The
issues pertaining to the exponential term will be explained later.

Problems involving nonlocal operators are important in many fields of science and en-
gineering e.g. optimization, finance, phase transitions, stratified materials crystal disloca-
tions, anomalous materials, semipermeable membranes, flame propagation, water waves,
soft thin films, conservation laws, etc. We refer the reader to Caffarelli [8], Di Nezza
et al. [15], and the references therein. The literature pertaining to problems without the
logarithmic Choquard and the singular term is quite vast, and it is impossible to list ev-
erything in this paper. A seminal work in the field of singularity driven problems is due
to Lazer and Mc Kenna [27]. Thereafter the problems with singularity were studied by
many researchers; see Ghanmi and Saoudi [22], Oliva and Petitta [31], Saoudi et
al. [37], and the references therein. Some of the other works that the readers can consult
involve the fractional Laplacian operator (–�)s when 2s < N and s ∈ (0, 1) are Chang and
Wang [10] and Felmer et al. [21]. We note that Felmer et al. [21] also studied some
properties of the solutions besides regularity. Furthermore, do Ó et al. [18] studied the
problem without the singular and the logarithmic term with potentials that vanish at in-
finity. Some more suggested papers are Autuori and Pucci [4], Cao [9], do Ó et al.
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[17], Iannizzotto and Squassina [25], Lam and Lu [26], Moser [30], and Pucci et
al. [35].

We now turn our attention to the problems involving Choquard logarithmic term. Some
related references are Alves and Figueiredo [3], Cingolani and Jeanjean [13], Cin-
golani and Weth [14], Du and Weth [20], and Wen et al. [41]. Furthermore, Cin-
golani and Weth [14] proved the existence of infinitely many distinct solutions and
a ground-state solution, with V : R2 → (0,∞) which is continuous and Z

2-periodic,
f (u) = b|u|p–2u, b > 0. Since the setting is periodic, the global Palais–Smale condition
can fail due to the invariance of the functional under the Z

2-translations. To tackle this
problem, Du and Weth [20] proved the existence of a mountain pass solution and a
ground state solution for local problem (1.1) but without the singular term in the case
when V (x) ≡ α > 0, 2 < p < 4, and f (u) = |u|p–2u. They went on to further prove that if
p ≥ 3, then both the energy levels are the same and provided a characterization for them.
Cingolani and Jeanjean [13] proved the existence of stationary waves with prescribed
norm by considering λ ∈R. Wen et al. [41] considered a nonlinearity with a polynomial
growth. Alves and Figueiredo [3] proved the existence of a ground state solution to
problem (1.1) without the singular term but with a nonlinearity of the Moser–Trudinger
type. For Choquard problems one can refer to Abdellaoui and Bentifour [1], Biswas
and Tiwari [5] Bonheure et al. [7], Goel et al. [23], Guo and Wu [24], Lieb [28],
and Panda et al. [33].

This paper is organized as follows. Section 2 is a quick look at the mathematical back-
ground, space description. In Section 3 we describe an application of the fractional Lapla-
cian operator for dimension N = 1 along with a few auxiliary lemmas. In Section 4 we
prove a few auxiliary lemmas and our main result. Finally, we give an Appendix to the
proofs of all results which have been used in the proof of the main theorem.

2 Preliminaries
This section is devoted to presentation of the most important notations, results, remarks
that will be used in our study of problem (1.1) (for the remaining background material, we
refer the reader to the comprehensive monograph by Papageorgiou, Rdulescu, and
Repovš [34]), and the statement of our main result.

We begin by defining the Hilbert space

W
1
2 ,2(R) = H

1
2 (R) =

{
u ∈ L2(R) :

∫∫

R×R

|u(x) – u(y)|2
|x – y|2 dx dy < ∞

}
,

equipped with the norm

‖u‖2 = ‖u‖2
2 +

∫∫

R×R

|u(x) – u(y)|2
|x – y|2 dx dy = ‖u‖2

2 + [u]2
1
2 ,2. (2.1)

We denote the Schwartz class of functions by S(R). Thus, for any u ∈ S(R), the Fourier
transform of (–�) 1

2 u is given by |ξ |û, where û denotes the Fourier transform of u. Also,
by Proposition 3.6 given in Di Nezza et al. [15], we have

∥∥(–�)
1
4 u

∥∥2
2 =

1
2π

∫∫

R×R

(u(x) – u(y))2

|x – y|2 dx dy for every u ∈ H
1
2 (R).

The factor 1
2π

will be ignored in the paper throughout.
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Next, we define a slightly smaller space that will make the associated energy functional
well-defined (cf. Stubbe [40, Lemma 2.1]):

X =
{

u ∈ H
1
2 (R) :

∫

R

ln
(
1 + |x|)(u(x)

)2 dx < ∞
}

,

endowed with the norm

‖u‖2
X = ‖u‖2

2 +
∫

R

ln
(
1 + |x|2)(u(x)

)2 dx = ‖u‖2
2 + ‖u‖2

∗. (2.2)

Then X is a Hilbert space as well. We define three auxiliary bilinear forms as follows:

A(u, v) =
∫∫

R×R

ln
(
1 + |x – y|)u(x)v(y) dx dy, (2.3)

B(u, v) =
∫∫

R×R

ln

(
1 +

1
|x – y|

)
u(x)v(y) dx dy, (2.4)

C(u, v) = A(u, v) – B(u, v) =
∫∫

R×R

ln
(|x – y|)u(x)v(y) dx dy. (2.5)

We further define the functionals

U : H
1
2 (R) →R, V : L4(R) →R, W : H

1
2 (R) →R, (2.6)

by U(u) = A(u2, u2), V (u) = B(u2, u2), W (u) = C(u2, u2).
Clearly, a combination of the Hardy–Littlewood–Sobolev inequality (HLS) Lieb [29],

0 ≤ ln(1 + r) ≤ r, for any r > 0, leads to the inequality.

