
Mathematical Notes, vol. 77, no. 1, 2005, pp. 108–111.
Translated from Matematicheskie Zametki, vol. 77, no. 1, 2005, pp. 117–120.

Original Russian Text Copyright c©2005 by D. Repovš, M. Skopenkov, M. Cencelj.
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Abstract—We present a short elementary proof of the following twelve-point theorem. Let
M be a convex polygon with vertices at lattice points, containing a single lattice point in its
interior. Denote by m (respectively, m∗) the number of lattice points in the boundary of M
(respectively, in the boundary of the dual polygon). Then m + m∗ = 12 .
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The twelve-point theorem is an elegant theorem, which is easy to formulate, but no simple proof
was available until now. In this paper, we present a short and elementary proof of this result. To
state our theorem we need the following definition.

Definition of the dual polygon. In this paper, we assume that a Cartesian coordinate system
in the plane is fixed. Let M = A1A2 . . . An be a convex polygon all of whose vertices lie in the
lattice of points with integer coordinates (see Fig. 1 on the left). Suppose that O is the only lattice
point in the interior of M . Draw the vectors

−−−→
A1A2 ,

−−−→
A2A3 , . . . ,

−−−→
AnA1 from the point O . Choose

on each of the obtained segments the lattice point distinct from O nearest to O . Connecting the n
chosen points consecutively, we obtain the polygon M∗ dual to the original polygon (see Fig. 1
on the right). Denote by m and m∗ the number of integer points in the boundary of M and M∗

respectively.

Fig. 1

The Twelve-Point Theorem. Suppose that M is a convex polygon with integer vertices, con-
taining a single integer point in its interior. Then

m + m∗ = 12.

This theorem appeared in the book [1]. There are some hints to the proof, applying the theory
of toric varieties (see also [2]). In the interesting paper [3], entirely dedicated to the twelve-point
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theorem, even four different proofs are discussed. Three of them are rather long and they use toric
varieties and modular forms, respectively. There are also two outlined proofs applying only linear
algebra. The first of them is by exhaustion (there are 16 different types of polygons M). The idea
of the fourth one is very close to the proof of the present paper. (This proof is only outlined in the
paper mentioned above, and its straightforward realization is also very cumbersome.)

Our elementary proof is analogous to one of the proofs of the Pick formula. We reduce the
twelve-point theorem to the specific case in which M is a parallelogram and m = 4. Let us begin
with this latter case.

Fig. 2

(1) If M = ABCD is a parallelogram without lattice points in its sides, then m + m∗ = 12 (see
Fig. 2).

Indeed, in this case O = AC ∩ BD , because the point symmetric to the point O with respect
to AC ∩ BD is a lattice point and belongs to the interior of ABCD , so it coincides with O . It
is easy to show that M∗ is a parallelogram with sides obtained from the diagonals AC and BD

by parallel translations with vectors ±−→
OB and ±−→

OA , respectively. Since a unique lattice point O
belongs to these diagonals, then any side of the parallelogram M∗ contains one lattice point; hence
m + m∗ = 4 + 8 = 12.

Now, suppose that M = A1 . . . An . Let us assume that all the lattice boundary points of M
are vertices (possibly, with angle 180◦). This does not affect the definition of M∗ . Assume that
some triangle Ai−1AiAi+1 is simple, i.e., it contains no lattice points except its vertices (neither
in the interior nor in the boundary). An elementary operation

A1 . . . Ai−1AiAi+1 . . . An → A1 . . . Ai−1Ai+1 . . . An

is the cutting off from the polygon M of the triangle Ai−1AiAi+1 and the reverse operation. Our
reduction is based on the following assertion.

Fig. 3
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(2) The value m + m∗ is preserved under an elementary operation.

It is sufficient to prove that deleting a simple triangle, say A1A2A3 , from M results in adding
a simple triangle A12A13A23 to M∗ (see Fig. 3). Here by Akl we denote the point such that−−−→
OAkl =

−−−→
AkAl . In particular, if l = k + 1, then Akl is a vertex of the polygon M∗ . Delete

A1A2A3 . Then the vertices A12 will be deleted from the polygon M∗ and A23 , and the new
vertex A13 added to it. The last vertex should be joined by segments with An1 and A34 . Let us
show that the points A12 and A23 belong to these segments. Indeed, since O is the only lattice
point inside M , it follows that the triangles A1OA3 , A2OA3 , A4OA3 are simple. By the Pick
formula, their areas are equal to 1/2 . Since they have the common base OA3 , it follows that the
projections of the vectors

−−−→
A1A3 ,

−−−→
A1A3 , and

−−−→
A1A3 on the direction normal to OA3 are equal.

This implies that the points A13 , A23 , and A34 belong to the same line, and A23 lies between
the two others, because M is convex. It can be proved similarly that A12 belongs to the segment
An1A13 . Therefore, the transformation of M∗ is just adding the triangle A12A13A23 . Now, note
that the triangle OA12A13 is obtained from the simple triangle A1A2A3 by parallel translation,
and OA23A13 is obtained from it by central symmetry. So the triangle A12A13A23 is simple, and
assertion (2) is proved.

Fig. 4

For the proof of our theorem, it remains to notice the following.

(3) From any polygon M , one can obtain a parallelogram without lattice points in the sides by a
sequence of elementary operations.

Indeed, first assume that M has a diagonal not passing through O . Cut M along this diagonal
and consider the obtained part not containing O . This part necessarily contains a simple triangle
of the form Ai−1AiAi+1 . Deleting it, we decrease the number m . Repeat this operation as long
as it is possible. Repetition is impossible only in the following three cases (when such a diagonal
does not exist).

(A) m = 4, M = ABCD , O = AC ∩ BD ; since the segments OA , OB , OC , and OD do
not contain lattice points, it follows that OA = OC and OB = OD , i.e., ABCD is the
required parallelogram;

(B) m = 4, M = ABCD , and C belongs to the segment BD ; in this case let us denote by D′

the point symmetric to D with respect to O , and denote by E the midpoint of D′B ; the
required sequence of elementary operations has the form

ABCD → AEBCD → AD′EBCD → AD′ECD → AD′CD

(see Fig. 4 on the left);
(C) m = 3, M = ABC ; in this case denote by A′ and C ′ the points symmetric to A and C ,

respectively, with respect to O ; the required sequence of elementary operations has the
form

ABC → AC ′BC → AC ′BA′C → AC ′A′C

(see Fig. 4 on the right).
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So, in each case, we obtain the required parallelogram, which completes the proof of our theorem.
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