∣∣B(u, v)
∣∣ ≤

∫∫

R×R

1
|x – y|u(x)v(y) dx dy ≤ C0‖u‖2‖v‖2 for every u, v ∈ L2(R), (2.7)

where C0 is an (HLS) constant. Consequently, we also have

∣∣V (u)
∣∣ ≤ C0‖u‖4

4, for every u ∈ L4(R). (2.8)

A standard property of the logarithmic function is

ln
(
1 + |x ± y|) ≤ ln

(
1 + |x| + |y|) ≤ ln

(
1 + |x|) + ln

(
1 + |y|) for every x, y ∈R. (2.9)

Using (2.9) in tandem with the Hölder inequality, we get

A(uv, wz) ≤ ‖u‖∗‖v‖∗‖w‖2‖z‖2

+ ‖u‖2‖v‖2‖w‖∗‖z‖∗ for every u, v, w, z ∈ L2(R). (2.10)

The following lemma is the celebrated result of Moser and Trudinger [32].
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Lemma 2.1 There exists 0 < ω ≤ π such that, for all β ∈ (0,ω), there exists a constant
Cβ > 0 satisfying

∫

R

(
eβu2

– 1
)

dx ≤ Cβ‖u‖2
2

for all u ∈ H 1
2 (R) with ‖(–�) 1

4 u‖ ≤ 1.

The associated energy functional

E(u) =
1
2
‖u‖2 +

1
4

W (u) –
∫

R

F(u) dx –
μ

1 – γ

∫

R

|u|1–γ dx (2.11)

is well-defined due to the lemma above and the space definition. However, the functional
is not C1, which disallows the use of the basic results of variational analysis. To tackle this,
we define the cutoff functional Ẽ as follows:

Ẽ(u) =
1
2
‖u‖2 + W (u) –

∫

R

G̃(u) dx. (2.12)

Here

G̃(t) =

⎧
⎨

⎩
μ|t|1–γ + F(t), if |t| > uμ

μu1–γ
μ + F(uμ), if |t| ≤ uμ

where F(t) =
∫ t

0 f (s) ds and uμ is a solution to

(–�)
1
2 u + u +

(
ln | · | ∗ |u|2) = μu–γ , in R, (2.13)

whose existence is guaranteed by Lemma A.2. Moreover, by Lemma A.4 in Appendix, one
can establish that, for a range of μ, a solution to (1.1) is such that u > uμ a.e. in �.

Furthermore, observe that

lim
u→∞

G̃(u)
eβu2 – 1

= 0.

Also, we have

0 <
G̃(u)

eβu2 – 1
<

G̃(u)
eβu2

λ – 1
.

Under the limit u → 0, we have G̃(u)

eβu2
λ –1

→ u1–γ
λ

eβu2
λ –1

. For x ∈ �, which satisfy 0 < uλ(x) < M 

1, we have (uλ(x))2 < (uλ(x))1–γ . Hence 1

β
≈ uλ(x)2

eβuλ(x)2 –1
< uλ(x)1–γ

eβuλ(x)2 –1
. This implies that for a

suitable C′ > 0 we have

G̃(u) ≤ C′(eβu2
– 1

)
a.e. in �.
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By Lemmas 2.1, 3.1 we can now conclude that

∫

R

G̃(u) dx ≤ C′
∫

R

(
eβu2

– 1
)

dx ≤ Cβ‖u‖2
2 ≤ C′‖u‖2. (2.14)

Remark 2.2 Under hypotheses (A1)–(A2), there exists, for q > 2, ε > 0, and β > θ , a constant
c2 > 0 such that

∣∣F(u)
∣∣ ≤ ε

2
|u|2 + c2|u|q(eβ|u|2 – 1

)
for every u ∈ X. (2.15)

Furthermore, there exists a constant c3 > 0 satisfying the following inequality:

∣∣f (u)
∣∣ ≤ ε|u| + c3|u|q–1(eβ|u|2 – 1

)
for every u ∈ X. (2.16)

An important consequence of (2.15) is the following:
Consider ρ1,ρ2 > 1, ρ1 ∼ 1, ρ2 > 2 such that 1

ρ1
+ 1

ρ2
= 1. Then it follows that, for any

u ∈ H 1
2 (R), ε > 0, β > θ , we have that

∫

R

∣∣F(u)
∣∣dx ≤ ε

2
‖u‖2 + c2‖u‖q

ρ2q

(∫

R

(
eρ1βu2

– 1
)

dx
) 1

ρ1
. (2.17)

Remark 2.3 Henceforth,
1. the notation of a subsequence will be the same as its sequence;
2. the notation for cutoff energy functional Ẽ will be continued to be denoted by E.

We are now in a position to state our main result.

Theorem 2.4 Assume that hypotheses (A1)–(A4) are satisfied, and let q > 4 and Cq > 0 be
chosen sufficiently large. Then

(i) problem (1.1) has a solution u ∈ X \ {0} such that

E(u) = inf
γ∈�

max
t∈[0,1]

{
E
(
γ (t)

)}
= d,

where

� =
{
γ ∈ C

(
[0, 1], X

)
: γ (0), E

(
γ (1)

)
< 0

}

is the class of paths on X joining γ (0) and γ (1);
(ii) problem (1.1) has a ground state solution u ∈ X \ {0} such that

E(u) = inf
{

E(v) : v ∈ X is a solution of problem (1.1)
}

.

An important application of the fractional Laplacian operator for dimension N = 1 can
be found in Dipierro et al. [16]. We give a gist of the version of a model for the dynamics
of the dislocation of atoms in crystals. The model is related to the Peierls–Nabarro energy
functional. The system is a hybrid combination in which a discrete dislocation occurring
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along dislocation dynamics in crystals a slide line is incorporated in a continuum medium.
The problem is as follows:

∂

∂t
v = (–�)sv – P′(v) + σε(t, x), in (0, +∞) ×R, (2.18)

where s ∈ [ 1
2 , 1), P is a 1-periodic potential, and σε plays the role of external stress acting

on the material. Setting vε(t, x) = v( t
ε1+2s , x

ε
), equation (2.18) can be recast as follows:

∂

∂t
vε =

1
ε

(
(–�)svε –

1
ε2s P′(vε) + σε(t, x)

)
in (0, +∞) ×R,

vε(0, x) = v0
ε in R.

(2.19)

For a suitable choice of v0
ε , the basic layer solution u is introduced, which happens to be a

solution to the following problem:

(–�)su – P′(u) = 0 in R

u′ > 0 and u(–∞) = 0, u(0) =
1
2

, u(+∞) = 1.
(2.20)

One can see that the problem considered in this article has a proper physical application
and is a testimony to the importance of the problem considered in this paper.

3 Auxiliary lemmas
In this section we discuss some auxiliary lemmas and state the main result.

Lemma 3.1 (cf. Boër and Miyagaki [6, Lemma 2.1]) The space X is continuously em-
bedded in H 1

2 (R) and compactly embedded in Lp(R) for every p ≥ 2.

Below is the well-known Moser–Trudinger lemma (cf. Cao [9]).

Lemma 3.2 (cf. Ozawa [32]) Let (un) be a sequence in L2(R) and u ∈ L2(R) \ {0} such that
un → u pointwise a.e. on R. Moreover, let (vn) be a bounded sequence in L2(R) such that
sup
n∈N

{A(u2
n, v2

n)} < ∞. Then there exist n0 ∈ N and C > 0 such that ‖un‖∗ < C for any n ≥ n0.

Moreover, if

A
(
u2

n, v2
n
) → 0 and ‖vn‖2 → 0 as n → ∞,

then ‖vn‖∗ → 0 as n → ∞.

Based on Lemma 2.1, do Ó et al. [19] proved the following lemma.

Lemma 3.3 (cf. do Ó et al. [19, Proposition 2.1]) For any β > 0, u ∈ W 1
2 (R),

∫

R

(
eβu2

– 1
)

dx < ∞.
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Hence, from Lemma 3.3 and equation (2.15), for any u ∈ X, we have

∫

R

∣
∣F(u)

∣
∣ ≤ ε

2
‖u‖2 + c2‖u‖q

ρ2q

(∫

R

(
eρ1βu2 – 1

)
dx

) 1
ρ1

< ∞. (3.1)

The following are some useful lemmas which will be used in the paper.

Lemma 3.4 (cf. Cingolani and Weth [14, Lemma 2.6]) Let (un), (vn), and (wn) be
bounded sequences in X such that un ⇀ u in X. Then, for every z ∈ X, we have A(vnwn, z ·
(un – u)) → 0 as n → ∞.

Lemma 3.5 (cf. Felmer et al. [21, Lemma 2.2])
(i) The functionals U , V , W are of class C1 on X . In fact, 〈U ′(u), v〉 = 4A(u2, uv),

〈V ′(u), v〉 = 4B(u2, uv), 〈W ′(u), v〉 = 4C(u2, uv) for all u, v ∈ X .
(ii) V is continuously differentiable on L4(R).

(iii) U is a weakly lower semicontinuous functional on H 1
2 (R).

(iv) E is lower semicontinuous on H 1
2 (R).

We now check that the energy functional E depicts the mountain pass geometry. This
will be required to obtain a Cerami sequence for a certain mountain pass energy level d
(given in Theorem 2.4). Following is the definition of a Cerami sequence pertaining to a
C1-functional.

Definition 3.6 (Soni and Choudhuri [39, Definition 2.1]) Let � : Y → R be a C1-
functional, where Y is a normed linear space with the norm ‖ · ‖Y . Then � is said to satisfy
the Cerami condition at a level c ∈ R if any sequence (un) ⊂ Y such that �(un) → c and
(1 + ‖un‖Y )�′(un) → 0 as n → ∞ has a convergent subsequence in Y .

Remark 3.7 The advantage of this condition is that a Cerami sequence can produce a crit-
ical point even when a Palais–Smale sequence does not (cf. Schechter [38]).

Lemma 3.8 There exist sufficiently small R > 0 and μ0 > 0 such that

mr = inf
{

E(u) : u ∈ X,‖u‖ = r
}

> 0 for every r ∈ (0, R]

and

m′
r = inf

{〈
E′(u), u

〉
: u ∈ X,‖u‖ = r

}
> 0 for every r ∈ (0, R]

whenever μ ∈ (0,μ0).

Proof Let u ∈ X \ {0} and such that u > uλ a.e. in �. Choose ρ1,ρ2 > 1 such that ρ1 ∼ 1,
ρ2 > 2, and ρ1β‖u‖2 in order to apply the exponential estimates in (2.17). Furthermore, on
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using the Sobolev embeddings, we get

E(u) =
1
2
‖u‖2 +

1
4

W (u) –
∫

R

F(u) dx –
μ

1 – γ

∫

R

|u|1–γ dx

≥ 1
2
‖u‖2

(
(1 – ε) – C2‖u‖2 – C3‖u‖q–2 –

C4μ

1 – γ

)
.

(3.2)

Thus, for a pair of sufficiently small positive numbers (μ0, R), we get E(u) > 0, whenever
‖u‖ = r < R and μ ∈ (0,μ0). Similarly,

〈
E′(u), u

〉
= ‖u‖2 + W (u) –

∫

R

f (u)u dx – μ

∫

R

|u|1–γ dx

≥ ‖u‖2((1 – ε) – C4‖u‖2 – C5‖u‖q–2 – C4μ
)
.

(3.3)

Once again, by choosing R > 0 and μ0 sufficiently small, we obtain m′
r > 0. This completes

the proof. �

Lemma 3.9 Let u ∈ X \ {0} and q > 4. Then

lim
t→0

E(tu) = 0, sup
t>0

{
E(tu)

}
< ∞, E(tu) → –∞ as t → ∞.

Proof Suppose that u ∈ X \ {0}. By (A4) and q > 4 we get

E(tu) =
t2

2
‖u‖2 +

t4

4
W (u) –

∫

R

F(tu) dx –
t1–γ μ

1 – γ

∫

R

|u|1–γ dx

≤ t2

2
‖u‖2 +

t4

4
W (u) – Cqtq

∫

R

|u|q dx –
t1–γ μ

1 – γ

∫

R

|u|1–γ dx

≤ t2

2
‖u‖2 +

t4

4
W (u) – Cqtq‖u‖q

q

–
t1–γ μ

1 – γ

∫

R

|u|1–γ dx → –∞ as t → ∞.

(3.4)

Also, it is easy to see that lim
t→0

E(tu) = 0, sup
t>0

{E(tu)} < ∞. �

Remark 3.10 It is easy to verify invoking Lemma 3.9 and the intermediate value theorem
that 0 < mR ≤ d < ∞. Since the functional E has mountain pass geometry, by Du and
Weth [20, Lemma 3.2], there exists a sequence (un) ⊂ X such that

E(un) → d and
∥
∥E′(un)

∥
∥

X′
(
1 + ‖un‖X

) → 0 as n → ∞. (3.5)

Lemma 3.11 Suppose that the sequence (un) ⊂ X satisfies the Cerami condition (3.5). Then
(un) is bounded in H 1

2 (R).
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Proof Using (2.14), the condition in (3.5), (A3), and the embedding of H 1
2 (R) ↪→ Lq(R) for

q ∈ [1,∞) from Lemma 3.1, we obtain

d + o(1) ≥ E(un) –
1
4
〈
E′(un), un

〉

≥ 1
4
‖un‖2 +

(
L
4

– 1
)∫

R

F(un) dx – μ
3 + γ

4(1 – γ )

∫

R

|u|1–γ dx

≥ 1
4
‖un‖2 + C6

(
L
4

– 1
)

‖un‖q – μ
3 + γ

4(1 – γ )

∫

R

|u|1–γ dx

≥ 1
4
‖un‖2 + C6

(
L
4

– 1
)

‖un‖q – C′μ
3 + γ

4(1 – γ )
‖un‖2.

(3.6)

The inequality in (3.6) clearly shows that the sequence (un) is bounded in H 1
2 (R). For if not,

then on dividing (3.6) by ‖un‖q and then passing the limit n → ∞ yields a contradiction
to 0 ≥ C6( L

4 – 1). Thus, for a small range of μ, say (0,μ0), we have

d + o(1) ≥ 1
4
‖un‖2. (3.7)

�

The following lemma shows that any sequence (un) ⊂ X such that E(un) ≤ d for all n ∈N

can be taken to be of sufficiently small norms.

Lemma 3.12 Let (un) ⊂ X satisfy the Cerami condition in (3.5) with q > 4. Then, for some
sufficiently small r0 > 0, we have lim sup

n
‖un‖2 < r2

0 .

Proof By Lemma 3.11, we know that (un) is bounded in H 1
2 (R). Certainly, lim sup

n
‖un‖2 ≤

4c + o(1) is bounded above (and of course, below). We will find an estimate of the upper
bound for this quantity. Consider the set S = {u ∈ X : u �= 0, W (u) ≤ 0} and define ut(x) =
t2u(tx) for all t > 0, u �= 0 ∈ X, x ∈ R. We have W (ut) = t6C(U) – t6 ln t‖u‖4

2 → –∞ as
t → ∞. This shows that S is nonempty. By the Sobolev embedding theorem we have
‖u‖ ≥ C‖u‖q for all u ∈ H 1

2 (R) \ {0}.
We define

Sq(v) =
‖v‖
‖v‖q

.

Therefore, Sq = infv∈S Sq(v) ≥ infv�=0 Sq(v) > 0. We will now estimate the energy level d. Let
v ∈S and T > 0 be sufficiently small. Then E(Tv) < 0. Take a path α : [0, 1] → X defined as
α(t) = tTv. Therefore,

d ≤ max
0≤t≤1

E
(
α(t)

)
= max

0≤t≤1
E(tTv) ≤ max

t≥0
E(tv). (3.8)

Consequently, for w ∈S, we have

d ≤ max
t≥0

E(tw) ≤ max
t≥0

{
t2

2
‖w‖2 – Cqtq‖w‖q

q

}
≤

(
1
2

–
1
q

)
(Sq(w))

2q
q–2

(qCq)
2

q–2
, (3.9)
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where we have used (A4). On taking infimum over w ∈S, we obtain

lim sup
n

‖un‖2 ≤ 4d ≤ 2 · q – 2
q

(Sq(w))
2q

q–2

(qCq)
2

q–2
≤ r2

0. (3.10)

�

Before we state and prove the next lemma, we need to recall the following two theorems.

Theorem 3.13 (Di Nezza et al. [15, Theorem 7.1]) Let s ∈ (0, 1), p ∈ [1,∞), q ∈ [1, p],
� ⊂ R

N be a bounded extension domain for W s,p and T be a bounded subset of Lp(�).
Suppose that

sup
f ∈T

∫∫

�×�

|f (x) – f (y)|p
|x – y|N+sp dx dy < ∞.

Then T is pre-compact in Lq(�).

Theorem 3.14 (Adams [2, Theorem 7.41]) Suppose that for � ⊂ R
N there exists a

strong (M + 1)-extension operator O and, for |δ| ≤ |α| = M, linear operators Oαδ contin-
uous from W s,p(�) into W 1,p(RN ) and from Lp(�) into Lp(RN ) such that if u ∈ W m,p(�),
then

Dα
Ou(x) =

∑

|δ|≤M

OαδDδu(x). (3.11)

If s = M + σ > 0, 0 ≤ σ < 1, then W s,p(�) coincides with the set of restrictions on � of
functions in W s,p(RN ).

Finally, we have the following lemma.

Lemma 3.15 Let (un) ⊂ X be bounded in H 1
2 (R) and such that

Q = lim inf
n

sup
y∈Z

∫

B 3
2

(y)

∣
∣un(x)

∣
∣2 dx > 0. (3.12)

Then there exist u ∈ H 1
2 (R) \ {0} and (yn) ⊂ Z such that, up to a subsequence, ũn = un(· –

yn) ⇀ u ∈ H 1
2 (R). Here, B 3

2
(y) = {x ∈R : |x – y| < 3

2 }.

Proof The property of lim inf and sup together produces the sequence (yn) such that |yn| →
∞ and the boundedness of (un) in H 1

2 (R) produces u such that un ⇀ u ∈ H 1
2 (R). Also,

u �= 0 given condition (3.12). By Lemma 3.1 we have that un → u in L2(R) and hence from
Theorem 3.13 we have un → u in L2(B 3

2
(yn)). Therefore, there exists a subsequence such

that un → u a.e. in B 3
2

(yn). These ũn = un(· – yn) are nothing but the restrictions of the
functions in (un) over B 3

2
(yn). Thus by Theorem 3.14, we can consider the functions O00ũn

that will still be denoted by ũn. Therefore, ũn ⇀ u ∈ H 1
2 (R). �
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4 Proof of the main theorem
We now give a proof of Theorem 2.4. First, we will prove another lemma.

Lemma 4.1 Let q > 2 and (un) ⊂ X satisfying the Cerami condition. On passing to a sub-
sequence, if necessary, exactly one of the following statements holds true.

(i) ‖un‖ → 0 and E(un) → 0 as n → ∞.
(ii) There exists (yn) ⊂ Z such that |yn| → ∞ such that ũn = un(· – yn) → u in X for a

nontrivial critical point u ∈ X of E.

Proof By Lemma 3.12, we see that the Cerami sequence (un) is bounded in H 1
2 (R). There-

fore there exists a subsequence from Lemma 3.15 such that

∫

R

(
eρ1βu2

n – 1
)

dx ≤ Cβ for every n ∈N. (4.1)

Suppose that (i) does not hold.

Claim A lim inf
n

sup
y∈Z

∫
B2(y) |un(x)|2 dx > 0.

On the contrary, suppose this does not hold. By Lion’s Lemma 2.4 in Yu et al. [42], we
have un → 0 in La(R) for all a > 2. By (2.8), we have V (un) → 0 as n → ∞. Since q > 2, we
have by Remark 2.2 for a subsequence that

∣
∣∣
∣

∫

R

f (un)un dx
∣
∣∣
∣ ≤ ε‖un‖2

2 + C7‖un‖q
qr2 → 0,

∫

R

|un|1–γ dx → 0 as ε → 0, n → ∞.
(4.2)

Furthermore,

‖un‖2 + U(un) =
〈
E′(un), un

〉
+ V (un) +

∫

R

f (un)un dx

+ μ

∫

R

|un|1–γ dx → 0 as n → ∞.
(4.3)

This further implies that ‖un‖, U(un) → 0 as n → ∞. By the embedding H 1
2 (R) ↪→ L2(R),

we have that ‖un‖2 → 0 as n → ∞. Also, by Remark 2.2, we have
∫
R

F(un) dx → 0 as n →
∞. Thus E(un) → 0 as n → ∞, which is a contradiction. Thus

lim inf
n

sup
y∈Z

∫

B2(y)

∣∣un(x)
∣∣2 dx > 0.

This fact combined with Lemma 3.15 helps us to produce a sequence (yn) ⊂ Z and u ∈
H 1

2 (R) \ {0} such that un(· – yn) = ũn ⇀ u in H 1
2 (R). Therefore (ũn) is bounded in Lp(R)

for any p ≥ 2 and hence ũn(x) → u(x) a.e. in R. Now, observe that for q > 2

U(ũn) = U(un) =
〈
E′(un), un

〉
+ V (un) +

∫

R

f (un)un dx + μ

∫

R

|un|1–γ dx – ‖un‖2

≤ C0‖un‖2
4 + εC8 + C9‖un‖q

qr2 + o(1) ≤ C10 + o(1).
(4.4)
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Therefore, U(ũn) < ∞. Hence, since (ũn) is bounded in L2(R), it follows by Lemma 3.2 that
(‖ũn‖∗) is bounded in X. By the reflexivity of X, we get ũn ⇀ u in X. From Lemma 3.1 we
obtain ũn → u in Lp(R) for all p ≥ 2.

Claim B 〈E′(ũn), ũn – u〉 → 0 as n → ∞.

A simple change of variable guarantees that 〈E′(ũn), ũn – u〉 = 〈E′(un), un – u(x + yn)〉.
Thus,

∣
∣〈E′(ũn), ũn – u

〉∣∣ =
∣
∣〈E′(un), un – u(x + yn)

〉∣∣

≤ ∥
∥E′(un)

∥
∥

X′
(‖un‖X +

∥
∥u(· + yn)

∥
∥

X

)
for every n ∈N.

(4.5)

We will now try to estimate ‖u(· + yn)‖X . Suppose that |yn| → ∞. Then, for each x ∈R,

ln
(
1 + |yn|

)
– ln

(
1 + |x – yn|

)
= ln

(
1 + |yn|

1 + |x – yn|
)

→ 0, n → ∞. (4.6)

Thus there exists C11 > 0 such that ln(1 + |x – yn|) ≥ C11 ln(1 + |yn|) for all n ∈ N, which
implies

‖un‖2
∗ ≥

∫

R

ln
(
1 + |x – yn|

)
ũ2

n dx

≥ C11 ln
(
1 + |yn|

)∫

R

ũ2
n dx ≥ C11 ln

(
1 + |yn|

)
for every n ∈N.

(4.7)

Now, if yn → y0, then obviously up to a subsequence still denoted by (yn) we have yn = y0.
Let y0 > 0. Suppose that δ > 0 and define S = (–b, 0). For each x ∈ S, we have |x – y0| > |y0|.
Thus, by the mean value theorem of integration, there exists xb ∈ S such that

‖ũn‖2
∗ ≥

∫

S
ln

(
1 + |x – yn|

)
ũ2

n dx

= a ln
(
1 + |x – yn|

)
ũ2

n(xa)

= C′
11 ln

(
1 + |x – yn|

) ≥ C′
11 ln

(
1 + |y0|

)

= C′
11 ln

(
1 + |yn|

)
for some C′

11 > 0.

(4.8)

Similarly, for the case of y0 < 0, we arrive at a similar conclusion. Furthermore, when y0 = 0,
we have ũn = un, and hence the conclusion is straightforward. Thus, for any of the cases,
there exists C′

11 > 0 (need not be the same constant but is denoted by the same name) such
that

‖un‖2
∗ ≥ C′

11 ln
(
1 + |yn|

)
for every n ∈N. (4.9)

From (2.9) we obtain

‖ũn‖2
∗ =

∫

R

ln
(
1 + |x + yn|

)
u2

n dx ≤ ‖un‖2
∗ + ln

(
1 + |yn|

)‖un‖2
2. (4.10)
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By the weak lower semicontinuity of norm and by the Z-invariance of ‖ ·‖2, it follows from
(2.9), (4.8), (4.10) that

∥
∥u(· + yn)

∥
∥2

∗ ≤ ‖u‖2
∗ + ln

(
1 + |yn|

)‖u‖2
2

≤ ‖ũn‖2
∗ + ln

(
1 + |yn|

)‖un‖2
2

= ‖un‖2 + ‖un‖2
∗
(
1 + C12‖un‖2

2
)

≤ ‖un‖2 + C13‖un‖2
∗ ≤ C14‖un‖2

X

(4.11)

for n ∈N. This implies that there exists C15 > 0 such that, on passing to a subsequence, we
obtain

∥∥u(· + yn)
∥∥2

∗ = ‖u‖2 +
∥∥u(· + yn)

∥∥2
∗ ≤ ‖un‖2 + C14‖un‖2

X ≤ C15‖un‖2
X . (4.12)

By the Cerami condition, we have

∣
∣〈E′(ũn), ũn – u

〉∣∣ ≤ (1 +
√

C15)
∥
∥E′(un)

∥
∥

X′ ‖un‖X → 0, as n → ∞. (4.13)

Claim C
∫
R

f (ũn)(ũn – u) dx → 0, as n → ∞.

By the Z-invariance of ‖ · ‖, the Moser–Trudinger inequality, and (2.17), we get

∣∣
∣∣

∫

R

f (ũn)(ũn – u) dx
∣∣
∣∣ ≤ ‖ũn‖2‖ũn – u‖2 + C16‖ũn – u‖q

qr2 → 0, as n → ∞. (4.14)

Hence Claim C has been verified.
Furthermore,

∣∣〈V ′(ũn), ũn – u
〉∣∣ ≤ c0‖ũn‖3

4‖ũn – u‖4 → 0 (4.15)

and

〈
U ′(ũn), ũn – u

〉
= A

(
ũ2

n, ũn(ũn – u)2) = A
(
ũ2

n, (ũn – u)2) + A
(
ũ2

n, u(ũn – u)2). (4.16)

Since (ũn) is bounded in X, invoking Lemma 3.4, we obtain A(ũ2
n, u(ũn – u)2) → 0, as n →

∞. Thus

o(1) = ‖ũn‖2 – ‖u‖2 + A
(
ũ2

n, (ũn – u)2) + o(1) ≥ ‖ũn‖2 – ‖u‖2 + o(1). (4.17)

Hence ‖ũn‖ → ‖u‖ and A(ũ2
n, (ũn – u)2) → 0. Therefore ‖ũn – u‖ → 0 as n → ∞. Further-

more, by Lemma 3.2, we have ‖ũn – u‖∗ → 0 which implies that ũn → u in X as n → ∞. It
remains to show that u is indeed a critical point of the functional E. As deduced in (4.11),
one can show that there exists C17 > 0 such that

∥
∥v(· + yn)

∥
∥

X ≤ C17‖un‖X for every n ∈N. (4.18)
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Therefore,

∣∣〈E′(u), v
〉∣∣ = lim

n→∞
∣∣〈E′(ũn), v

〉∣∣ = lim
n→∞

∣∣〈E′(un), v(· + yn)
〉∣∣

= C17 lim
n→∞

∥∥E′(un)
∥∥

X′ ‖un‖X (4.19)

= 0 for every v ∈ X. �

Proof of Theorem 2.4:
(i) By Lemma 3.8, Remark 3.10, and Lemma 4.1, we can conclude that there exists u0, a

critical point of E, such that E(u0) = d.
(ii) Define

D =
{

v ∈ X \ {0} : E′(v) = 0
}

.

Clearly, D �= ∅ since E′(u0) = 0. This allows us to consider (un) ⊂ D satisfying
E(un) → d′ = inf

v∈D
{E(v)}. Clearly, d′ ∈ [–∞, d] by the definition of d′. Obviously, if

d = d′, then we already have a solution, namely u0. Also, if d′ = 0, then we choose
the sequence (un) such that E(un) → 0 as n → ∞ but ‖un‖� 0 since (a) 0 is not a
critical point of E, (b) this choice of the sequence (un) helps to rule out (i) of
Lemma 4.1.

Otherwise, if 0 �= d′ < d, there exists a subsequence, still denoted by (un), such that
E(un) < d for all n. Thus, Lemma 3.12 holds for this subsequence as well and the
results thus derived as a consequence of Lemma 3.12 are all applicable.
Furthermore, by using Lemma 3.8 and Lemma 4.1, there exists (yn) ⊂ Z such that
ũn → u in X , where u turned out to be a nontrivial critical point of E in X by (ii) of
Lemma 4.1. Hence, E′(u) = lim

n
E′(un) = 0. This implies that u ∈ D and

E(u) = lim
n

E(ũn) = lim
n

E(un) = d′ > –∞. �

Appendix
Lemma A.2 will establish the existence of a positive solution to (2.13) and Lemma A.4 will
guarantee that a solution to (1.1) is greater than or equal to the solution to (2.13).

Lemma A.1 (Weak comparison principle) Let u, v ∈ X. Suppose that –�
1
2 v– μ

vγ ≥ –�
1
2 u–

μ

uγ weakly in R. Then v ≥ u in R.

Proof The idea was motivated by Saoudi et al. [37]. Since –�
1
2 v – μ

vγ ≥ –�
1
2 u – μ

uγ

weakly in R, we have

〈
–�

1
2 v,φ

〉
–

∫

R

μφ

vγ
dx ≥ 〈

–�
1
2 u,φ

〉
–

∫

R

μφ

uγ
dx (A.1)

for every φ ≥ 0 ∈ X.
In particular, choose φ = (u – v)+. Then the inequality in (A.1) looks as follows:

〈
–�

1
2 v + �

1
2 u, (u – v)+〉

– μ

∫

R+

(u – v)+
(

1
vγ

–
1

uγ

)
dx ≥ 0, (A.2)
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where R+ = {x : u(x) > v(x)}. Let ψ = u – v. We choose the test function φ = (u – v)+. We
express

ψ = u – v = (u – v)+ – (u – v)–

to obtain

[
ψ(y) – ψ(x)

][
φ(x) – φ(y)

]
= –

(
ψ+(x) – ψ+(y)

)2. (A.3)

The equation in (A.3) implies

0 ≥ 〈
–�

1
2 v + �

1
2 u, (v – u)+〉

= –
∫

R

1
|x – y|2

(
ψ+(x) – ψ+(y)

)2 dx dy ≥ 0. (A.4)

This leads to the conclusion about the Lebesgue measure of R+, i.e., |R+| = 0. In other
words v ≥ u a.e. in R. �

Lemma A.2 Let μ > 0. Then the following problem

(–�)
1
2 u + u +

(
ln | · | ∗ |u|2) = μu–γ in R,

u > 0 in R (A.5)

has a unique weak solution in X0. This solution is denoted by uμ, satisfies uμ ≥ εμv0 a.e. in
�, where εμ > 0 is a constant. Here v0 > 0 is a suitable function such that E(εμv0) < 0.

Proof We follow the proof in Choudhuri [11] and Choudhuri and Saoudi [12]. First,
we note that an energy functional on X formally corresponding to (A.5) can be defined as
follows:

E(u) =
1
2
‖u‖2 + W (u) –

μ

1 – γ

∫

�

(
u+)1–γ dx (A.6)

for all u ∈ X where u+(x) = max{u(x), 0}. By using the Poincaré inequality, this functional
is coercive and continuous on X. It follows that E possesses a global minimizer u0 ∈ X.
Obviously, u0 �= 0 since E(0) = 0 > E(εv0) for sufficiently small ε and some v0 > 0 in R.

Next, if u0 is a global minimizer for E, then |u0| is also a global minimizer. This is because
E(|u0|) ≤ E(u0). Clearly, the equality holds if and only if u–

0 = 0 a.e. in R. Here u–(x) =
min{–u(x), 0}. In other words, we must have u0 ≥ 0, i.e., u0 ∈ X+, where

X+ = {u ∈ X : u ≥ 0 a.e. in R}

is the positive cone in X.
Furthermore, we will show that u0 ≥ εv0 > 0 holds a.e. in R for small enough ε. We

observe that

d
dt

E(tv0)|t=ε =ε‖v0‖2 + 4ε3C
(
v4

0
)

– με–γ

∫

�

v1–γ
0 dx < 0, (A.7)
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whenever ε ∈ (0, εμ] for some sufficiently small εμ. We now show that u0 ≥ εμv0. Suppose
we assume the contrary that w = (εμv0 – u0)+ does not vanish identically in R. We denote
R+ = {x ∈ R : w(x) > 0}. We will analyze the function ζ (t) = E(u0 + tw) of t ≥ 0. This func-
tion is convex when defined over X+ being convex. Furthermore, ζ ′(t) = 〈E′(u0 + tw), w〉 is
nonnegative and nondecreasing for t > 0. Consequently, for 0 < t < 1, we have

0 ≤ ζ ′(1) – ζ ′(t) =
〈
E′(u0 + w) – E′(u0 + tw), w

〉
=

∫

R+

E′(u0 + w) dx – ζ ′(t) < 0 (A.8)

by inequality (A.7) and ζ ′(t) ≥ 0 with ζ ′(t) being nondecreasing for every t > 0, which leads
to a contradiction. Therefore w = 0 in R and hence u0 ≥ εμv0 a.e. in R.

Moreover, since the functional E is strictly convex on X+, we conclude that u0 is the only
critical point of E in X+ with the property ess inf

V
u0 > 0 for any compact subset V ⊂R. Thus

we choose uμ = u0 in the cutoff functional. �

Remark A.3 We now perform an analysis on a solution (if it exists). Suppose that u is a
solution to (1.1). Then we observe the following:

1. If u is a global minimizer, then clearly E(u) ≤ E(|u|). Further, E(u) ≥ E(|u|) is always
true due to the first term of the energy functional. Thus u– = 0 a.e. in R.

2. In fact, a solution to (1.1) can be considered to be positive, i.e., u > 0 a.e. in R, due to
the presence of the singular term.

Therefore, without loss of generality, we may assume that the solution is positive.

We finally have the following result.

Lemma A.4 (A priori analysis) Fix a μ ∈ (0,μ0). Then a solution of (1.1), say u > 0, is such
that u > uμ a.e. in R.

Proof Fix μ ∈ (0,μ0) and let u ∈ X be a positive solution to (1.1) and uμ > 0 be a solution
to (A.5). We will show that u ≥ uμ a.e. in R. Thus, we let R∗ = {x ∈ R : u(x) < uμ(x)}, and
from the equation satisfied by u, uμ we have

0 ≤ 〈
�

1
2 (uμ – u), uμ – u

〉
R

+
〈
W ′(uμ) – W ′(u), uμ – u

〉

+
∫

R

(
f (u) – f (uμ)

)
(uμ – u) dx

≤ μ

∫

R∗

(
u–γ

μ – u–γ
)
(uμ – u) dx; by (A1) ≤ 0.

(A.9)

Furthermore, we have

〈
�

1
2 (uμ – u), uμ – u

〉
R∗ ≥ 0. (A.10)

Hence, by (A.9) and (A.10), we obtain u ≥ uμ a.e. in R.
Now suppose S = {x ∈ � : u(x) = uλ(x)}. Clearly S is a measurable set, and hence for any

δ > 0 there exists a closed subset F of S such that |S\F| < δ. Furthermore, let |S| > 0. Define
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a test function ϕ ∈ C1
c (R) such that

ϕ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ F ,

0 < ϕ < 1, if x ∈ S \ F ,

0, if x ∈R \ S.

(A.11)

Since u is a weak solution to (1.1), we have

0 = (
〈
(–�)

1
2 u,ϕ

〉
R

+
∫

F
W ′(u) dx +

∫

S\F
W ′(u)ϕ dx – μ

∫

F
u–γ dx

– μ

∫

S\F
u–γ ϕ dx –

∫

F
f (u) dx –

∫

S\F
f (u)ϕ dx

= – μ

∫

F
u–γ dx – μ

∫

S\F
u–γ ϕ dx –

∫

F
f (u) dx –

∫

S\F
f (u)ϕ dx < 0.

(A.12)

This is a contradiction. Therefore, |S| = 0. Hence, u > uλ a.e. in R. �
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